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A method for the self-consistent calculation of correlation functions is described and applied to the Heisen-
berg model at high temperatures. The technique is based on a straightforward physical picture. It is used
(i) to derive a simple analytic approximation for the autocorrelation function valid at times ¢S 2JS/%; (ii)
to derive an equation given by Résibois and DeLeener which is shown to be valid at short times also; (iii) to
derive a set of integrodifferential equations for the general correlation functions (S_q S (f)). The latter equa-
tions are solved numerically for the case of a simple cubic lattice with nearest-neighbor interactions, and are
shown to give results in excellent agreement with computer simulation calculations for the same model. A
discussion is given of the physical motivation of the approximations employed and the special mathematical

aspects of the problem.

1. INTRODUCTION

HE dynamical properties of Heisenberg spin sys-
tems above the Curie temperature have been the
subject of much theoretical study in recent years—!!
stimulated by the appearance of inelastic neutron scat-
tering data at high temperatures?=¢ and by the data
becoming available from computer simulation calcula-
tions for precisely defined models.'”:!® The methods
used include moment calculations,™® microscopic
theories of spin diffusion,? diagrammatic perturbation
theory,”-® and interpolation schemes.®"1® A useful review
of much of this work is contained in Ref. 11.

The theoretical treatment of high-temperature spin
systems has conceptual and mathematical difficulties
typical of a certain class of many-body problems in
which the “self-energy” effects due to the interactions
are large compared to the “unperturbed single-particle
energies.” Other examples are the theories of classical
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liquids, of homogeneous turbulence,!® of low density
electron gases, or, indeed, of any many-body problem
with very strong interactions. The situation can perhaps
be made clearer by comparing the low- and high-tem-
perature regimes of a spin system. At low temperatures
in (say) a ferromagnet, each spin is acted on by a mean
field ~JSz; (J=exchange energy, .S=spin magnitude,
zy=number of interacting neighbors), which represents
to a first approximation the effect of the spin interac-
tions. The higher-order effects of the interaction then
appear as small fluctuations of the effective field (acting
on a spin) about this mean field. One can think of the
mean field as providing a set of ‘“unperturbed” energy
levels for a spin and of the higher-order effects of the
interactions as a perturbation, a picture which is good,
provided that the fluctuations of the effective field are
small compared to the mean field. One then has a strong
analogy with a system of particles with weak interac-
tions, an analogy which is exploited in spin-wave theory.
If, however, one now raises the temperature, the mean
field decreases and the fluctuations increase, until at
the Curie temperature the mean field and with it the
unperturbed energies disappear altogether—one only
has the perturbation left.

To overcome this difficulty, there have been two
main lines of attack. One is the adoption of “fitting”
schemes,?:5:6:919 in which one postulates a certain
plausible shape (e.g., Gaussian) for some suitable func-
tion (e.g., the spin correlation function, its Fourier trans-
form, or the generalized diffusion function) and adjusts
parameters to fit certain known moments, a procedure
which can be very successful in practice. The other3:4.7:8
(of which the theory to be described here is an example)
is to attack the microscopic problem from first principles
in spite of the difficulty alluded to above. All such cal-
culations have been based upon the notion that although
the mean field disappears, each spin is still acted on by
an effective field ~JSv/z; which, albeit fluctuating in
magnitude and direction, can play the role of generating
unperturbed energy levels. Essentially, in the absence

19 The methods used in this paper are similar to those first used

by Kraichnan in his treatment of turbulence; cf. R. H. Kraichnan,
Phys. Rev. 109, 1407 (1958).
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of a real mean field, or unperturbed Hamiltonian, one is
asking the self-energy to serve the same purpose. Since
the strength of interaction ~JS? and the self-energy
~JS§%/z1, such a theory will have an expansion param-
eter ~1/4/21 (or 1/z for some quantities), which in
practice is small enough to make the approach useful.
An essential feature of such an approach is that the self-
energy has to be calculated self-consistently, since its
expansion in powers of 1/z; expresses it in terms of
itself.

The first approach of this kind was that of Résibois
and DeLeener,” who used a perturbation technique to
derive integral equations for the high-temperature corre-
lation functions. These equations are of the self-con-
sistent kind required and are physically plausible. They
later extended their approach to discuss the critical
region® which has also been studied by Kawasaki* who,
using a different (but again self-consistent) technique,
obtained identical equations. In this paper we present
another treatment of this kind, motivated by certain
simple physical considerations, and derive several ap-
proximations of varying degrees of elaboration for the
high-temperature case. One of these coincides with
Résibois and DeLeener’s original result” which we show
is only valid at short times ¢<t,~2JS/%. We also derive
a simpler analytic solution which is equally accurate in
the same time interval, and a more elaborate self-
consistent equation which turns out to be the high-
temperature form of the equations derived by DeLeener
and Résibois® and Kawasaki* for the critical region.
This equation has been solved numerically for the case
of a simple cubic lattice with nearest-neighbor interac-
tions and is found to give spin correlation functions
(S_¢sS¢#(1)) in excellent agreement with the computer
simulation calculations of Windsor!® and a spin diffusion
coefficient in agreement with that calculated by Mori
and Kawasaki? and also found by Windsor.

The physical idea behind our mathematical calcula-
tion is that each spin moves in a randomly varying
effective magnetic field produced by its neighbors. The
correlation function for the motion of a spin in a ran-
domly varying field can be calculated approximately in
terms of the correlation function of the random field, as
was done by Kubo and Toyabe,?® among others. Indeed,
by making assumptions about the nature of the random
field, the latter authors derived numerical expressions
for the spin-spin correlation function. In our treatment,
however, we make no such assumption about the corre-
lation functions for the field. Instead, we recognize that
the fluctuating field is itself produced by neighboring
spins with the same correlation function. This enables
us to express the correlation function of the random field
in terms of the correlation function of the spins. Com-
bining this result with the calculation of the spin corre-
lation function in terms of that of the random field

2 R. Kubo and T. Toyabe, in Magnetic Resonance and Relaxa-

tion, edited by R. Blinc (North-Holland, Amsterdam, 1967),
p. 810.
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leads to a self-consistent equation for the spin correla-
tion function which is in some sense an analog of the
self-consistent treatment of the magnetization at low
temperatures. Needless to say, the mathematical im-
plementation of these physical ideas requires a number
of approximations, some of which are straightforward
and easily understood, while others are less directly
accessible physically. We have made an effort to indicate
clearly the approximations made and to discuss, as far
as is possible, their physical significance. The principal
approximation made is the neglect of the detailed corre-
lations between three or more spins, an approximation
which we argue should only lead to errors O(1/3;) at high
temperatures. From the point of view of stochastic
theory, this assumption is equivalent to saying that the
spin motion is approximately a Gaussian random
process.2!

In Sec. 2 we collect some general theory which is un-
familiar but necessary for the mathematical develop-
ment. In Sec. 3 we apply our technique to derive a simple
approximate equation for the self-correlation function.
This equation, which is valid for short times, {<2JS/%,
has the analytical solution (S;(0)-S,(#))=S(S+1)
Xsech?(r/V2), where 7=[25(S+1)Y_, J2(r) J*/%. In Sec.
4 we show that the use of a more accurate approxima-
tion for this problem yields the equation of DeLeener
and Résibois, which, however, is still only valid for
t<2JS/% and has a solution not much different from
the above solution. In Sec. 5 we consider the gen-
eral wave-vector-dependent correlation functions
(S_q(0)-S,(1)) and use our technique to derive a set of
approximate nonlinear integrodifferential equations for
them. These equations have been integrated numeri-
cally, yielding both the correlation functions and their
temporal Fourier transforms discussed in Sec. 6. The
generalized diffusivity has also been calculated and a
brief discussion is given of the Gaussian interpolation
schemes® 2 for this quantity.

The second moment is given exactly in our approxi-
mation, while the fourth moment differs from the exact
value by 10-20%. Finally, the long-time behavior of the
small-¢ correlation functions yields the spin diffusion
coefficient. In several appendixes we give a somewhat
more detailed discussion of the approximations involved.

