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Resonant Reflectance Anomalies: Effect of Shapes of Surface Irregularities
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It was recently shown that hemispherical pits or bumps on an otherwise fiat surface of a sample of iso-
tropic material may cause marked anomalies in reflectance near resonant frequencies of the material, such
as reststrahlen bands in ionic dielectrics and plasma frequencies in metals. The anomalies occur even when
such irregularities are much smaller than the wavelength of the rejected radiation, so that incoherently
scattered radiation is negligible. The effect is due to localized resonances that are somewhat displaced in
frequency from the bulk optic modes of the material by electric boundary conditions. The sharp right
angle at the rim of a hemispherical pit or bump might have been suspected of giving exceptional results.
In this paper, the problem is solved in a different way to demonstrate that pits and bumps with well-rounded
edges produce anomalies of approximately the same magnitude and frequency characteristics as hemi-
spherical pits and bumps. The effect is derived classically. Spatial dispersion and dielectric nonlinearity
are assumed to be negligible. The effects of very slight roughness on the reflectance curves of lithium fluo-
ride and of aluminum are described as illustrations.

I. INTRODUCTION

'N two recent papers, '' the author described the
- - effect that surface roughness in the form of minute
hemispherical pits or domes well separated from one
another would have on reAection near reststrahlen
bands, plasmon frequencies, or other optical-resonance
frequencies in isotropic media. The effect is due to
electrically polar resonances in the material in the
neighborhood of such pits or bumps. The resonances
are displaced in frequency from the bulk optic-mode
frequencies of the material because of electric fields
induced around the curved surfaces of the bumps or
pits. It is a coherent effect that causes changes in
refiectance even when incoherent scattering is negligible.
In the earlier papers we assumed negligible spatial
dispersion or similar effects' and used classical electro-
magnetic theory and a spherical harmonic expansion.
Later, we found, upon computing the electric polari-
zation strength as a function of position around such
bumps and pits, that the polarization was strongest
in the immediate vicinity of the sharp rim of the
hemispheres when the dielectric constant was such that
the pits or bumps caused a large perturbation on the
reflectance of the medium. This fact suggested the
possibility that the magnitude of the effect might be
exaggerated in hemispheres because of the sharp angle
at the rim of such a bump or pit. Consequently, we
have again solved the problem in a different way that
allows us to find results for minute bumps or pits of
any form that is a figure of revolution about an axis

' D. W. Berreman, Phys. Rev. 165, 855 (1967).
D. W. Berreman, Localized Excitations in Solids, edited by

R. F. Wallis (Plenum Press, Inc. , New York, 1968), p. 420 ff.
In both this and Ref. 1 there was an accumulation of errors so
that the quantity whose imaginary part is equivalent to 5 should
have been multiplied by a factor —(a+1)j(pe+1).

~ See, e.g. , J. J. HopQeld and D. G. Thomas, Phys. Rev. 132,
563 (1963). Spatial dispersion is a name alluding to optical
effects that occur when the ratio e of electric displacement to
electric Geld is nonlocal, and hence depends on proximity to
surfaces. Hopheld and Thomas were interested in semiconductors.
The anomalous skin efkct in metals is also a nonlocal dielectric
eGect.

normal to the generally Rat surface of the medium.
We checked the new method by using it for isolated
spherical particles and obtained results very near to
those that can be obtained analytically. We also
reconfirmed- the results we reported earlier for radiation
incident normally on a surface with hemispherical pits
and bumps except for a simple error factor that is
described in Ref. 2. In addition, we have computed the
effect on reflectance of normally incident radiation
caused by minute pits or bumps with well-rounded
edges. We 6nd that the magnitude and frequency
dependence of the effect for irregularities of fixed
volume are not changed much if the edges of the pits
or bumps are rounded, unless they are quite shallow
and broad.

A general 6rst-order approximation to the refiectance
of a surface with small, isolated pits or bumps has been'
(and will again be) shown to be of the general form

51= (Rp+lVV5/X,

subject to the restrictions mentioned at the beginning
and in the third section. In this expression, Ro is the
reflectance of a perfectly smooth surface, E is the
number of pits or bumps per unit area distributed

randomly over the surface, V is the volume of an average
pit or bump, X is the wavelength of the reRected radia-
tion, and 8 is a form factor that depends on dielectric
constant or refractive index, on the shape of the pit
or bump, and on the angle of incidence of the radiation
but not on the volume of the bump or pit as long as
its dimensions are small compared to the wavelength
of radiation involved. In the previous papers, "5 was
shown to be roughly the same size for hemispherical
bumps as for pits. (Errors in Refs. 1 and 2 described
in Ref. 2 do not alter that conclusion. ) In this paper,
p is shown also to be about the same size for pits or
bumps with rounded contours as for hemispherical
ones.

