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A method for the self-consistent calculation of correlation functions is described and applied to the Heisen-
berg model at high temperatures. The technique is based on a straightforward physical picture. It is used
(i) to derive a simple analytic approximation for the autocorrelation function valid at times t &2JS/0; (ii)
to derive an equation given by Resibois and DeLeener which is shown to be valid at short times also; (iii) to
derive a set of integrodiBerential equations for the general correlation functions (S s Ss(t)).The latter equa-
tions are solved numerically for the case of a simple cubic lattice with nearest-neighbor interactions, and are
shown to give results in excellent agreement with computer simulation calculations for the same model. A
discussion is given of the physical motivation of the approximations employed and the special mathematical
aspects of the problem.

1. INTRODUCTION

'HE dynamical properties of Heisenberg spin sys-
tems above the Curie temperature have been the

subject of much theoretical study in recent years' "
stimulated by the appearance of inelastic neutron scat-
tering data at high temperatures" " and by the data
becoming available from computer simulation calcula-
tions for precisely defined models. ' " The methods
used include moment calculations, ' ' microscopic
theories of spin diffusion, ' ' diagrammatic perturbation
theory, ' and interpolation schemes. ' "A useful review
of much of this work is contained in Ref. 11.

The theoretical treatment of high-temperature spin
systems has conceptual and mathematical difhculties

typical of a certain class of many-body problems in
which the "self-energy" effects due to the interactions
are large compared to the "unperturbed single-particle
energies. " Other examples are the theories of classical
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liquids, of homogeneous turbulence, " of low density
electron gases, or, indeed, of any many-body problem
with very strong interactions. The situation can perhaps
be made clearer by comparing the low- and high-tem-.
perature regimes of a spin system. At low temperatures
in (say) a ferromagnet, each spin is acted on by a mean
field JSst (J=exchange energy, S= spin magnitude,
si ——number of interacting neighbors), which represents
to a Grst approximation the effect of the spin interac-
tions. The higher-order effects of the interaction then
appear as small fluctuations of the effective field (acting
on a spin) about this mean field. One can think of the
mean Geld as providing a set of "unperturbed" energy
levels for a spin and of the higher-order effects of the
interactions as a perturbation, a picture which is good,
provided that the fluctuations of the effective Geld are
small compared to the mean Geld. One then has a strong
analogy with a system of particles with weak interac-
tions, an analogy which is exploited in spin-wave theory.
If, however, one now raises the temperature, the mean
Geld decreases and the Quctuations increase, until at
the Curie temperature the mean Geld and with it the
unperturbed energies disappear altogether —one only
has the perturbation left.

To overcome this dHBculty, there have been two
main lines of attack. One is the adoption of "Gtting"
schemes, '''' " in which one postulates a certain
plausible shape (e.g. , Gaussian) for some suitable func-
tion (e.g., the spin correlation function, its Fourier trans-
f'orm, or the generalized diffusion function) and adjusts
parameters to Gt certain known moments, a procedure
which can be very successful in practice. The other' 4 ' '
(of which the theory to be described here is an example)
is to attack the microscopic problem from first principles
in spite of the difhculty alluded to above. All such cal-
culations have been based upon the notion that although
the mean Geld disappears, each spin is still acted on by
an effective field JS+si which, albeit fluctuating in

magnitude and direction, can play the role of generating
unperturbed energy levels. Essentially, in the absence

'9 The methods used in this paper are similar to those 6rst used
by Kraichnan in his treatment of turbulence; cf. R. H. Kraichnan,
Phys. Rev. 109, 1407 (1958).
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of a real mean held, or unperturbed Hamiltonian, one is
asking the self-energy to serve the same purpose. Since
the strength of interaction JS' and the self-energy

JS'Qsz, such a theory will have an expansion param-
eter 1/Qs~ (or 1/s~ for some quantities), which in
practice is small enough to make the approach useful.
An essential feature of such an approach is that the self-

energy has to be calculated self-consistently, since its
expansion in powers of 1/s~ expresses it in terms of
itself.

The first approach of this kind was that of Resibois
and DeLeener, " who used a perturbation technique to
derive integral equations for the high-temperature corre-
lation functions. These equations are of the self-con-
sistent kind required and are physically plausible. They
later extended their approach to discuss the critical
region' which has also been studied by Kawasaki4 who,
using a different (but again self-consistent) technique,
obtained identical equations. In this paper we present
another treatment of this kind, motivated by certain
simple physical considerations, and derive several ap-
proximations of varying degrees of elaboration for the
high-temperature case. One of these coincides with
Resibois and DeLeener's original result~ which we show
is only valid at short times t(t, 2JS/h. We also derive
a simpler analytic solution which is equally accurate in
the same time interval, and a more elaborate self-
consistent equation which turns out to be the high-
temperature form of the equations derived by DeLeener
and Resibois' and Kawasaki4 for the critical region.
This equation has been solved numerically for the case
of a simple cubic lattice with nearest-neighbor interac-
tions and is found to give spin correlation functions

(5,*5,'(&)) in excellent agreement with the computer
simulation calculations of Windsor" and a spin diffusion
coefficient in agreement with that calculated by Mori
and Kawasaki' and also found by Windsor.

The physical idea behind our mathematical calcula-
tion is that each spin moves in a randomly varying
effective magnetic field produced by its neighbors. The
correlation function for the motion of a spin in a ran-
domly varying field can be calculated approximately in
terms of the correlation function of the random field, as
was done by Kubo and Toyabe, "among others. Indeed,
by making assumptions about the nature of the random
Beld, the latter authors derived numerical expressions
for the spin-spin correlation function. In our treatment,
however, we make no such assumption about the corre-
lation functions for the Geld. Instead, we recognize that
the Quctuating 6eld is itself produced by neighboring
spins with the same correlation function. This enables
us to express the correlation function of the random held
in terms of the correlation function of the spins. Com-
bining this result with the calculation of the spin corre-
lation function in terms of that of the random field

~ R. Kubo and T. Toyabe, in Magnetic EesorlarIce and Ee4xg-
tioe, edited by R. Blinc (North-Holland, Amsterdam, 1967),
p. 810.