2. GENERAL THEORY

It is our purpose to show how one may calculate ap-
proximately the correlation functions C(f)=(S:=S:*(2))
and Cq(8) = (S_¢*S¢*(¢)) of the Heisenberg model in the
high-temperature limit 77— . Here S;(¢) = ¢?H0tS ;¢ —*Hot
is the quantum-mechanical spin operator of length
[S(S+1)7J"2 at lattice site ¢ with Cartesian components
S:2(), S:¥(8), S#(f); we adopt the notational convention

2 Of course, the assertion that this motion is a Gaussian random
process does not imply that the spin correlation function is itself
Gaussian. Indeed, as our calculations show, it is not; cf. P. W.
Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953).
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of labeling lattice sites 7, 7, %, ..., and denote the posi-
tion vector of site ¢ by R;. Sy(f) is the Fourier trans-
formed spin

Sq() =N"12 Si(n)er®e, €))

where the sum runs over the NV lattice sites and q may
be any wave vector; we will use the notation Sy, Sy,
S¢, - .., for such operators. The average (4) of any
operator is defined according to

(4)="Tr(de %)/ Tr(e-#*0), @

where Tr denotes the trace over the Hilbert space of the
spin system and B8=1/kT, x=Boltzmann’s constant.
Throughout the remainder of the paper we take z=1.
The Hamiltonian of the Heisenberg model will be

written
Hoy=—33% Ji8:8;, 3)
g

where J;; is the exchange interaction of spins at sites
1, 7. We assume that J;;=0, that J;;=J;; depends only
upon the difference R;—R;, and that J;;— 0 suffi-
ciently quickly (e.g., exponentially) as |R,—R;| —x.
The Hamiltonian (3) and the spin commutation rela-
tions lead to the usual equation of motion

S;= —-Z, Ji5S; XS )
J

for the S,,

Let the symbols 4, B, C, ..., stand for either S;* or
Sq?. We shall calculate the correlation functions (4 B(f))
indirectly via the relaxation functions?? defined by

B
(4,B()}= / (@EATBOYDN,  (5)

where we have omitted the term (40Bo) (in Kubo’s no-
tation) which will vanish in the present application. In
the limit 77—, 38— 0, we deduce at once from (5)

that
B(AB()={4,B(1)}. (6)

Dividing (6) by the corresponding equation taken at
t=0 gives
(ABO) (4,80}

= 513 ’ 7
as a0 @

where F45(t) is the “relaxation shape function.” It is
this function F 45 that we aim to calculate. The correla-
tion functions may then be deduced from (7), since the
averages (AB) are given in the high-temperature limit
by (Si#5;,)=3S(S+1)8; and [using (1)] (S-4Sq")
=iIN"1S(S+1).
Thus we find
{S#S#(0)}

{Siz7sz}
2 R, Kubo, J. Phys. Soc. Japan 12, 570 (1957).

C(t)=1S(S+1) =1S(SHDF@E)  (8)
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and

S—q*ySq?
Col) =3N1S(S+ oSO}
{54547}

=INTIS(S+DF®O, 9)

defining the functions F(f), Fy(?).
We shall use an unfamiliar technique to calculate the
functions F4p(f). From Egs. (2.24b) and (3.3) of Ref.

22, one may deduce an alternative expression for the
relaxation function, namely,

{(4,B(1)} =lim—i / 0 (CA,B(t—t)Jest'dt’,

as e— 0, (10)
which can be rearranged into the form
0
(4,50} =tim=i [ Ca@)BODerar,
- as e— 04
=({X,B()])
=(@B(1), (11)
where
0
X=lim— / A{)eVdt as e— Oy
1)~
and we define
sB()=[X,B()]. (12)

The operator 8B(¢) has a simple physical interpreta-
tion. The relaxation function {4,B(f)} describes how the
variable B relaxes for £>0 when a perturbation propor-
tional to 4 is switched on adiabatically between {= — «
and ¢=0 and switched off abruptly at =0. In the ab-
sence of the perturbation 4 the operator B evolves in
time in the usual way into B(f) = e!fotBe—iHot, However,
the perturbation A disturbs this evolution and, as is
shown in Appendix A, causes it to evolve instead into
the operator B(f)=B(t)+8B(t) (for ¢>0). Thus 8B(t)
represents the change in B(f) (at positive #) due to the
application of the perturbation 4, and is the exact
analog of the change of a classical dynamical variable
due to such a perturbation.

From the definition (12) and the operator equa-
tions of motion, one may deduce (using the identity
[[4,B],C1H-[[C,A],B1+[[B,C],A]=0) that B() sat-

isfies the equation of motion

idig(t)*_‘[B(t);ﬁo]: (13)
i

where Ho=Ho+6H=H,+[X,H,] is the perturbed
Hamiltonian operator. Equation (13) is simply the
ordinary equation of motion for B with all operators 4 (¢)
replaced by the corresponding circumflexed operators
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A(?). For example, 0 obeys the equation of motion

d . o .
5&-(:) =—2 JiS;() X8:(0). (14)
One may now combine (8) and (11) to write
F(t)=(aS#(1))/(657), (15)

where 45% is due to a perturbation proportional to S
acting up to /=0, and, similarily,

Fq(t) = <5qu(t)>/<55qz> ’ (16)

where 852(f) is due to a perturbation proportional to
S_¢* acting up to t=0. Our program of calculation is to
estimate the ratios in (15) and (16), and therefore the
functions F and F,, and thence C and Cy via (8) and
9).

3. APPROXIMATION FOR (S:(0)S:(f))

We begin by developing an analytic approximation for
C(#). This approximation has the disadvantage of being
valid only for short times, but the mathematical ex-
pression of the physical picture described in Sec. 1 is
most clearly seen in this treatment. Following our pro-
gram, we imagine a magnetic field in the z direction to
have been applied to a single spin (say the sth) up to
t=0 and ask how (85:%(?)) evolves for £>0. To do this,
we use the equation of motion

88:(t) = =L JSi())X6Si(1)) — L J:i6S;,()XSi(0)  (17)

for 8S; derived from (4) and (14). Since the perturbing
field was applied to the sth spin alone, one knows that
in the 7'—o limit (8S;)=0 for 71, that is, 6S,;(j71)
vanishes on the average at =0. This suggests that at
short times one might neglect the term in 6S;(¢) on the
right-hand side of (17) compared to the other; this
neglect will be referred to as approximation (A). One
would expect this approximation to be good at times ¢
for which (85;%(¢))<<(85:(f)). However, from the sym-
metry of the situation and the conservation of spin, one
has (6S;7())<(8S:2)/z1, where z; is the number of
nearest neighbors. Thus the approximation (A) should
be good for times ¢ for which (85:#(2))>>(8S:)/z1, i.e.,
for which F(#)>>1/z1, i.e., for i<t where F(t,)~1/2.
We estimate below £,~2/SJ, where

J2=3 T2, (18)

KM

[For nearest-neighbor interactions of strength J, one
has J=(+/21)J.] This expectation is, in fact, borne out
by comparison of the results obtained here with the
more elaborate calculations of Secs. 5 and 6, which do
not involve an approximation of the kind (A). We there-
fore make the approximation (A) and expect the theory
to be good for {<1,; f, will be estimated below. Later (in
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Secs. 5 and 6) we shall show how it is possible to dispense
with this kind of approximation.
With the use of approximation (A), Eq. (17) can be

written .
85:(t)=h() X 8S:(1), (19)

where h(f) may be thought of as an “effective magnetic
field” acting on the 7th spin given by

B()=—% JS,(). (20)

To solve (20), we formally rewrite (19) (following
Kubo??) )
aSi= X (1)S:(?), (21)

where i4%(t) is a linear “superoperator” (by which we
mean an entity which, acting on a quantum-mechanical
operator, turns it into another operator) defined by

() A=h() X 4, (22)
where 4 is any vector operator. The factor < has been
included in the definition so that 4% will be Hermitian.
Written in the form (21) the equation may be solved in
the usual way to give

5S:() = expy [1 / hx(t’)dt’} 5S:(0), (23)

where exp,; means the time-ordered exponential. Using
this expression in (15) gives

F(t)=<|:exp+{i /0 thx(t’)dt’} as,l> / (5S5), (24)

where [ ], means the z component of the operator in
[ . This formula may be thought of as describing how
the perturbation §S; is relaxed away by the action on
S; of the effective fluctuating field h(?) due to the other
spins.

The right-hand side of (24) cannot be calculated
exactly and further approximations are necessary. In
this and the next section, two different lines of approxi-
mation will be described. Here we adopt the simpler of
the two which will lead to an analytic approximation
for F(2).