In these calculations, we have assumed that in-
dividual pits. or bumps are isolated from one another
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sufficiently that the 6eld in the neighboring of one
irregularity is not perturbed appreciably by neighboring
imperfections. Although this assumption is invalid
for many slightly rough surfaces, the fact that results
are not strongly dependent on the shape of an in-
dividual irregularity may be used to argue that the
results are not critically dependent on that assumption,
as follows. A cluster of close bumps or pits (or, for
simplicity, concentric rings) can be treated as a single
imperfection. Such a treatment takes into account the
interactions within the cluster more or less exactly.
Since the resulting effect depends mostly on the total
volume within the cluster and not so much on the
details of its shape, we may conclude that the original
assumption of sparse distribution is not essential to
obtain the right order of magnitude of the effect.

Although solutions for obliquely incident radiation
were found by a modification of the method to be
described, the results are complicated and show nothing
particularly different in reflectance. For simplicity, we
will only treat the case of normally incident radiation
in detail. The solution for oblique incidence is of interest
in polarimetry, which is the subject of another paper
to be published in the Journal of the Optical Society of
America.

II. RELATION TO OTHER WORK

A large number of people have studied the subject of
electromagnetic scattering by rough surfaces theo-
retically and experimentally. We will not attempt a
complete resume of that work. 4 Much of the previous
work was concerned with irregularities of sizes com-
parable to the wavelength of the incident radiation,
as in gratings, and hence is not directly related to ours.
Others have studied scattering by very small irregu-
larities, but not in the neighborhood of resonances. '
Much of such work has been based on the assumption
that the medium is totally rejecting. In such calcu-
lations, losses from the coherent beam appear as
incoherently scattered radiation. By contrast, the
effect we are investigating is not an incoherent scatter-
ing effect. Another type of work that is also outside
the realm of our investigation is thai involving peculiari-
ties in optical properties caused by abnormalities in
the material itself very near its surface as in the
anomalous skin effect, or to a nonlocal dielectric-
dispersion relation (spatial dispersion). s

Strachan' investigated the effect of a Inonolayer
of polarizable particles on a surface using Sommerfeld's
rigorous theory of radiation by dipoles near a surface. ~

His results are useful in confirming the correctness of
Eq. (6) below, which is derived heuristically.

4 An extensive review of older work can be found in P. Beckman
and A. Spizzicheno, The Scattering of Electromagnetic 8"aves from
Rough Surfaces (Pergamon Press, Inc. , New York, 1963).' H. E. Bennett and J. O. Porteus, J. Opt. Soc. Am. 51, 125
(1961).

s C. Strachan, Proc. Cambridge Phil. Soc. 29, 116 (1933).
A. Sommerfeld, Ann. Physik 81, 1135 (1926).

The new or unusual features of the present work are
the following. We have found more or less exact
solutions, near resonant frequencies, to the boundary
equations around very small bumps or pits of specific
shapes that probably resemble many naturally occurring
irregularities in fairly smooth surfaces. Enough different
cases are treated to show how much (or little) impor-
tance to attach to the specific shapes of such irregulari-
ties. The computed anomalies in the refiectance may
be surprisingly large. The technique used is perhaps
somewhat unusual and is interesting not only for the
present application but also because it can readily be
adapted to solve many small-particle scattering
problems that do not lend themselves to analytic
solution.

Recent work on resonant electromagnetic scattering
by rough surfaces or small particles is described in
Refs. 1, 2, and 8—13.