leads to a self-consistent equation for the spin correla-
tion function which is in some sense an analog of the
self-consistent treatment of the magnetization at low
temperatures. Needless to say, the mathematical im-
plementation of these physical ideas requires a number
of approximations, some of which are straightforward
and easily understood, while others are less directly
accessible physically. We have made an effort to indicate
clearly the approximations made and to discuss, as far
as is possible, their physical significance. The principal
approximation made is the neglect of the detailed corre-
lations between three or more spins, an approximation
which we argue should only lead to errors 0(1/sq) at high
temperatures. From the point of view of stochastic
theory, this assumption is equivalent to saying that the
spin motion is approximately a Gaussian random
process. "

In Sec. 2 we collect some general theory which is un-
familiar but necessary for the mathematical develop-
ment. In Sec. 3 we apply our technique to derive a simple
approximate equation for the self-correlation function.
This equation, which is valid for short times, f(275/h,
has the analytical solution (S,(0) .S,(t) )=5(5+1)
&(sech'(r/V2), where r = P35(5+1)P J'(r))'~'t In Sec..
4 we show that the use of a more accurate approxima-
tion for this problem yields the equation of DeLeener
and Resibois, which, however, is still only valid for
f(2JS/h and has a solution not much different from
the above solution. In Sec. 5 we consider the gen-
eral wave-vector —dependent correlation functions
(S «(0) S«(t)) and use our technique to derive a set of
approximate nonlinear integrodifferential equations for
them. These equations have been integrated numeri-
cally, yielding both the correlation functions and their
temporal Fourier transforms discussed in Sec. 6. The
generalized diffusivity has also been calculated and a
brief discussion is given of the Gaussian interpolation
schemes" for this quantity.

The second moment is given exactly in our approxi-
mation, while the fourth moment differs from the exact
value by 10—20'Po. Finally, the long-time behavior of the
small-q correlation functions yields the spin diffusion
coefhcient. In several appendixes we give a somewhat
more detailed discussion of the approximations involved.

2. GENERAL THEORY

It is our purpose to show how one may calculate ap-
proximately the correlation functions C(t) =(5,'5,'(t))
and C (t) =«(S «'5«'(/)) of the Heisenberg model in the
high-temperature limit 2' —+ ~ . Here S,(t) =e'~"S;e '~"
is the quantum-mechanical spin operator of length
LS(5+1))"'at lattice site i with Cartesian components
5; (/), Sp(t), S (t); we adopt the notational convention

~' Of course, the assertion that this motion is a GulssiurI, random
process does not imply that the spin correlation function is itself
Gaussian. Indeed, as our calculations show, it is not; cf. P. W.
Anderson and P. R. Wepss, Rev. Mod. Phys. 25, 269 (1953).
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of labeling lattice sitesi, j, k, . . . , and denote the posi-
tion vector of site i by R;. Sq(t) is the Fourier trans-
formed spin

S,(t) =iV 'Q—S;(t)e*q "'

where the sum runs over the E lattice sites and q may
be any wave vector; we will use the notation S„S,,
Sq, . . . , for such operators. The average (A) of any
operator is defined according to

(A)= Tr(Ae ~ ')jTr(e ~ '), (2)

and
{S-.' S.'(t) }

C,(t) =-', iY
—'S(S+1)

—=l.~- 5(5+1)F,(t), (9)

defining the functions F(t), Fq(t).
We shall use an unfamiliar technique to calculate the

functions FA&(t). From Eqs. (2.24b) and (3.3) of Ref.
22, one may deduce an alternative expression for the
relaxation function, namely,

{A,B(t)}=lim —i (PA,B(t—t')])e"dt',

as o ~ Op (10)

(3) which can be rearranged into the formHo ——', P——IgS; S, ,

where Tr denotes the trace over the Hilbert space of the
spin system and /=1/~T, s=Boltzmann's constant.
Throughout the remainder of the paper we tak.e 4=1.
The Hamiltonian of the Heisenberg model will be
written

{A,B(t)}= (e"~oAe "~oB(t))dX,

where we have omitted the term (AoBo) (in Kubo's no-
tation) which will vanish in the present application. In
the limit T-+~, P —+ 0, we deduce at once from (5)
that

P(AB(t)) = {A,B(t)}. (6)

Dividing (6) by the corresponding equation taken at
t=0 gives

(AB(t)& {A,B(t)}
=FAB t) )

(AB) {A,B}
(7)

where FAe(t) is the "relaxation shape function. " It is
this function F~~ that we aim to calculate. The correla-
tion functions may then be deduced from (7), since the
averages (AB) are given in the high-temperature limit

by (S,*S,')= isS(5+1)b;; and Lusing (1)] (5 o'5, ')
=-'X '5(S+1).

Thus we find

{5, 5. (t)}
C(t) =-',5(S+1) —= -', 5(S+1)F(t){5'S*}

"R.Kubo, J. Phys. Sac. Japan 12, 570 (1957l.

where J;, is the exchange interaction of spins at sites
i, j.We assume that J;,= 0, that J;;=J;; depends only
upon the difference R;—R, , and that J,;—+0 suS-
ciently quickly (e.g. , exponentially) as ~R,—R;~ ~~.
The Hamiltonian (3) and the spin commutation rela-
tions lead to the usual equation of motion

S,= —Q I,,S,&&S;
j

for the S;.
I.et the symbols A, P, P, . . ., stand for either S or

S»'. We shall calculate the correlation functions (AB(t))
indirectly via the relaxation functions" defined by

{A,B(t)}=lim —i (LA(t'), B(t)])e"'dt',

as &~0+.
= (CX,B(t)))

=(»(t))
where

X=llm—
—00

A (t')e"dt' as s~ 0~

bB(t)—= LX,B(t)]. (12)

i—B(t) =L~(t),8o],
dt

(13)

where Ho =Ho+ bH'o= Ho+ (X,Ho) is the pertu—rbed
Hamiltonian operator. Equation (13) is simply the
ordinary equation of motion for Bwith all operators A (t)
replaced by the co&responding circumQ&x&d pperators

The operator bB(t) has a simple physical interpreta-
tion. The relaxation function {A,B(t)}describes how the
variable 8 relaxes for t&0 when a perturbation propor-
tional to A is switched on adiabatically between t = —~
and t= 0 and switched off abruptly at t=0. In the ab-
sence of the perturbation A the operator 8 evolves in
time in the usual way into B(t)= e'~"Be '~" However, .
the perturbation A disturbs this evolution and, as is

shown in Appendix A, causes it to evolve instead into
the operator B(t)= B(t)+bB(t) (for t) 0). Thus bB(t)
represents the change in B(t) (at positive t) due to the
application of the perturbation A, and is the exact
analog of the change of a classical dynamical variable
due to such a perturbation.