Let us define an averaging operation ((4)) for super-
operators according to

((4))=(LA488:1:)/(85+). (25)

We note that ((1))=1 and that {(---)) is linear, con-
firming that {{- - -)) is a proper averaging operation and
that (24) can then be written

F() =<<exp+{i /0 ‘ hx(t’)dt’} >> . (26)

% R. Kubo, in Fluctuation, Relaxation and Resonance in Magnetic
Systems, edited by D. ter Haar (Oliver and Boyd, Edinburgh,
1962), p. 23.
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To evaluate (approximately) the right-hand side, we
will use the cumulant expansion theory of Kubo,?*
transforming it to

F(t)=exp <] ¢/ {X()))ar

1 / " / dt2<((h><(t1)hx(t2))+>>o+-"], @)

where (4 (1)) A (t2) - - )+ means the time-ordered product
of the operators (or superoperators), the cumulant
averages ((---)). are defined in the usual way,* e.g.,

(GG IR
= {((PQP(12))0) — (P (@) (B (1)) ,

and the exponent is the usual cumulant expansion.

The derivation of (27) has involved only the approxi-
mation (A). To evaluate the exponent, however, further
approximations are needed, since [using (20) and (25)]
we see that the terms of the cumulant series involve
spin averages of all orders. The kind of approximation
we use is motivated by noticing that according to (20)
the effective field h(¢) is a superposition of contributions
from the z; neighboring spins. If these z; contributions
were statistically independent then each (nonvanishing)
term in the cumulant series would be smaller by a factor
1/2, than its predecessor (in the limit ; — this would
be equivalent to the central limit theorem). In practice
we do not expect the z; neighboring spins to be very
strongly correlated at high temperatures, so the 2; con-
tributions to h are nearly independent. Furthermore z;
is a moderately large number (21~6-12). Thus we may
expect the cumulant series to be fairly rapidly con-
vergent and will therefore approximate it by its first two
terms [those written explicitly in (27)7], neglecting the
third- and higher-order cumulants; we shall refer to this
as approximation (B’).

We are still faced with the problem of evaluating the
averages ((5%(¢))) and {({(F*(t1)h*(t2))).. To do this we
shall make use of a rather general approximation prin-
ciple [approximation (B)], namely we neglect the
detailed correlations of three or more spin operators; or,
to be more precise, we assume that the cumulant
averages (S15253- -+ ), of three or more spins are neg-
ligible. This is the basic approximation used in this
paper. All other approximations can be either avoided or
are readily refined. It is really a more general statement
of the considerations underlying approximation (B’)
discussed above. To the extent that the operators .Sy,
Sa, o .., In {(S1Se- -+ ), refer to different sites, it reflects
the notion that correlations between spins at different
sites are not too strong. On the other hand, examina-
tion of the structure of the cumulant series shows that
it only involves the neglect of correlations of spins at

(28)

% R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).
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the same site in terms which are already small by a fac-
tor 1/z1 (relative to the leading terms of the cumulant
expansion).

The approximation (B) is very powerful. Approxi-
mation (B’) above is to a considerable extent a corollary
of (B). In fact, in the theory of Secs. 4 and 5, where use
is made of approximation (B’) [in the context of a defi-
nition of average that is different from (25)], one can
show (see Appendix B) that (B’) is a consequence of
(B). In the context of the average definition (25) used
here, however, (B’) involves not only (B), but also an
additional kind of approximation, and so must be intro-
duced as a separate assumption. This point is discussed
briefly in Appendix C. Approximation (B) also has two
other consequences which are of use here. The way in
which they follow from (B) is discussed in Appendix B.
These consequences are as follows. Approximation
(B”): Any average (S1S3- - - $:8S5) may be approximated
as (S1Sa- - -5, )(8S). Approximation (B’”’): Any average
of an odd number of factors ({/ifs:--%,)) may be
neglected.

The use of approximations (B’) and (B”’) in (27) now
leads to

F(t)=exp[i2/ dtl/ ldtz«hx(lfl)hx(tz)» , (29)

expressing the relaxation F approximately in terms of
the correlation function of the random field h. We now
evaluate the correlation function ((h*(#;)h*(f5))) in
terms of F returning to the definitions (22) and (25)
which give

(X (L))
= — ([P (L)X (12)8S:].)/(8S )
= ([h(t) X (h(t2) X 8S:)].)/(6S#)
= e e (I ()R (1) 6S:7)/(8S:)
= (6266141_6”5”7) <hﬂ(t1)ha(t2)><5S¢T>/<5Siz> y

where the last line follows by the application of approxi-
mation (B”"). The e’°7 are the usual permutation sym-
bols and we have adopted the summation convention
that any repeated Greek superscript is to be summed
over x, ¥, and z. From consideration of rotation sym-
metry in spin space [and the definition (20)], it follows
that (B*(t)ho(t2) )= 0,.(h*(t1)h*(t5)). Using this result
and (20) one obtains

Q) (1)) = — 2k (1) (1))
=—2 Z ]ij]ik(sz(tl)Skz(t2)> . @

(30)

We now introduce our final approximation (A’),
closely related to (A). The present theory is only useful
for times t<f;, for which 21(85;7(f))<<(8S:*(¢)), which
through (6) and (11) implies 21(S;?(#)S:*)<K(S#(£)S:).
In this time range, therefore, the j#% terms in the sum
in (31) are small compared to the j=#% terms and may
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be neglected. This gives [using (8) and (18)]
Btk (L)) =2 Ji*C(li—t2)
i

=1S(S+1)JF(—1s), (32)

and, from (31),
HIXIA()) = —3S(S+1)TF (h~1a),
so that (29) reduces to the equation

F(t)=exp{—%5(5+l)ﬁ/ dh/ldsz(h—fz)] , (33)

or, introducing the reduced time variable

r=[35(S+1)]v2Jt, (34)
and rearranging a little,
F(T)=exp{ —/ (T-T’)F(T’)dT’} R (35)
0

which is the self-consistent equation for F(7) that was
sought.

The self-consistency has entered because F was deter-
mined by the relaxation of §S;, which was in turn deter-
mined by the fluctuating field h(#), the statistics of
which depend upon C(f1—t.), and these on F again via
(8). The self-consistent equation (35) can be quite
easily solved by differentiating twice. This leads to the
differential equation

F=F?/F—F?, (36)

with the solution
C(r)/3S(S+1)=F(7)=sech?(+/V2), 37)

satisfying the boundary condition F(0)=1, F(0)=0.
This is, in fact, our simple analytic solution for C(7)
valid for r<7,~[2S(S+1)]"2Jt,.

For small 7 our solution (37) has the expansion

F(r)=1—374-%740(+%), (38)

which should be compared with the exact result (derived
from Collins and Marshall®) for the nearest-neighbor
interaction case

F(r)=1—%7?

7 1
+ —74[1 - —{4+222+ ., (39)
48

721

=l

where z; is the number of nearest neighbors and 2, is the
number of nearest neighbors of a site 7 that are also
nearest neighbors of a given nearest neighbor 7 of 4
(21=6, 25=0 for simple cubic (sc), 21=28, 22=0 for bcc,
21=12, z,=4 for fcc). In practice, the expression in
square brackets is always close to 1, so our approxima-
tion (38) has the correct second derivative at =0 and
a fourth derivative accurate to within ~59,.
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For large = the solution (37) is proportional to
exp(—7V2), but this lies outside its region of validity
7< 7. In fact, we expect that for large r the correlation
function obeys a diffusion law (S.25;7(7))cc 73/2
Xexp[—(R;—R;)2/4D7], so F(7) < 7~3/2. We may esti-
mate the range of validity r<r, from the equation
F(7.)~1/2;, which gives r,~2 using (37). In fact, in
Fig. 1 the solution (37) is compared with other approxi-
mations derived in this paper and with the computer
simulation experiments of Windsor!® for the sc case and
is seen to be tolerably good out to r~3.