III. METHOD OF SOLUTION

We assume that each pit is small enough compared
to the wavelength of the incident radiation that we

may make a quasistatic approximation to compute
electric fields in the immediate neighborhood of each
pit. That is, we may say that at a moderate distance
from a pit, the electric field is approximately uniform
and that 6elds near the pit are approximately those
that would result from application of a uniform, static
far field, with the exception that the dielectric constant

is to have the complex value characteristic of the
frequency of the radiation rather than the "static"
value. We also assume that the pits are far enough
apart that field perturbations by one pit are negligible
at any neighboring pit. In addition, we assume negli-
gible spatial dispersion and a linear, scalar relation
between electric displacement 9 and electric field E.
That is, D= eE, where e is a scalar dielectric constant
of the medium. We ignore any fixed charges that may
be around. Then both D and E obey Laplace's equation
everywhere except on the surface of the medium, where
there is a surface divergence of E. (The surface di-
vergence, o.= divE, may be thought of as arising from
induced surface charges, which are the ends of the
dipoles induced by polarization of the medium. "These
are "bound charges, " of course, not free-surface
charges brought in from some distant point. )

We use the symmetry of the pits, which are taken
to be figures of revolution, to make the following

8 Ye-Yung Teng and Edward A. Stern, Phys. Rev. Letters 19,
511 (1967).

9 O. Hunderi and D. Beaglehole, Phys. Letters 29A, 335 (1969).' H. Ehrenreich, H. R. Philipp, and B. Segall, Phys. Rev.
132, 1918 (1963). LData Gtted with an oscillator model by A. S.
Barker, Jr. (private communication). g"M. Bass, Phys. Rev. Letters 13, 429 (1964).

"M. Hass and H. B. Rosenstock, Phys. Rev. 153, 962 (1967).
"Ronald I'uchs and K. L. Kleiwer, J. Opt. Soc. Am. 58, 319

(1968).
'4 See, e.g. , J. Joos, Theoretica/ Physics (Hafner Publishing Co.,

New York, 1950), 2nd ed., Chap. 12.
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assertion. The surface divergence 0., or surface charge,
induced on any ring about the axis of revolution by a
Geld parallel to the surface is proportional to cosy,
where q is the azimuth measured from the direction
of the field. (See Fig. 1.) If this assertion is not obvious,
it is not hard to prove. (See Ref. 1.) (If we were working
with obliquely incident radiation, we would have to
consider also a field component of the far field normal
to the surface, which would induce a constant 0-, rather
than a cosy-dependent o, about any such ring. )

For simplicity, we will use the Gaussian system of
units and assume that the medium is in vacuum. We
break the surface of a pit or bump into a number of
narrow collars. Ke approximate the exact distribution
of surface divergence by assigning to each collar a
surface divergence o-o, ——0-;cosy over its whole width.
Then, we adjust the values of 0-; by solving a set of
simultaneous equations so that the electric fields, Er
and Es adjacent to the surface outside and inside the
medium, respectively, at the center of each collar
satisfy the usual electrostatic-boundary conditions:
ErXn=EpXn and Er.n=eEs n, where n is a unit
vector pointing away from the medium. The first of
these conditions will be satisfied implicitly by the
method used and only the second appears explicitly
in the equations. Since we already know the azimuthal
form of the solution (cosy), we only need to match the
boundary conditions along a single line of points from
the center of the pit out to infinity, or, actually, only
to a rather small distance beyond the pit.

By a method described in more detail in the Appendix,
we come up with a set of simultaneous equations that
have the form

1(1+e)
Z &g~,+-~ ~~,= —Ep n;.

2 I 1—e)
(2)

In Eq. (2), n, is the surface normal at azimuth y=0
in the center of collar i. (See Fig. 1.) Kp is the electric
Geld that would be just above the surface if the pits
were not there. It is the sum of fields from incident
and unperturbed reflected radiation. The indices i and

j each range from one to the number of collars chosen.
A;; represents the normal component of the electric
Geld at azimuth q =0 in the center of collar i that would
be caused by the surface divergence on collar j alone,
if collar j had unit surface divergence at &=0.

The matrix A of elements A;; depends only on the
shape of the surface and on the somewhat arbitrary
choice of collar boundaries. We find that A, and hence

0;, does not depend on the size of a pit or bump. All

geometrically similar surface imperfections yield the
same matrix A and the same values of 0-; at correspond-
ing locations. The terms A;;, with like subscripts,
represent the normal component of electric Geld at
azimuth @=0 in the center of collar i that would be
caused by unit surface divergence everywhere on collar
i except at that one point. The only term that involves

CUPPE D RECTA NG LE
REPLACES SEGMENT OF
COLLAR I AROUND PI

VECTOR n;

COLLAR ]

RADIUS f'kj OF

RING k OF
COLLAR j

e is the second term on the left side of Eq. (2), which
represents the difference in Geld across the surface of
the medium right at the point I'; at q =0 in the center
of collar i. (See Fig. 1.)