From the delnition (12) and the operator equa-
tions of motion, one may deduce (using the identity

LLA,B),C)+RULC, A),B)+/LB,C),A)=0) that B(t) sat-
isfies the equation of motion
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—S,(t) = —P J;;S,(t) XS,(t).
dt

A(t). For example, S,(t) obeys the equation of motion

(14)

Secs. 5 and 6) we shall show how it is possible to dispense
with this kind of approximation.

With the use of approximation (A), Eq. (17) can be
written

One may now combine (8) and (11) to write

F(t) = &»"(t))/(»"), (15)
where h(t) may be thought of as an "effective magnetic
field" acting on the ith spin given by

where bS is due to a perturbation proportional to S,'
acting up to t=0, and, similarily,

h(t) = —Q J,,S,(t). (20)

F,(t) = &»,'(t))/&», *), (16) To solve (20), we formally rewrite (19) (following
Kubo")

where h5»'(t) is due to a perturbation proportional to
5 ~' acting up to 3=0. Our program of calculation is to
estimate the ratios in (15) and (16), and therefore the
functions F and F», and thence C and C» via (8) and
(9).

3. APPROXIMATION FOR &S;*(0)8,*(t)&

We begin by developing an analytic approximation for
C(t). This approximation has the disadvantage of being
valid only for short times, but the mathematical ex-
pression of the physical picture described in Sec. 1 is
most clearly seen in this treatment. Following our pro-
gram, we imagine a magnetic field in the s direction to
have been applied to a single spin (say the ith) up to
t == 0 and ask how &85,'(t)) evolves for t) 0. To do this,
we use the equation of motion

6S,(t) = —Q J;,S,(t) XtIS;(t) —Q J,,&S,(t) XS,(t) (17)

J2 Q J.,2 (18)

(For nearest-neighbor interactions of strength J, one
has J= (Qsi)J.g This expectation is, in fact, borne out
by comparison of the results obtained here with the
more elaborate calculations of Secs. 5 and 6, which do
not involve an approximation of the kind (A). We there-
fore make the approximation (A) and expect the theory
to be good for t& t„.t, will be estimated below. Later (in

for 88, derived from (4) and (14). Since the perturbing
field was applied to the ith spin alone, one knows that
in the T ~~ limit &tIS;)=0 for jAi, that is, bS, (j /i)
vanishes on the average at 3=0. This suggests that at
short times one might neglect the term in 88, (t) on the
right-hand side of (17) compared to the other; this
neglect will be referred to as approximation (A). One
would expect this approximation to be good at times t
for which &85,'(t))«&85 (t)). However, from the sym-
metry of the situation and the conservation of spin, one
has &35,'(t)&&&85,')/si, where si is the number of
nearest neighbors. Thus the approximation (A) should
be good for times t for which &85,*(t))»(85,')/si, i.e.,
for which F(t)»1/si, i.e. , for t&t, where F(t,)~1/si.
We estimate below t, 2/SJ, where

bS;= ihx(t) S;(t), (21)

where ihx(t) is a linear "superoperator" (by which we
mean an entity which, acting on a quantum-mechanical
operator, turns it into another operator) defined by

ihx(t)A=h(t) XA (22)

where 3 is any vector operator. The factor i has been
included in the definition so that h+ will be Hermitian.
Written in the form (21) the equation may be solved in
the usual way to give

68,(t) =exp~ i Iix(t')dt' 68,(0), (23)

where exp+ means the time-ordered exponential. Using
this expression in (15) gives

t

F(t) = exp~ i hx(t')dt' tIS; &85,*&, (24)
0 ~ g

where L ), means the z component of the operator in

L $. This formula may be thought of as describing how
the perturbation bS; is relaxed away by the action on
S; of the effective fluctuating field h(t) due to the other
spins.

The right-hand side of (24) cannot be calculated
exactly and further approximations are necessary. In
this and the next section, two different lines of approxi-
mation will be described. Here we adopt the simpler of
the two which will lead to an analytic approximation
for F(t).

Let us define an averaging operation «A)) for super-
operators according to

«~&) = (P ~S,j.&/&~5,'&. (25)

We note that &(1))=1 and that (( )) is linear, con-
firming that &( )) is a proper averaging operation and
that (24) can then be written

(26)

2' R. Kubo, in J llctlation, Relaxation gnd Resongncein Mggnetic
Systems, edit&/ by D. ter Haar (Oliver and Boyd, Edinburgh,
1962), p. 23.,
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To evaluate (approximately) the right-hand side, we
will use the cumulant expansion theory of Kubo, '4

transforming it to

F(t) =exp i ((h (t')))dt'

+~i2 dtl dt2(((kX(ti)AX(t2))+))~+. . .
~ (27)

where (2 (t,)A (t,) . )+ means the time-ordered product
of the operators {or superoperators), the cumulant
averages (( )), are defined in the usual way, "e.g. ,

(((h'(t )h'(t )) )).
=((( '(i) '(2))+))—(( "(i)))(( '(2))) ( )

and the exponent is the usual cumulant expansion.
The derivation of (27) has involved only the approxi-

mation (A). To evaluate the exponent, however, further
approximations are needed, since Lusing (20) and (25))
we see that the terms of the cumulant series involve
spin averages of all orders. The kind of approximation
we use is motivated by noticing that according to (20)
the effective field h(t) is a superposition of contributions
from the s~ neighboring spins. If these s~ contributions
were statistically independent then each (nonvanishing)
term in the cumulant series would be smaller by a factor
1/si than its predecessor (in the limit si ~~ this would
be equivalent to the central limit theorem). In practice
we do not expect the s& neighboring spins to be very
strongly correlated at high temperatures, so the s& con-
tributions to h are nearly independent. Furthermore s&

is a moderately large number (si 6—12). Thus we may
expect the cumulant series to be fairly rapidly con-
vergent and will therefore approximate it by its erst two
terms /those written explicitly in (27)), neglecting the
third- and higher-order cumulants; we shall refer to this
as approximation (8').