We finally note that in the limit 77—, C(¥) is an
even function of ¢ given by C(H)=3S(S+1)F(|¢]). Its
Fourier transform is therefore given by

C(Q)=25(5+1) / i F(1) cosQudt

=[3S(S+1)]2Fw)/ T, (40)
where w is the scaled frequency
Q
o= e (a1)
[3S(S+D) ]2
and
F(w) =/ F(7) coswrdr (42)
0
T™W
= (43)
sinh(rw/V2)

using (37). This result is compared in Fig. 2 with the
more accurate calculations of Sec. 6 and with the corre-
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F1G. 1. Autocorrelation function and the nearest-neighbor cor-
relation function for a simple cubic lattice with nearest-neighbor
exchange. The circles represent Windsor’s computer simulation
data. The analytical approximation sech?r/v2 and the Résibois
and DeLeener result are seen to be reasonable approximations at
short times. The scaled time 7 is defined in Eq. (34).
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F1G. 2. Fourier transform F (w) of the autocorrelation function.
The solid line is our numerical result, while the dashed line is the
analytical approximation Eq. (37). The open circles are Windsor’s
computer results. The scaled frequency w is defined in Eq. (41).

sponding result obtained in the computer simulation
calculation of Windsor,!® and is seen to be in fair agree-
ment with both. It is of interest to note that for large
w, (43) becomes proportional to w exp(—ww/V2), rather
than a Gaussian form. In fact C(Q) is a quantity which
is accessible to experiment, since it gives the shape (as
a function of energy loss) of the inelastic neutron scat-
tering cross-section curve for polycrystalline materials
at large momentum transfer, and Windsor has shown
that his calculation of S(w) [and therefore our approxi-
mation (43) which agrees with it] is in fair agreement
with his experiments!® on RbMnF;.

4. RESIBOIS-DELEENER EQUATION FOR C(¢)

Résibois and DeLeener,”:® using a special technique,
derived an integrodifferential equation for C(f) [the
T'(¢) of their notation is our F()’]. We will next show how
their equation may be derived by a modification of the
approximation procedure of Sec. 3. It will be found that
its derivation also involves approximations (A) and
(A"), so their theory is also valid only for < 7. Further-
more, although the approximation procedure used in
this section is more sophisticated in principle than that
of Sec. 3, in practice the solution does not differ very
much from that of Sec. 3 in the range r<r..

Our starting point will be Eq. (24), whose derivation
has already made use of approximation (A). It will be
convenient to rewrite (22) in the form

h¥(t)A=h*(t)erA or [ih*(t)AJ=h*()ePAR(1), (44)

where e is a tensor with elements (e#)*f= e¢*#f acting on
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vector operators. Thus one can think of #%(¢) as a tensor
operator in spin space [it is also, of course, an operator in
Hilbert space, since 4#(f) depends upon the S; according
to the definition (20)]. Similarly exp,{i./o#*(¢')dt'}
can be thought of as a tensor in spin space (and an
operator in Hilbert space), and (24) can be written out
in component form

F()= <(exp+ { i /0 t hx(t’)dt’} )as> / (65¢), (45)

where (- -)*® means the &,8 component of the tensor
(- +). If we now apply approximation (B”) (see Sec. 3,
and Appendix B) directly to this expression, we get

F(0) =<<exp+{'i fo l hx(t’)dt’] )za><55ia>/<as,-z> . (46)

However, from rotational symmetry in spin space, one
has (65;%)=0 unless z=a (since the applied field leading
to 8S; was proportional to .Si?), so that (46) gives

0 =<<exp+{i /0 , hx(t’)dt’})zz> .

To evaluate the right-hand side of (47), we now regard
(- -)as an averaging operation and apply the cumulant
expansion to obtain

(47)

F()= (exp+ {z /0 t AN

+132 [0 tdtl /0 tdlfz(hx(h)hx(tz))c"l" . -})zz, (48)

where the exponential is still time-ordered since the
terms in the exponent are (noncommuting) tensors in
spin space; for example, according to (44),

(RX(E) % (L)) = (B (L)l (t2) Yere

involves the noncommuting e*.

We next use approximation (B’) to neglect all but the
first two terms in (48). In this case (see Appendix B),
as opposed to that discussed in Sec. 3, approximation
(B’) follows solely from the principle of neglecting the
detailed correlation between three or more spins. One
again finds (5%(¢))=0, so that

o= (eXp+ {%iz /0 a /0 t dt2<h><(t1)h><(t2)>} )

where the second line follows by the use of
(44) and observing that {(h4(t)h*(t2))=8,u{h*(t)h*(t2));

(49)
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e#=e#, defined after (44), the subscript ¢ only serving
to indicate where the tensor is to be inserted in the time-
ordered product. Since the present theory, like that of
Sec. 3, is supposed valid only for 7< 7., we can again use
approximation (A’) which yields the expression (32) for
(h*(t1)h*(t2)). Using this in (50), and changing to the
reduced time variable 7 according to (34), gives

1 T 1
F(r)= <exp+ {— / (i'-n/ dry
2Jo 0

XF(71~7'2)€,1“672“I ) . (51)

If in this expression one neglected the time ordering
of the ¢,* operators and simply wrote €, e,,*= etet= —2,
then (51) would reduce to (35) and we would reproduce
the theory of Sec. 3; the relation between the theory of
Sec. 3 and (51) is discussed briefly in Appendix C. To
the extent that the time ordering in (51) is taken seri-
ously in this section, we may regard it as more accurate
than the theory of Sec. 3. On the other hand, as shown
in Appendix C, at short times 7<r, the time ordering
in (51) is not a very important effect, so we would not
expect to obtain much difference between the solution
of (51) and (35) for 7< 7,. For large r, the method of this
section would be superior, but the theory developed
here is invalid for large 7 because of approximations (A)
and (A').

We cannot evaluate the time-ordered exponential in
(51) exactly, but will derive an approximate integro-
differential equation for it. To this end we differentiate
(51) to obtain

. 1 r7 1 r7
F(r)=- / dr'F(r—7') e"(é,r“ exp l— / dry
2 0 2 0

T1 zz
X/ d‘rzF(Tl—T2)én"e1—2"}> ,
0 +

where (---).* means the 2z component of the tensor
given by the time-ordered product ( )., and introduce
a new approximation (C) to evaluate the time-ordered
product, namely,

1 T T1
<€,,ﬂ exp {~ / dn/ droF (11— Tz)en"éw”] )
2Jo 0 +
1 T T1
expy {5 / dTl/ dTgF(Tl— TZ)ETIVGTZV} et

1 7’ 71
XCXp+ '— / dT1/ dT2F(T1— Tz) en"efz‘r}
2 0 0

=F(r—1")eF (7)),

(52)

(83)

where the last line follows by using the rotational sym-
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metry in spin space to infer that

1 T 71 af
(exp+ {— / dTl/ deF(T1—T2)€71v512y} )
2Jo 0
1 T T1 zz
= 6ag<exp+ {E / dn/ F(ri—12) en”e””} >

=08l (7).

The approximation leading the second line of (53) is
discussed in Appendix D, where it is argued that it
should not lead to very large errors. Using (53) in (52)
now gives

F('r) = —/ F(r—7)F(«")d+, (54)

which is the equation derived by Résibois and DeLeener.

The solution of (54) has been evaluated numerically
by its originators and is plotted in Fig. 1 for comparison
with that of Sec. 6. We see that they all agree fairly well
for r<7,~2. Thus one finds that (54) is only valid in
the region 7< 7, and does not differ too much from the
solution sech?(r/v2) of Sec. 3 in this range. For small 7,
Eq. (54) gives the expansion

F(r)=1=}r+4r4+0(s9),
which should be compared with (38) and (39).

5. APPROXIMATE EQUATION FOR C,(¢)

We now apply the methods used in the Sec. 4 for the
study of C(¢) to calculate the Cy(f). This application is
more general than that discussed above, since a knowl-
edge of the Cq(?) determines not only C(¢), but also the
correlation function (S;25;7(¢)) for ¢ 7. Furthermore,
within this more general framework one can avoid the
use of the approximations (A) and (A’), which limited
the validity of the above calculations to the region
<7, S0 one may hope to obtain a theory valid for all
T.

We proceed as was outlined in Sec. 2, aiming to cal-
culate Fy(f) as the ratio in (16) and using (9) to get
Cq(7). From (1) and (4) one finds that S,(f) obeys the
equation of motion

Sq(t) =—2 J4Sqr XSy, (55)
o

where the q sum is over all the V wave vectors in the

first Brillouin zone (as are all wave-vector sums in this

paper) and
Jq=2 Jijet Ri—Rd (56)
i

We suppose (see Sec. 2) that the system has been pre-
pared by the application of the time-independent but
spatially varying magnetic field /%" of wave vector
q for ¢<0. The perturbed operator Sy () obeys an equa-
tion similar to (55), and the difference Sy is found,
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after a little rearrangement, to obey the equation

6Sq’ =Z ]q’q"sq’—q"x5sq" ) (57)
ql'
where
Jyrqrr=—Jgr—qrrt-Tgrr.