We are still faced with the problem of evaluating the
averages ((h"(t'))) and ((h (ti)h (t2))),. To do this we
shall make use of a rather general approximation prin-
ciple Lapproximation (8)), namely we neglect the
detailed correlations of three or more spin operators; or,
to be more precise, we assume that the cumulant
averages (Si5~53. ), of three or more spins are neg-
ligible. This is the basic approximation used in this
paper. All other approximations can be either avoided or
are readily reined. It is really a more general statement
of the considerations underlying approximation (8')
discussed above. To the extent that the operators S~,
S~, . . . , in (Si52 ), refer to diferent sites, it reflects
the notion that correlations between spins at different
sites are not too strong. On the other hand, examina-
tion of the structure of the cumulant series shows that
it only involves the neglect of correlations of spins at

24 R. Kubo, J. Phys. Soc, Japan 17, 1100 (1962).

the same site in terms which are already small by a fac-
tor 1/si (relative to the leading terms of the cumulant
expansion).

The approximation (8) is very powerful. Approxi-
mation (8') above is to a considerable extent a corollary
of (8). In fact, in the theory of Secs. 4 and 5, where use
is made of approximation (8') Pin the context of a defi-
nition of average that is different from (25)), one can
show (see Appendix 8) that (8') is a consequence of
(8). In the context of the average definition (25) used
here, however, (8') involves not only (8), but also an
additional kind of approximation, and so must be intro-
duced as a separate assumption. This point is discussed
briefly in Appendix C. Approximation (8) also has two
other consequences which are of use here. The way in
which they follow from (8) is discussed in Appendix B.
These consequences are as follows. Approximation
(8"):Any average (SiS2 . 5 65) may be approxiinated
as (Si52. . 5„)(85).Approximation (8"'):Any average
of an odd number of factors ((hih2. h„)) may be
neglected.

The use of approximations (8') and (8"') in (27) now
leads to

F(t) =exp i' dti dt~((h (ti)h (t2))), (29)

expressing the relaxation Ii approximately in terms of
the correlation function of the random field h. We now
evaluate the correlation function ((h (ti) h*(t,))) in
terms of F returning to the definitions (22) and (25)
which give

'((h'(t )h (t )))
= —(Lh (t,)h (t,)sS,),)/(SS; )
= (Lh(t, ) && (h(t2) && BS;)),)/(85 )
= c*~"e"(h~(t,)k (t )85')/(65')
= (&.8„—~.,&,.)P "(t )h (t ))(~5")/(~5'*) (3o)

where the last line follows by the application of appr oxi-
mation (8").The e"" are the usual permutation sym-
bols and we have adopted the summation convention
that any repeated Greek superscript is to be summed
over x, y, and s. From consideration of rotation sym-
metry in spin space (and the definition (20)), it follows
that (ti"(ti)h (t&))= b„,(h"(ti)h'(t2)). Using this result
and (20) one obtains

i'(( t'(t, ) I'(t,)))= —2(h (t,)h, (t,))
= —2 Z J' J' (5'(t )5 *(t )) (31)

We now introduce our final approximation (A'),
closely related to (A). The present theory is only useful
for times t&t„ for which si(85,'(t))«(85 (t)), which
through (6) and (11) implies si(5'(t)5 *)«(5'(t)5;')
In this time range, therefore, the j/k terms in the sum
in (31) are small compared to the j= k terms and may
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be neglected. This gives Lusing (8) and (18)j
(h (&,)h (z,))=Q J;,'C(t, —z,)

(32)

F(t) =exp ——,'S(S+1)J' dti dh, F(t,—&,), (33)

or, introducing the reduced time variable

r= PS(5+1)7"'Jt,
and rearranging a little,

(34)

=-',S(S+1)J'F (z, —t.),
and, from (31),

z'((h (3 )h (t)))= ——,'S(S+1)J'F(ti —tz))

so that (29) reduces to the equation

C(Q) = 32S(5+1) F(t) cosQtdt

For large r the solution (37) is proportional to
exp( —r&2), but this lies outside its region of validity
g& 7,. In fact, we expect that for large r the correlation
function obeys a diffusion law (5,'5,'(z)) ~ r
&&exp) —(R,—R,)'/4Drj, so F(r) ~ z. '".We inay esti-
mate the range of validity 7.&r, from the equation
F(r,)~1/si, which gives r,~2 using (37). In fact, in
Fig. 1 the solution (37) is compared with other approxi-
mations derived in this paper and with the computer
simulation experiments of Windsor' for the sc case and
is seen to be tolerably good out to 7- 3.

We finally note that in the limit T —+~, C(f) is an
even function of t given by C(t) = zsS(5+1)F(~t~). Its
Fourier transform is therefore given by

F(r) =exp (35)
where co is the scaled frequency

(40)

which is the self-consistent equation for F(z.) that was
sought.

The self-consistency has entered because Ii was deter-
mined by the relaxation of bS;, which was in turn deter-
mined by the fluctuating field h(t), the statistics of
which depend upon C(ti —tz), and these on F again via
(8). The self-consistent equation (35) can be quite
easily solved by differentiating twice. This leads to the
differential equation

F(co) = F(T) cosMrdr

sinh(zru/K2)

L35(5+1)]'"J (41)

(42)

(43)

with the solution
F=F'/F —F',

using (37). This result is compared in Fig. 2 with the
more accurate calculations of Sec. 6 and with the corre-

C(r)/-,'5(5+ 1)=F(r) = sech'(r/v2), (37)

satisfying the boundary condition F(0)= 1, F(0)=0.
This is, in fact, our simple analytic solution for C(r)
valid for r(r,= (-,'5(5+1))' 'J&..

For small z. our solution (37) has the expansion

F(r) =1 2r'+6r4+0—(r'), (38)

which should be compared with the exact result (derived
from Collins and Marshall') for the nearest-neighbor
interaction case

1.0

0.9

0.8

0.7

0.6

0.5

04

0.3

7
+ r4 1——

48
4+2sg+ (39)

7s] 2S(S+1)

0.2

0. )

where s~ is the number of nearest neighbors and s2 is the
number of nearest neighbors of a site i that are also
nearest neighbors of a given nearest neighbor j of i
(sl 6, s&=0 for simple cubic (sc), si ——8, s&= 0 for bcc,
si=12, sz ——4 for fcc). In practice, the expression in
square brackets is always close to 1, so our approxima-
tion (38) has the correct second derivative at r= 0 and
a fourth derivative accurate to within 5%.

-0. I

0

de LEENER
I I I I. I I I I I I I I I I'I I I I I I I I I I

0.8 l.6 2.4 3.2 4.0 4.8

Pro. 1. Autocorrelation function and the nearest-neighbor cor-
relation function for a simple cubic lattice with nearest-neighbor
exchange. The circles represent Windsor's computer simulation
data. The analytical approximation sech'~/V2 and the Resibois
and DeLeener result are seen to be reasonable approximations at
short times. The scaled time 7. is defined in Eq. (34).
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0.8

vector operators. Thus one can think of hx(t) as a tensor
operator in spin space Lit is also, of course, an operator in
Hilbert space, since h&(t) depends upon the 5, according
to the definition (20)). Similarly exp+{iJ,'"hx(t')dt')
can be thought of as a tensor in spin space (and an
operator in Hilbert space), and (24) can be written out
in component form

z za

F(t) =
~ exp+ i hx(t')dt' 65; (t)5,'), (45)

0.6

0.4

0.2

where ( ) t' means the rr, P component of the tensor

( . .). If we now apply approximation (B") (see Sec. 3,
and Appendix B) directly to this expression, we get

t zn

F(t) =
~ exp~ i hx(t')dt' (()5. ))(()5'). (46)

0.4 0.8 l.2 l.6 2.0 2.4 2.8

However, from rotational symmetry in spin space, one
has (()5, )=0 unless s=n (since the applied field leading
to t)S; was proportional to 5;*), so that (46) gives

FIG. 2. Fourier transform F(&z) of the autocorreiation function.
The solid line is our numerical result, while the dashed line is the
analytical approximation Eq. (37). The open circles are Windsor s
computer results. The scaled frequency co is defined in Kq. (41).

t zz

p(t)=((e p~ ~ &(z)dz ) ).
0

(47)

sponding result obtained in the computer simulation
calculation of Windsor, "and is seen to be in fair agree-
ment with both. It is of interest to note that for large
o), (43) becomes proportional to o) exp( —no)/K2), rather
than a Gaussian form. In fact C(Q) is a quantity which
is accessible to experiment, since it gives the shape (as
a function of energy loss) of the inelastic neutron scat-
tering cross-section curve for polycrystalline materials
at large momentum transfer, and Windsor has shown
that his calculation of S(o)) (and therefore our approxi-
mation (43) which agrees with it) is in fair agreement
with his experiments" on RbMnFS.

4. RESIBOIS-DELEENER EQUATION FOR C(tl

Resibois and DeLeener, ~ 8 using a special technique,
derived an integrodifferential equation for C(t) )the
I'(t) of their notation is our F(t)).We will next show how
their equation may be derived by a modification of the
approximation procedure of Sec. 3. It will be found that
its derivation also involves approximations (A) and
(A'), so their theory is also valid only for r(r, Further-.
more, although the approximation procedure used in
this section is more sophisticated in principle than that
of Sec. 3, in practice the solution does not differ very
much from that of Sec. 3 in the range 7.(7,.

Our starting point will be Eq. (24), whose derivation
has already made use of approximation (A). It will be
convenient to rewrite (22) in the form

ihx(t)A=hs(t)e~A or Lih &(t)A).=h~(t)e.»A(i(t), (44)

where e)' is a tensor with elements (e") P= e» acting on

To evaluate the right-hand side of (47), we now regard

( ) as an averaging operation and apply the cumulant
expansion to obtain

F(t) =~ exp+ i (hx(t'))dt'

t t

dt, (hx(ti)hx(ts)), + I, (48)
0 0

involves the noncommuting eI'.

We next use approximation (B') to neglect all but the
first two terms in (48). In this case (see Appendix B),
as opposed to that discussed in Sec. 3, approximation
(B') follows solely from the principle of neglecting the
detailed correlation between three or more spins. One
again 6nds (hx(t))=0, so that

t zz

z(t) =(exp~ —',~' dh di, (h"(z)z"(t,))

=~ exp+

gg

dti dts(h'(ti)h'(ts))e„~e„z, (50)
, 0

where the second line follows by the use of
(44) and observing that (h"(ti)h"(ts)) = b„„( (ht z) i(ht z))s;

where the exponential is still time-ordered since the
terms in the exponent are (noncommuting) tensors in
spin space; for example, according to (44),

(hx(t, )hx(t, ))= (h~(t, )h"(t,))ee
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4,&= 2d', defined after (44), the subscript t only serving
to indicate where the tensor is to be inserted in the time-
ordered product. Since the present theory, like that of
Sec. 3, is supposed valid only for r(r„we can again use
approximation (A') which yields the expression (32) for
(h*(tl)h'(t2)). Using this in (50), and changing to the
reduced time variable r according to (34), gives

Tj

P( )=(exp+ — d d
0 0

zz

XF(rl —r2) 4„"4„" . (51)

If in this expression one neglected the time ordering
of the e,& operators and simply wrote e„&e„=el'el"= —2,
then (51) would reduce to (35) and we would reproduce
the theory of Sec. 3; the relation between the theory of
Sec. 3 and (51) is discussed briefly in Appendix C. To
the extent that the time ordering in (51) is taken seri-
ously in this section, we may regard it as more accurate
than the theory of Sec. 3. On the other hand, as shown
in Appendix C, at short times r& r. the time ordering
in (51) is not a very important effect, so we would not
expect to obtain much difference between the solution
of (51) and (35) for r(r 4 eFor large. r, the method of this
section would be superior, but the theory developed
here is invalid for large r because of approximations (A)
and (A').