8S, is the change in the operator Sy due to the applica-
tion of the perturbation of wave vector q. We do not
indicate the special wave vector q in the notation, but
it should be kept in mind.

We now introduce the column vector 85 whose com-
ponents are the spin operators 8S¢®, where o/=zx, v,
and z and q’ is any wave vector in the first Brillouin
zone. Written as a row vector, the 3V components are
05= (854,%,05q,%,- - . ,0Sw¥0Sen*?). With this notation the
equations of motion (58) can be written as

8S8(6) =ih(2)8S(?)
65‘1’“’(0 =2 ibq’q”a'a”(t) 5Sq"w @,

(58)
(59)

or

where §)(¢) is a linear superoperator with matrix elements
W () =T (60)

H(¢) is both a linear operator in spin and q space, as im-
plied by (59), and an operator in Hilbert space, as im-
plied by (60). Comparison of (59) with (21) shows that
h(¢) may be thought of as a “generalized magnetic field”
acting on the “generalized spin” 4.5.

We wish to calculate the average (654(#)). Proceeding
as in Sec. 3, we obtain from (59) the analog of (24), i.e.,

q,q,,sq,_q,,u(t)ea’#a" .

(8S¢*(1))
Fy(t)= ———
(8542(0))
=<(exp+(i f b(t’)dt’)&S(O))z> /
(8542(0)), (61)
when (- - -)4* means the z,q component of the generalized

spin vector (---).
Writing out the components, this becomes

F(0=3, <(exp+(i /0 t I)(t’)dt’)):aSq»“’(O)> /

(8547(0)), (62)
where , )
(exp+<i/ b(t’)dt’))
0 qq’
is the qz—q’e’ matrix element of the superoperator.

At this point we have the choice of the alternative
approximation procedures of Secs. 3 and 4. In fact, as
discussed in Sec. 4, for small ¢ it makes little difference
which procedure we use. However, we are now seeking
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a theory valid for large ¢ also, in which case the pro-
cedure of Sec. 4 is expected to be more accurate and is
adopted here. [In fact, the application of the method of
Sec. 3 to (62) was studied and was found to be much less
accurate at large £.]

The first step is to use approximation (B’’), which
again follows from (B) (see Appendix B). This involves
the decoupling of 5,2 (0) in (62), yielding the analog of
(47),

RO~E <(exp+( / (v >dt)) 55+ 0) /

(854(0)).  (63)

The rotational and translational symmetry of the sys-
tem now requires that (85,,%'(0))=0, unless q’=q and
a’=z, so that we have

quz((expn / tb(t’)dt’)Z)

We now make the cumulant expansion, applying ap-
proximation (B’) to neglect all but the first two terms,
and since (§(¢))=0 again, we have

Fol)~ (exp+<— / ar f ] dt”<b(t>b(t’)>>):- (65)

An approximate equation for Fy(f) analogous to (54) is
obtained by differentiating (65) which, with due care to
the time ordering, gives

Fo)=— / ' ar (s
xexp( - [ i / “dtz<b<t1>b(t2)>>):q-

We now apply approximation (C) to the time-ordered
product [cf. (53) and Appendix IT], and write

(- ' / " anoen)
e~ [ an [ antoernc)
xea - [ " / i), ©n
o~
<[ (o0 exp.(= [ [ atoemnee Joery
e - [ [ )], @

(64)

(66)
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where, as a consequence of (67), we can disentangle the
time ordering.
We now write the components of the matrix in (68):

qu:_/ awy X Daar () (CXP+<—/ dty
0 aBy a’q’q’""! p
t1 afB
X/ dl‘2<f)(f1)b(tz)>>) bq,,q,,,ﬂy(t/)

x (e - / "t / " dtz<b<t1)b(tz)>>):q> ()

We again use the rotational and translational sym-
metry of the system to argue that

CIC / i / " dtz<b(tl>b(tz>>>):j

= 5aﬂ5qq’Fq(t) ) (70)
so that (69) becomes
t
Fo0=—= [ % G ba ()
aq’
’ XFy(i—0)Fy(t). (71)
The quantities qq-%* are given in (60), so that
Z <bqq’m(t)bq’qaz(t/)>
aq’
== Jqq'-]q'qez"aewz<sq—q'"(l)5q’—q”(tl» (72)
aq’
(73)

=3S(SHDNT L Jog T gal oo (=1,
"
where we have used (9) to obtain the last line. Hence

Fq('r) =—N"1) qu’/ Fo(r—1")
q’ 0
XFq—q’(T—Tl)Fq(T/)dTI, (74)

where

Koy =Jqq’]qq’/j2= (o "‘]q—q’)(-]q_]q’-q)/jz- (75)

This form for Kqq follows directly from (73). It is
one of several alternative ways of writing the Kyq in
(74) which can be seen to be equivalent by making the
variable change ¢’ = q—q’ and noting that

> (]q’_Jq—q’)Fq’Fq—q' =0
o

We have introduced the scaled time defined in (34).
Equation (74) is closely related to that derived by
Résibois and DeLeener”-® and Kawasaki* to describe
correlations near the critical point; in fact, it is the high-
temperature limit of Kawasaki’s Eq. (B4). The nature
of its solution will be considered in some detail for a
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special case in Sec. 6. Here we review a few of its gen-
eral properties.

First, we note that Ky, =0, so that F,_s(r)=0 and
Fy_o(r)=1for all , which is correct since Sq—o(t) =>_;.Ss
is a constant of the motion.

For small 7, (74) may be solved by iteration to obtain
for nearest-neighbor interactions

Yo~
Fq(T)=1—’%T2< ’ q)

Yo

1 4(’)’0—%1) (Byo—7q—22)

—T +0(+%), (76)
24 ¥o?
where y¢=74=0=21 and
Ye=2_ €Tk, (77)
R

where the sum ) g™ is over nearest neighbors [21, 22
have the meaning explained after (39)]. The coefficient
of 72 is exactly correct, while that of 7* differs a little
from the correct coefficient

(/29[ (vo—va) /7o JGro—Fva—2—3/45(5+2))  (78)

derived from the formulas of Ref. 6; the error is
~5-20%.
The factor

k(=)= N1 Kog Py (1= 1) Forg(r—7)  (79)
>

plays the role of the kernel of Eq. (74). (Its Fourier
transform, the diffusivity, is discussed below.) This ex-
pression has been derived as a result of the approxima-
tions discussed in Appendixes C and D. It should be
noted that small errors in the theoretical expression for
the kernel are self-correcting in that a small increase in
the kernel leads to a decrease in the correlation function,
which in turn decreases the kernel. This is due to the
cubic nature of Eq. (74).

For small q one may partially solve (74). Because Ky
is very small when q — 0, F(7) varies very slowly with
7. On the other hand, the factor (79) appearing in the
integrand of (74) — O fairly rapidly as 7—7’ becomes
large. Consequently one may replace the factor Fy(7')
in the integral by Fy(r) for small q and the equation
may be solved to give

Fqy(7) =exp{ —N1y qu,/ dv’
q’ 0

X/ Fq/(T/-—T”)Fq_q'(T/—T“)dT”}
0

=exp { —N-1Y qu,/ (r—7")
q’ 0

XFq’(TI)Fq_q’(T/>dT,’. (80)
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TasLE L. g-dependent correlation functions and the autocorrelation and nearest-neighbor correlation functions
for the nearest-neighbor exchange simple cubic lattice.

Fq (T)

T a=G00 (00 (00 (00  GAYH  GiH  GED 6D F(7) F(R,7)
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0
0.2 0.998 0.993 0.989 0.987 0.994 0.980 0.966 0.960 0.980 0.003
0.4 0.992 0.974 0.956 0.948 0.977 0.923 0.870 0.848 0.923 0.013
0.6 0.983 0.944 0.905 0.889 0.951 0.835 0.725 0.680 0.836 0.027
0.8 0.972 0.905 0.840 0.814 0.916 0.726 0.550 0.481 0.728 0.043
1.0 0.958 0.860 0.766 0.728 0.877 0.605 0.367 0.278 0.611 0.060
1.2 0.943 0.812 0.688 0.639 0.834 0.483 0.197 0.097 0.494 0.075
1.4 0.927 0.762 0.610 0.551 0.789 0.368 0.056 —0.046 0.386 0.086
1.6 0.911 0.712 0.534 0.467 0.745 0.266 —0.049 —0.139 0.292 0.093
1.8 0.894 0.663 0.463 0.389 0.701 0.180 —0.113 —0.181 0.216 0.095
2.0 0.877 0.616 0.398 0.320 0.658 0.111 —0.139 —0.179 0.158 0.093
2.2 0.861 0.571 0.339 0.258 0.618 0.059 —0.135 —0.144 0.117 0.088
24 0.844 0.528 0.286 0.206 0.579 0.022 —0.110 —0.091 0.089 0.079
2.6 0.828 0.488 0.240 0.161 0.542 —0.003 —0.073 —0.033 0.072 0.070
2.8 0.811 0.450 0.200 0.124-  0.507 —0.017 —0.035 0.018 0.063 0.061
3.0 0.795 0.415 0.165 0.093 0.474 —0.024 0.000 0.054 0.058 0.052
3.2 0.780 0.382 0.135 0.068 0.442 —0.026 0.025 0.073 0.056 0.044
3.4 0.764 0.351 0.110 0.048 0.413 —0.024 0.040 0.075 0.054 0.038
3.6 0.749 0.323 0.089 0.033 0.386 —0.020 0.044 0.062 0.052 0.034
3.8 0.733 0.297 0.071 0.021 0.360 —0.016 0.040 0.041 0.050 0.031
4.0 0.719 0.272 0.056 0.012 0.336 —0.012 0.031 0.016 0.047 0.029
4.2 0.704 0.250 0.044 0.005 0.313 —0.008 0.019 —0.006 0.044 0.027
4.4 0.690 0.229 0.034 0.001 0.292 —0.005 0.006 —0.023 0.040 0.027
4.6 0.676 0.210 0.026 —0.003 0.272 —0.003 —0.004 —0.032 0.036 0.026
4.8 0.662 0.192 0.020 —0.005 0.253 —0.001 —0.011 —0.034 0.033 0.025
5.0 0.648 0.176 0.015 —0.006 0.236 —0.000 —0.015 —0.029 0.030 0.024

For small q the exponent is like —¢%(7)+0(g?), so that
Fy(r)=exp{—¢’¢(n)}, (81)

where after some algebra one finds

q—0

(1) =EN-1 T F(Vy T y)? / )
q’ 0

For large 7, ¢(r)~ 7D, so that
Fo(r)=exp{—¢°rD1}, (82)
which is just the ordinary diffusion-law form for Fy(7).

D, is given by
Dy=3N-1Y T2V Jy)? f
pr

0

q— 0,7 —o0

00

Fo¥(r")dr' (83)

and is related to the conventionally defined diffusion
constant by .
D=Dy[35(S+1)Jv2J (84)

using (34).

6. Cy(f) FOR SIMPLE CUBIC LATTICE WITH
NEAREST-NEIGHBOR INTERACTIONS

In order to obtain some impression of the nature of
the solutions of (74), we have solved it numerically for
the special case of a simple cubic lattice with nearest-
neighbor exchange interactions. This is a particularly
suitable choice of model since it affords the opportunity
of comparison with the computer simulation calcula-
tions of Windsor.!8

Equation (74) may be integrated forward in 7 starting

with F(0)=1, the integration being reasonably stable
provided that a small enough time interval is used. The
q’ sum was approximated by a sum over 512 points (on
a simple cubic mesh) in the Brillouin zone; because of
cubic symmetry only a small proportion (35) of those
points had to be considered explicitly. The J, for this
model are given by

Jq=2(cosgza-+cosg,a+ cosq.a)J , (85)

where a is the cube edge, and J=J+/6, where J is the
exchange interaction.

The results of these numerical calculations of Cy(r)
are given for a few q vectors in Table I. In Fig. 3 the
Cy(7) are plotted against  together with the correspond-
ing results obtained by Windsor, with which they are
seen to be in fairly good agreement [in making this com-
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F16. 3. g-dependent correlation functions for several different
q vectors. These vectors are in units of 27/a where a is the cube
edge. (3,3,%) is thus the corner of the Brillouin zone, and (3,0,0)
is the center of a square face. The circles again represent Windsor’s
computer simulation data.
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parison, one must note that Windsor’s calculations are
for classical spins, corresponding to .S—oc in which
case (34) becomes =287, and that his definition of J
is half as large as that used here]. The characteristic
behavior is a slow decrease for small ¢ becoming more
rapid for larger q with oscillations setting in for the
largest q.

From the Cy(7) one can also obtain the correlation
function

CR;—R;, 7)=(S#S7(7))

=N-1Y Cy(r)ein ®iRo | (86)
q

and, in particular,

C(r)=N"12 Cy(7). 87)

C(7) and C(R,7) for R=(g,0,0) are given in Table I
and plotted in Fig. 1, where they are again compared
with Windsor’s corresponding results and with the ap-
proximations for C(7) derived in Secs. 3 and 4. Again
the agreement with Windsor is good [except for the
height of the peak in C(R,7)].

The diffusion constants D and D; have been calcu-
lated by substituting the solution for F¢(7) in (83) and
using (84). We find

D=0.33[S(S+1)]2Ja?, (88)
which agrees with Mori and Kawasaki’s result,? with
the corrected value obtained by Bennett and Martin,®
and with Windsor’s!® result, but is larger than that cal-
culated by deGennes.! ~

The Fourier transforms Cy(2) and C(Q) are of interest
since they determine the inelastic neutron scattering
cross sections at high temperatures. For the large g,
C4(2) could be determined by numerical transformation
of the Cy(7). For small q, however, this procedure is
difficult because of the very slow decrease of Cy(7) at
large 7. For this reason a different technique was used.
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Using the definition (79), Eq. (74) may be written

Fq(r) = -—/ ko(r—7")Fo(7")d7 . (89)

Hitherto the Fy(7) have only been considered for 7> 0.
Suppose we now extend the definitions of F,(r) and
kq(7) by requiring that Fy(7)=Fke(7)=0 for 7<0. Then
(79) will be satisfied for all 7, and Fy(7) will satisfy

Fu(r)=8(r)— f k(r—1)E()dr (90)

for all 7 with the boundary condition F¢(7) =0 for 7<0;
the 6 function causes Fy(7) to jump from 0 to 1 at 7=0.
We may now Fourier-transform (90) to obtain

iwFy(w)=1—kq(w)Fy(w), 91)
or
Fy(w) =F/(w)+iF " (w). (92)

- iwtFq(w)

We may remark in passing that this equation sug-
gests that £4(w) is playing the role of a self-energy in our
calculations. Combining Eqs. (80) and (92), we see that
it is indeed determined by a self-consistent equation in
the way discussed in the Introduction. Since Cqy(?)
=Fy(|t]), one has from (92) [cf. (40)]

NJIC, (@) R ky' ()

—_— . = ’ w)= ,
1S+ [k @A oR @

(93)
where £q(w)= ky'(w)+iky" (w). By(w) is thus related to
the generalized diffusivity by kq(w)=¢?D(q,w). The
function k.(7) always decreases quickly to O when 7
becomes large, so its transform £4(w) may be readily
evaluated numerically from kq(7) which is in turn given
by (80), and in this way Fy'(w) can be conveniently
evaluated even for small q. The transform F(w) of F(7)
may be obtained from

Flw)=N"1% Fy(w).

(94)

TasiE IL Fourier transforms of the g-dependent correlation functions and of the autocorrelation function.