We cannot evaluate the time-ordered exponential in
(51) exactly, but will derive an approximate integro-
differential equation for it. To this end we differentiate
(51) to obtain

F(T) = dr F(T r )4" 4 p exp dT1
2 2

&I zz

X d r2F(r 1 r2) 4„"4„" —
) (52)

0 +

metry in spin space to infer that

TI aP

exp+ — dri dT2F(T1 T2) 2

0 0

1 T

=8.p~ exp~ — drl
2

T' I gg

F(r 1 r—2)e„"e„"

which is the equation derived by Resibois and DeLeener.
The solution of (54) has been evaluated numerically

by its originators and is plotted in Fig. 1 for comparison
with that of Sec. 6. We see that they all agree fairly well
for r(r,~2. Thus one finds that (54) is only valid in
the region r(r, and does not differ too much from the
solution sech2(r/v2) of Sec. 3 in this range. For small r,
Eq. (54) gives the expansion

F(r) =1 'T'+ ', r4+O—(r-')-
which should be compared with (38) and (39).

5. APPROXIMATE EQUATION FOR C2(t)

We now apply the methods used in the Sec. 4 for the
study of C(t) to calculate the C2(t). This application is
Inore general than that discussed above, since a knowl-
edge of the C~(t) determines not only C(t), but also the
correlation function (S,'S,'(t)) for iW j. Furthermore,
within this more general framework one can avoid the
use of the approximations (A) and (A'), which limited
the validity of the above calculations to the region
r&r„so one may hope to obtain a theory valid for all

= t'd pF (r) .

The approximation leading the second line of (53) is
discussed in Appendix D, where it is argued that it
should not lead to very large errors. Using (53) in (52)
now gives

where ( )+" means the sz component of the tensor
given by the time-ordered product ( )+, and introduce
a new approximation (C) to evaluate the time-ordered
product, namely,

'r I

4 "exp — dTldT2F(T1 —T2)4 , 4 4 2

0 0 +

—exp+ — dr j
2

dT2F(rl —T2) Ee.g"4~2"

TI

Xexp4. — drl dr2F(rl —r2) 4„4„'
2 0 0

=F(r r') 4"F(r'), (53)—

where the last line follows by using the rotational sym-

We proceed as was outlined in Sec. 2, aiming to cal-
culate F~(t) as the ratio in (16) and using (9) to get
C2(r). From (1) and (4) one finds that S2(t) obeys the
equation of motion

S,(t) = —Q J, S, XS,—,, (55)

where the g sum is over all the 5 wave vectors in the
first Brillouin zone (as are all wave-vector sums in this
paper) and

J ~ J, .eiq. (Rj—Ri)
q ~ ij (56)

We suppose (see Sec. 2) that the system has been pre-
pared by the application of the time-independent but
spatially varying magnetic Geld h, 'e'&' of wave vector
41 for t(0 The perturb. ed operator S2.(t) obeys an equa-
tion similar to (55), and the difference 8S,. is found,
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parison, one must note that Windsor's calculations are
for classical spins, corresponding to S—+~ in which
case (34) becomes r= 2SJ, and that his definition of J
is half as large as that used here). The characteristic
behavior is a slow decrease for small q becoming more
rapid for larger q with oscillations setting in for the
largest q.

From the C„(r) one can also obtain the correlation
function

Using the definition (79), Eq. (74) may be written

F.( )=— k, (r—r') F,(r') dr'. (89)

Hitherto the F,(r) have only been considered for r) 0.
Suppose we now extend the definitions of F~(r) and
k~(r) by requiring that F~(r) = k~(r) = 0 for r(0. Then
(79) will be satisfied for all r, and F~(r) will satisfy

C(R,—R, , ) =(S S,'( )) F.( )=~( )— k, (r —r')F, (r') dr' (9o)

and, in particular,

C(r) =iV 'Q C—~(r) .

g7
—1 Q C (r)~iq (R)—R;i

q

(86)

(87)

for all r with the boundary condition F~(r) = 0 for r(0;
the 8 function causes Fq(r) to jump from 0 to 1 at r= 0
We may now Fourier-transform (90) to obtain

i(uF, (cu) = 1—k, (co)F,((u), (91)
or

D=033t S(S+1)3' 'Ja' (88)

which agrees with Mori and Kawasaki's result, ' with
the corrected value obtained by Bennett and Martin, '
and with Windsor's" result, but is larger than that cal-
culated by deGennes. '

The Fourier transforms C~(Q) and C(Q) are of interest
since they determine the inelastic neutron scattering
cross sections at high temperatures. For the large q,
C, (Q) could be determined by numerical transformation
of the C~(r). For small q, however, this procedure is
difficult because of the very slow decrease of C,(r) at
large v. For this reason a different technique was used.

C(r) and C(R,r) for R=(a,0,0) are given in Table I
and plotted in Fig. 1, where they are again compared
with Windsor's corresponding results and with the ap-
proximations for C(r) derived in Secs. 3 and 4. Again
the agreement with Windsor is good Lexcept for the
height of the peak in C(R,T)j.

The diffusion constants D and D~ have been calcu-
lated by substituting the solution for F~(r) in (83) and
using (84). We find

1
F,(co) =

i~+k, (a&)

—=F,'(o)) +iF,"((o) . (92)

F(~)=~' '2 Fq(~) (94)

We may remark in passing that this equation sug-
gests that k~(~) is playing the role of a self-energy in our
calculations. Combining Eqs. (80) and (92), we see that
it is indeed determined by a self-consistent equation in
the way discussed in the Introduction. Since C~(t)
=F~(~t~), one has from (92) [cf. (40)]

1VJC, (Q) . k, '(o))
=F~'(~) =

LSS(S+1)3"' t k.'(~)3'+L~+k."(~)]'
(93)

where k~(&u) =k~'(&u)+ik, "(~). k~(~) is thus related to
the generalized diffusivity by k, (&u)=q'D(q, ~) The.
function k~(r) always decreases quickly to 0 when r
becomes large, so its transform k, (a&) inay be readily
evaluated numerically from k~(r) which is in turn given
by (80), and in this way F~'(co) can be conveniently
evaluated even for small q. The transform F(co) of F(r)
may be obtained from

TABLE II. Fourier transforms of the q-dependent correlation functions and of the autocorrelation function.

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

c1= (-'„0,0)

10.348
2.173
0.596
0.247
0.125
0.071
0.043
0.027
0.017
0.012
0.008
0.005
0.004
0.002

(-;,0,0)

3.143
2.554
1.562
0.877
0.498
0.293
0.178
0.112
0.071
0.046
0.031
0.020
0.013
0.009

1.899
1.802
1.537
1.181
0.833
0.554
0.358
0.228
0.146
0.094
0.061
0.039
0.026
0.017

1.640
1.588
1.435
1.198
0.919
0.653
0.439
0.286
0.184
0.118
0.076
0.049
0.032
0.021

3.617
2.704
1.464
0.770
0.428
0.251
0.153
0.096
0.062
0.040
0.027
0.108
0.012
0.008

1.181
1.167
1.126
1.053
0.948
0.813
0.658
0.500
0.357
0.240
0.155
0.096
0.059
0.036

0.747
0.746
0.745
0.743
0.740
0.735
0.724
0.703
0.660
0.578
0.447
0.294
0.169
0.090

0.654
0.655
0.656
0.657
0.660
0.664
0.669
0.675
0.677
0;661
0.593
0.441
0.257
0.129

1.518
1.309
1.131
0.978
0.838
0.707
0.584
0.468
0.361
0.264
0.181
0;115
0.069
0.040
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TABLE III. Fourier cosine transform of the kernel kqc(cd) (the diffusivity).

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

g = (g', 0,0)

0.097
0.094
0.088
0.081
0.073
0.065
0.057
0.049
0.042
0.035
0.029
0.024
0.020
0.016

(-'„0,0)

0.318
0.312
0.297
0.276
0.251
0.224
0.197
0.171
0.146
0.123
0.102
0.083
0.067
0.054

(-,',0,0)

0.527
0.520
0.500
0.470
0.431
0.388
0,343
0.297
0.254
0.213
0.177
0.144
0.116
0.091

(k,0,0)

0.610
0.603
0.582
0.549
0.507
0.457
0.405
0.351
0.300
0.252
0.208
0.170
0.136
0.107

0.276
0.271
0.258
0.241
0.220
0.198
0.175
0.152
0.130
0.109
0.091
0.074
0.059
0.047

0.847
0.841
0.823
0.794
0.753
0.702
0.641
0.571
0.496
0.418
0.342
0.272
0.211
0.160

1.339
1.334
1.319
1.292
1.254
1.201
1.133
1.045
0.938
0.809
0.663
0.514
0.379
0.270

1.528
1.523
1.509
1.485
1.449
1.399
1.334
1.248
1.138
0.998
0.826
0.636
0.451
0.313

The transforms obtained in this way are given in
Table II and are plotted in Figs. 2 and 4. F(cd) is com-
pared with the corresponding transform derived by
windsor and with the approximation of Sec. 3. Again
the general agreement is good. For small tl, Pq'(cd) is very
narrow and I.orentzian. As q increases it broadens but
the far wings of the line remain low. At still larger q,
P, '(cd) "shoulders, " reflecting the tendency of Cq(r) to
oscillate, until at the tl= (—',,—,',—,') point it has a very Rat
plateau.

Bennett and Martin, ' Bennett, ' and Tahir-Kheli and
McI adden" have given phenomenological treatments
of the diffusion coefhcient and the correlation functions

2.0

in which they assume a two-parameter Gaussian form
for the diffusivity. In our notation they assume

kq'(cd) = (gqr) e—"14"', (95)
2b~

where a~ and b~ are parameters that are determined by
6tting the exactly known second and fourth moments
of the correlation functions. Since we have calculated
kq'(cd) directly (these are given for several values of q in
Table III), we are in a position to examine this hypothe-
sis. In Fig. 5 we show kq'(cd)/kq'(0) for these different

points in the Brillouin zone. The smallest and largest q
vectors diRer from the Gaussian shape. The inter-
mediate value of g follows a curve which is quite closely
Gaussian, however, and indeed its closely the form

I.8—

I.4—
l.o

1,2—

I.O—

0.8— 0.5

0.6—

0.4—

0.2— 0.4 0.8
t

l.2
I

l.6
I . t

2.0 2.4
I

2 ' 8

0.4 0.8 I.2 I.6 2.0 2.4 2.8

FIG. 4. Fourier transform P&'(co) of the
q-dependent correlation functions.

FIG. 5. Fourier cosine transform of the kernel kq (I)/kq (0),
which is equivalent to the diffusivity defIned by Bennett and
Martin (Ref. 5). The open circles represent the Gaussian approxi-
mation to the (~,~,4') curve, obtained by Qtting (95) to the exact
high-temperature moments (Ref. 12). The Gaussian approxima-
tion for the ($,0,0) and (-', ,

—', As) curves (not shown) is a much
poorer fit.



M. BLUME AND J. HUBBARD

derived from Eq. (95) with a» and fi» determined by the
exact values of the moments. Further, the amplitudes
k»'(0) calculated by us agree very well with the values
obtained from (95). The Gaussian approximation is
thus apparently not very good for small or large q vec-
tors, but in the intermediate q range the form (95) ap-

pears valid. Since a large number of q vectors fall in

the range where the assumption is justi6ed by our cal-

culations, we expect and find good agreement between
our correlation functions and those obtained by Tahir-
Kheli and McFadden. "

V(t) =e ' "exp+ i 0(—t')A (t')e"'dt' . (A3)

If we now expand the exponential to first order and sub-
stitute the result in (A1) we find, to first order in A for
t)0,

where —0(—t)Ae" $0(t) =step function, e~ 0+] is the
perturbation, and V satisfies a suitable boundary con-
dition D.e., such tha. t B(t) —+ B(t) as t —& —»0]. One

may easily verify that a suitable solution is given by
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APPENDIX A: INTERPRETATION OF SB(tl

It is our purpose here to confirm the assertion in Sec.
2 that A(t) is the operator which evolves in the presence
of the perturbation from the operator which was B(t)
when t —& —~.To this end, we note that in the presence
of the perturbation, B(t) will be given by

B(t)= V (t)BV(t),

where V(t) is an operator obeying the equation

=)a,—0(—t)ae"]V(t), (A2)

7'. CONCLUSION

It appears from the results discussed in the preceding
sections that in spite of a number of approximations
having been made, the theory still gives a good account
of high-temperature correlation phenomena. Several
points concerning the method should be noted. The
theory involves a decoupling procedure as do the various
Green's-function calculations. In our case, however, the
decoupling is done in the exponential correlation func-
tions rather than in the equations of motion, so that we
take advantage of the property of cumulants —that they
vanish if any of the operators are independent of the
others in that term. Alternately we may compare our
procedure with equation-of-motion methods by noting
that in such methods a decoupling is performed directly
on the equations of motion. In the present treatment
the equations are formally solved and the decoupling
is performed on the solution. This procedure should be
applicable at finite temperatures and also in other
many-body problems. The physical picture would be
similar to that adopted here: A particle (in a general
sense) is subject to a fiuctuating potential. The correla-
tion function for the particle is then expressed in terms
of that of the Quctuating potential, which in turn is re-
lated to that for the particle —a self-consistent relation.