PY@)
o =300 300  G00 G000  GAD  GLD @D GAD P
0 10.348 3.143 1.899 1.640 3.617 1.181 0.747 0.654 1.518
0.2 2.173 2.554 1.802 1.588 2.704 1.167 0.746 0.655 1.309
0.4 0.596 1.562 1.537 1.435 1.464 1.126 0.745 0.656 1.131
0.6 0.247 0.877 1.181 1.198 0.770 1.053 0.743 0.657 0.978
0.8 0.125 0.498 0.833 0.919 0.428 0.948 0.740 0.660 0.838
1.0 0.071 0.293 0.554 0.653 0.251 0.813 0.735 0.664 0.707
1.2 0.043 0.178 0.358 0.439 0.153 0.658 0.724 0.669 0.584
14 0.027 0.112 0.228 0.286 0.096 0.500 0.703 0.675 0.468
1.6 0.017 0.071 0.146 0.184 0.062 0.357 0.660 0.677 0.361
1.8 0.012 0.046 0.094 0.118 0.040 0.240 0.578 0.661 0.264
2.0 0.008 0.031 0.061 0.076 0.027 0.155 0.447 0.593 0.181
2.2 0.005 0.020 0.039 0.049 0.108 0.096 0.294 0.441 0.115
2.4 0.004 0.013 0.026 0.032 0.012 0.059 0.169 0.257 0.069
2.6 0.002 0.009 0.017 0.021 0.008 0.036 0.090 0.129 0.040
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TasLE III. Fourier cosine transform of the kernel k4’ (w) (the diffusivity).
kq' (@)

w q=(3,0,0) (%,0,0) (8,0,0) (3,0,0) (3:%,%) &10) 3,3 (3,3,%)
0 0.097 0.318 0.527 0.610 0.276 0.847 1.339 1.528
0.2 0.094 0.312 0.520 0.603 0.271 0.841 1.334 1.523
0.4 0.088 0.297 0.500 0.582 0.258 0.823 1.319 1.509
0.6 0.081 0.276 0.470 0.549 0.241 0.794 1.292 1.485
0.8 0.073 0.251 0.431 0.507 0.220 0.753 1.254 1.449
1.0 0.065 0.224 0.388 0.457 0.198 0.702 1.201 1.399
1.2 0.057 0.197 0.343 0.405 0.175 0.641 1.133 1.334
1.4 0.049 0.171 0.297 0.351 0.152 0.571 1.045 1.248
1.6 0.042 0.146 0.254 0.300 0.130 0.496 0.938 1.138
1.8 0.035 0.123 0.213 0.252 0.109 0.418 0.809 0.998
2.0 0.029 0.102 0.177 0.208 0.091 0.342 0.663 0.826
2.2 0.024 0.083 0.144 0.170 0.074 0.272 0.514 0.636
24 0.020 0.067 0.116 0.136 0.059 0.211 0.379 0.451
2.6 0.016 0.054 0.091 0.107 0.047 0.160 0.270 0.313

The transforms obtained in this way are given in
Table II and are plotted in Figs. 2 and 4. F(w) is com-
pared with the corresponding transform derived by
Windsor and with the approximation of Sec. 3. Again
the general agreement is good. For small q, F'(w) is very
narrow and Lorentzian. As ¢ increases it broadens but
the far wings of the line remain low. At still larger g,
F,'(w) “shoulders,” reflecting the tendency of Cq(7) to
oscillate, until at the q=(3,%,2) point it has a very flat
plateau.

Bennett and Martin,’ Bennett,® and Tahir-Kheli and
McFadden!® have given phenomenological treatments
of the diffusion coefficient and the correlation functions

F16. 4. Fourier transform ﬁq’(w) of the
g-dependent correlation functions.

in which they assume a two-parameter Gaussian form
for the diffusivity. In our notation they assume

R 4
b @) = (V) riane,

2b,
where @, and b, are parameters that are determined by
fitting the exactly known second and fourth moments
of the correlation functions. Since we have calculated
kq/(w) directly (these are given for several values of q in
Table III), we are in a position to examine this hypothe-
sis. In Fig. 5 we show k¢ (w)/ky'(0) for these different
points in the Brillouin zone. The smallest and largest q
vectors differ from the Gaussian shape. The inter-
mediate value of q follows a curve which is quite closely
Gaussian, however, and indeed fits closely the form

(95)

I [ [ I I ] I

1
05 ( 8,O,O)

0=GAUSSIAN

l | | l | l ]
04 08 1.2 1.6 20 24 2.8

T1c. 5. Fourier cosine transform of the kernel k¢’ (w)/k¢’(0),
which is equivalent to the diffusivity defined by Bennett and
Martin (Ref. 5). The open circles represent the Gaussian approxi-
mation to the (%,%,1) curve, obtained by fitting (95) to the exact
high-temperature moments (Ref. 12). The Gaussian approxima-
tion for the (3,0,0) and (%,4,3) curves (not shown) is a much
poorer fit.
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derived from Eq. (95) with a4 and b, determined by the
exact values of the moments. Further, the amplitudes
ky'(0) calculated by us agree very well with the values
obtained from (95). The Gaussian approximation is
thus apparently not very good for small or large q vec-
tors, but in the intermediate q range the form (95) ap-
pears valid. Since a large number of q vectors fall in
the range where the assumption is justified by our cal-
culations, we expect and find good agreement between
our correlation functions and those obtained by Tahir-
Kheli and McFadden.?

7. CONCLUSION

It appears from the results discussed in the preceding
sections that in spite of a number of approximations
having been made, the theory still gives a good account
of high-temperature correlation phenomena. Several
points concerning the method should be noted. The
theory involves a decoupling procedure as do the various
Green’s-function calculations. In our case, however, the
decoupling is done in the exponential correlation func-
tions rather than in the equations of motion, so that we
take advantage of the property of cumulants—that they
vanish if any of the operators are independent of the
others in that term. Alternately we may compare our
procedure with equation-of-motion methods by noting
that in such methods a decoupling is performed directly
on the equations of motion. In the present treatment
the equations are formally solved and the decoupling
is performed on the solution. This procedure should be
applicable at finite temperatures and also in other
many-body problems. The physical picture would be
similar to that adopted here: A particle (in a general
sense) is subject to a fluctuating potential. The correla-
tion function for the particle is then expressed in terms
of that of the fluctuating potential, which in turn is re-
lated to that for the particle—a self-consistent relation.
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APPENDIX A: INTERPRETATION OF 3B(f)

It is our purpose here to confirm the assertion in Sec.
2 that B(¢) is the operator which evolves in the presence
of the perturbation from the operator which was B(Z)
when ¢t — — . To this end, we note that in the presence
of the perturbation, B(f) will be given by

B)y=v*@®)BV (1),

where V(¢) is an operator obeying the equation

(A1)

;1%
i—at— =[H,—0(—1)Ae IV (1),

(A2)

BLUME AND ]J.
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where —0(—1)Ae [0(¢) =step function, e— 0, ] is the
perturbation, and V satisfies a suitable boundary con-
dition [i.e., such that B(f) — B(f) as t— — ]. One
may easily verify that a suitable solution is given by

V() =eiHot exp+{i/ 0(—NA(et'dt’y . (A3)

If we now expand the exponential to first order and sub-
stitute the result in (A1) we find, to first order in 4 for
>0,

B(f) = (1+X)eiHot Be=ifot(1 — X) = B({)+8B(t),
since for >0, one has —i S .t 0(—1)A()et'dt' =X.

(A4)

APPENDIX B: SOME CONSEQUENCES
OF APPROXIMATION (B)

We show here how the approximations (B’) (in the
context of Secs. 4 and 5), (B”) and (B””) follow from
the approximation principle (B) enunciated in Sec. 3.
We first note that any average (S1S:---S.) can be
written as a sum of products of cumulant averages.2*
Since (S;)=0 at high temperatures, approximation (B)
is equivalent to the assertion that any average of an
even number of spins may be approximated by a sum of
products of spin-pair averages

<5152‘ . '52n>2 > <Sz‘15j1><5i2 jz>‘ : '(SinSJ'n> s

pairings

(B1)

where the sum runs over all pairings of the spins in the
product, while the average of an odd number of spins is
negligible [in (B1) note that since (S;)=0, one has
(SsSi)e=(S:Si) 1.

We first use (B1) to establish (B”). Since [see Eq.
(12)] 8S=[X,S7], where in the application X is always
proportional to /~,°.S'(¢')dt', we may write

(S1Sz- - -S,8S)

=/ [<51$2 . SnS’(t/)S>‘-<Sl . 'SnSS,(t’»]dt.,
h (B2)

We now apply (B1) to evaluate the averages in (B2).
Consider the first term in the integrand expanded ac-
cording to (B1). We distinguish two classes of pairings:
(a) those in which S is paired with S’(#'); (b) those in
which it is not. A typical term of class (b) will be

/ (S OIS SN S pSu)(SpuS)- - . (B3)

If we now consider the second term of the integrand in
(B2) and divide the pairings into two classes in the same
way, then we find at once that in its expansion there
occurs a term of class (b) which exactly cancels against
(B3). In this way one easily finds that all pairings of
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class (b) cancel between the two terms. On the other
hand, a pairing of class (a) from the first term of (B2)
has the form

0
/ (S ()Y (S SN SesSs)---dt
and is matched by
0
/ (SS' IS aS ) (SisSi- - -

from the second term to give a total contribution

(SaSp)(SaSa)- - / CS'(0),Sat
- = (8S)(SiuSi)(SiaSim)- - - -

Combining all the pairing of class (a) and use of (B1),
now leads to

<5152' . 'Sn55>=<SlS2‘ : 'Sn><6S>;

ie., (B").

(B"") follows rapidly from (B”). Any average of
a product of an odd number of % superoperators (4 or
b) contains a factor of the form (S;- - - S,8S), where  is
odd. But by (B”) this is (Si---Sx){6S)=0, since
(85182 + - S»)=0if n is odd, establishing (B'"’).

Within the context of Secs. 4 and 5, (B’) also follows
from (B). This is because the cumulant expansions used
there are based upon an averaging process which is just
the usual (---) average (as opposed to the ((---))
averaging process defined in Sec. 3, which is somewhat
different). When the (- - -) is used, we may easily show
[using (B”)] that (hihs---ha). is proportional to
(S1S2- * - Sn)e(8S) when S;---S, are certain spins. But
for n>3, (S1Se---Sa). has been assumed negligible;
hence it follows that {(hiks- - - ,) is also for #> 3, which
is just (B').

APPENDIX C: RELATIONSHIP OF THEORIES
OF SECS. 3 AND 4

We shall show here the nature of the approximation
required to derive the theory of Sec. 3 from (51) of Sec.
4. We may regard the process (0)#* of taking the zz
component of the tensor O as an averaging process. Then
(51) has the form of such an average and we may apply
the cumulant expansion to write

17
F(t) =exp {5 / dTl/ deF(Tl— T2) (611“572“)+u
0 0

T Tl T Tl'
) / in / drs f dry / drdF(ri—13)
0 0 0 0

XF(TI,_7’2,)(fn"‘em“en’Vfrz'y)+czz+ MR )

(C1)

where (- - -),.* means the zz component of the cumulant
average of the time-ordered product of (- --). What one
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means by the cumulant average here should be carefully
noted; for the purpose of writing out the averages the
units are the pairs of e factors with the same superscript
label, e.g., €,,#¢.,*. For example,

v
(671“672“571'%72' )_sz

= (671“512M6f1’vefﬁ’v)+zz - <ef1ﬂ512”)+zz(51’1’yeT2'y)+zz .

If we now neglect all but the first term in the cumulant
expansion in (C1) and use (e,,*€,,*)**= —2, then (C1)
reduces to (35). Thus the theory of Sec. 3 involves the
additional approximation of dropping the higher-order
cumulants in (C1). At small 7 this will be a good
approximation.

The above discussion throws light on the different
nature of approximation (B’) in the theory of Sec. 3 on
the one hand, and Secs. 4 and 5 on the other. In the
latter theories, (B) follows from (B) as discussed in Sec.
2. But in Sec. 3 [because of the definition (25) for the
average ((---))], approximation (B’) is equivalent to
the application of both approximation (B) [which leads
to (51)] and the approximation of dropping the higher-
order cumulants in (C1), which is an additional ap-
proximation of a different nature, and thus (B’) of Sec.
3 does not follow solely from (B).

APPENDIX D: DISENTANGLING
APPROXIMATION

At Eq. (53) of Sec. 4 and Eq. (71) of Sec. 5 we used
approximations of the kind shown in (53) to estimate
approximately certain time-ordered products. In this
Appendix it will be shown that our approximation is in
fact the leading term in a certain expansion for the time-
ordered product, and the error introduced by the use
of this approximation is estimated.

To obtain the expansion alluded to, we first expand
part of the exponential in the first line of (53) to obtain

(&+U(7,0))+

= <e,r"U(r,T’)U(T’,O)

1 T T/
XP{/ d/ dF(—)D
2 0 +

= ( U(T)T,))+el-l( U(T,,O))+

1 T T’
+ 5 / d‘rl/ dryF(ri—1)(e? U(r,7")) €
T’ 0

1 T T 7!
X UG Ot (3" f d“/ d”/ "
. T’ T’ 0

X/ dr' F(r1—71)F (12— 7o )(er 62U (1,7)) 1
0

Xe“(erl'uem’”U(T,70))++ T (Dl)
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where, for brevity, we have written

1 T T
U(T,T,)ECXP{E/ dn/ deF(Tl—Tz)€11“€.,2“} . (D2)

The retention of just the first term, which is
e*F(r1—7)F(7'), in (D1) gives the approximation (C)
used in the text. If we retain the first two terms in
(D1), we may iterate [since quantities of the form
(e*U)+ appear on the right] to obtain an expansion of
the form

(e*U(7,0))+=F(r—7")F(+')e*

—-%e"/ d‘r1/ droF(r1—72)F(r—11)
7’ il

XF(ry=1)F(7' = 1)F(19)+---. (D3)

If we retain third- and higher-order termsin (D1), then
we shall require expressions of the form

(671V1672V2' o U(T:T,))+-

However we may expand these by exactly the same
technique as led to (D1) to get a series beginning like

(er%en - U(r,7))4
=F(r—1)F(r1—73) - - €12« -+ - -

In this way we may expand (e, *U(7,0)); in a series,
each of whose terms has the form of e* times an integral
with an integrand consisting of a product of F functions.
The leading terms of this series are given in (D3).

If this series for (e,-#U(7,0)),. is substituted into (52),
we find after a little rearrangement that the resulting
equation can be written

F@)= —-/T k(r—7")F(r)d, (D4)
. where ’
1 T T1
k(T) =F (T) - 5 /0 dT1'[o deF(T—" T1)F(T1—T2)
XF(r)F(r)F(r—79)+---. (D5)

Our approximation (54) corresponds to keeping the first
term is the kernel k(7); evidently from (DS5) this is
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a good approximation at small 7. If we write k() =ko(7)
~+ki(7), where ko(r)=F2(r), then we find from (D4)
that

F(r)=1—%724(7/48)74+0(7%),
ko(r)=1—724-0(%),
ki(r)=—17240(7%).

Comparison with (54) and (38) shows that the leading
correction to approximation (C) occurs in the 7* term
where it changes the coefficient by 16%,. In fact, (D6)
gives (d*F/dr*),—o=1%, which by comparison with (39)
we see is good to O(1/z1). Thus the errors in 74 coeffi-
cients of (38) and (54) are due to approximation (C)
rather than (B).

To estimate the error due to approximation (C) at
large 7, we have estimated the ratio of i ki(7)dr
[with ki(v) given by the second term of (D5)] to
Jo® ko(r)dr, using the approximate representation
F(r)~e7 to give a rough estimate (a suitable choice is
A~1/V2). We find fo® ki(r)dr/ So ko(7)dr~—1/12)\2
~—2% so that the integrated error in the kernel ~169.

We expect the relative error in the solution of (D4)
due to the use of approximation (C) to be rather less
than the error in the kernel estimated above. The reason
is that Egs. (D4) and (DS5) have a kind of ‘“self-
compensating’ property. To see this, suppose &1 <0, so
the addition of the correction %; to ko tends to decrease
the kernel k. Then through (DS5) we see that a decrease
in % tends to cause an increase in F. However, since
ko= F?, the increase in F causes an increase in k¢ which
tends to cancel the decrease in 2 caused by k;. The
essential reason for this cancellation is the fact that
(D4) with ko= F? substituted for %, or (54), is cubic in
F, and thus the addition of a term of relative magnitude
n causes only a change of relative magnitude ~45 in F.
We may comment that this latter argument applies not
only to errors arising from the use of approximation (C),
but also from other sources of error such as approxima-
tion (B). Because the fundamental equation is cubic,
the errors in the solution are smaller than one might
naively estimate.

The discussion above has all been concerned with the
use of approximation (C) to derive (54). However, es-
sentially the same arguments with the same conse-
quences apply to its use in Sec. 5.

(Do)