B(t)= (1+X)e'~»'Be '~"(1—X) =B(t)+0B(t), (A4)

since for t)0, one has if '—0(—t')A(t')e"dt'=X.

APPENDIX B: SOME CONSEQUENCES
OF APPROXIMATION (8)

We show here how the approximations (8') (in the
context of Secs. 4 and 5), (8") and (8"') follow from
the approximation principle (8) enunciated in Sec. 3.
We first note that any average (SiS2 . .S„) can be
written as a sum of products of cumulant averages. '4

Since (5,)= 0 at high temperatures, approximation (8)
is equivalent to the assertion that any average of an
even number of spins may be approximated by a sum of
products of spin-pair averages

(55" 5.)—Z &5*5~)(5'5 ) (5'.5.) (81)
parrying 8

where the sum runs over all pairings of the spins in the
product, while the average of an odd number of spins is
negligible Lin (81) note that since (5,)=0, one has
&s,s,),= &5,5,)].

We first use (81) to establish (8"). Since Lsee Eq.
(12)] 05= LX,S], where in the application X is always
proportional to J'„'5'(t')dt', we may write

(SiS2 5„05)

L&s,s, S.s'(t')S) —&Si . S.SS'(t'))]dt. '

(82)

We now apply (81) to evaluate the averages in (82).
Consider the first term in the integrand expanded ac-
cording to (81).We distinguish two classes of pairings:
(a) those in which 5 is paired with 5'(t'); (b) those in
which it is not. A typical term of class (b) will be

&5'5'(t'))&5 5)&s.5")&S.S. ) . «' (83)

If we now consider the second term of the integrand in
(82) and divide the pairings into two classes in the same
way, then we find at once that in its expansion there
occurs a term of class (b) which exactly cancels against
(83). In this way one easily finds that all pairings of
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where, for brevity, we have written

U(T, T') =exp—
2

dT1 dT2F(T1 T2—)p„"p„" . (D2)

The retention of just the 6rst term, which is
p"F(T1 T')—F(T'), in (D1) gives the approximation (C)
used in the text. If we retain the first two terms in

(D1), we znay iterate Lsince quantities of the form
(p&U)+ appear on the right) to obtain an expansion of
the form

(p, ~U(T,0))+ F(T ——T')F—(T') e

d&]1

Tl

dT2F(T1 T2)F(T Tl)

(D4)

where
T

k(T) =F'(T) ——
2 p

dTl dT2F(T Tl)F(T1 T2)
0

XF(T2)F(T1)F(T—T2)+ ' ' '
~ (D5)

Our approximation (54) corresponds to keeping the first
term is the kernel k(T); evidently from (DS) this is

XF(T1
—T')F (T' —T2)F(T2)+ . (D3)

If we retain third- and higher-order terms in (D1), then
we shall require expressions of the form

(',""."' U(T, T'))+ ~

However we may expand these by exactly the same
technique as led to (D1) to get a series beginning like

(p„"'p„"'. U(T, T'))+
= F(T—Tl)F(T1—T2) ' ' ' p" p"2' + ' '

In this way we may expand (4, &U(T,O))+ in a series,
each of whose terms has the form of e& times an integral
with an integrand consisting of a product of F functions.
The leading terms of this series are given in (D3).

If this series for (2; I"U(T,O))+ is substituted into (52),
we find after a little rearrangement that the resulting
equation can be written

a good approximation at small T I.f we write k(T) =kp(T)

+ki(T), where kp(T) =F'(T), then we find from (D4)
that

F(T)= 1 'T—'+-(7/48) T'+ 0(T')
kp(T) = 1—T'+0(T4),

kl(T) = ,'T'—+—0(T').
(D6)

Comparison with (54) and (38) shows that the leading
correction to approximation (C) occurs in the T' term
where it changes the coefficient by 16%. In fact, (D6)
gives (d'F/dT'), =p ,', wh——ic—h by comParison with (39)
we see is good to 0(1/sl). Thus the errors in T' coeK-
cients of (38) and (54) are due to approximation (C)
rather than (B).

To estimate the error due to approximation (C) at
large T, we have estimated the ratio of fp" kl(T)dT
Lwith kl(T) given by the second term of (DS)] to
Jp kp(T)dT, using the approximate representation
F(T) e 1' to give a rough estimate (a suitable choice is

1/v2). We find fp" kl(T)dT/fp" kp(T)dT —1/12ll'~—p, so that the integrated error in the kernel 16%.
We expect the relative error in the solution of (D4)

due to the use of approximation (C) to be rather less
than the error in the kernel estimated above. The reason
is that Eqs. (D4) and (DS) have a kind of "self-
compensating" property. To see this, suppose k&&0, so
the addition of the correction k~ to ko tends to decrease
the kernel k. Then through (DS) we see that a decrease
in k tends to cause an increase in F. However, since
ho= F, the increase in F causes an increase in ko which
tends to cancel the decrease in k caused by k~. The
essential reason for this cancellation is the fact that
(D4) with kp F' substitut——ed for k, or (54), is cubic in
F, and thus the addition of a term of relative magnitude

g causes only a change of relative magnitude ~—,'g in F.
Ke may comment that this latter argument applies not
only to errors arising from the use of approximation (C),
but also from other sources of error such as approxima-
tion (B). Because the fundamental equation is cubic,
the errors in the solution are smaller than one might
naively estimate.

The discussion above has all been concerned with the
use of approximation (C) to derive (54). However, es-
sentially the same arguments with the same conse-
quences apply to its use in Sec. 5.