Having found the values of surface divergence o-;, it
is easy to compute the approximate total horizontal
dipole moment I'& for a pit or bump caused by induced
surface divergence on and near the irregularity, as seen
from the space above it when there is unit Geld else-
where just above the surface, parallel to the surface,

4xI'rr=Q o, te,~,s cos'y d pp
=s p o;w,~,s, (3)

where m; is the width of the collar indexed j, and r; is
the collar radius at its center, so that the area of the
collar is 2xr;m;. Notice that total polarization is propor-
tional to the cube of any dimension of the pit, and
hence is proportional to its volume.

H the normally incident beam of radiation had an
electric Geld of unit amplitude, the electric field ampli-
tude in the beam reflected by a perfectly smooth
surface would be

Rp ——(1—Qe)/(1+ Qe), (4)

where the square root with positive real part is chosen.
(Qe is the refractive index of the medium relative to
air or vacuum. ) The electric field adjacent to the surface
in this case wouM be

Ep 1+Rp= 2/(1+Qe) . ——

The scattering by randomly distributed polarizable
dipoles of individual polarization it and numerical
surface density N (per unit area), located in air above
a dielectric surface will modify the reflected beam
amplitude, in Grst-order approximation to

R= Rp+ (4n'i/X)EpNQ(1+Rp)
=Rp{1+(16m'N/X) I iP/(1 e)g}, —

)=0
( A P P L I E D F I ELD D I R ECT I ON )

FIG. 1. Variables used in the text. The width of the collars
shown is exaggerated. The number of rings (dashed lines) per
collar shown is 3, while 5 were used in the calculations.
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correction to the amplitude of a reflected wave. Expand-
ing the square of the absolute value of Jt'. from Eq. (6)
in powers of A"P/), , we arrive at the following first-order
expression for the refiectance of radiation at normal
incidence:

16 ')r (pe+
))Iml

0.4—

E (P(e+1)—= (Rp+ —16~'8e Im~
& e—1

0.2—

where (Ro——RODEO* is the reflectance of a plane surface.
Comparison of Eq. (8) with Eq. (1) reveals that

0
0

l

200
I

400
P{cm )

I

600
l

800

4irP (e+1) 8+
4~+0 Im — — =4'(RO Im (9)

V(e —1) V(.—1)i

FIG. 2. Reflectance of smooth Lip in the reststrahlen band as
a function of incident photon wave number in cm '. The solid
curve is computed from Eq. (10).The dots are data from Jasperse
et al.

where A. is the wavelength of the radiation andi is now
the unit imaginary number. The factor 4n'i/)t is a
phase and normalization factor that can be derived in
various ways, such as by the use of the Fresnel-Kirchoff
diffraction formula over all the scattering dipoles.
(The sign on this factor was wrong in Refs. 1 and 2.)
The factor (1+Re) on the right in Eq. (6) (beside the
factor Es) takes account of the fact that an oscillating
dipole above a surface not only radiates backward but
also radiates forward and the forward component is
reRected back. (See Sec. IV for a simple example. )
(This factor is incorrectly omitted in Refs. 1 and 2.)
Equation (6) is equivalent to Eq. (16a) of Strachan'
for normally incident radiation. Ef is called o.

& by
Strachan. His derivation uses Somrnerfeld's rigorous
theory of radiation by dipoles near surfaces~ and is
shown to be valid even if the dipole is moved right
down to the surface, a fact that is not obvious from our
heuristic argument. A dipole P parallel to and just
above a dielectric surface casts an electrostatic image
in the surface" which also has a dipole moment so that
the total dipole moment I' seen from above the surface
(in air) is

P= 2P/(1+ e) . (7)

(We failed to distinguish between P and )J in Refs. 1
and 2.) Since the imperfections we are discussing are
assumed to be so small that the electrostatic approxi-
mation is valid locally, we obtain the total dipole
moment P as seen from above, when we solve Eq. (3).
We may substitute Eq. (7) into Eq. (6), using P
obtained from Eq. (3), in order to obtain the first-order

See, e.g. , W. R. Smythe, Static and Dynamic E/ectricity
(McGraw-Hill Book Co. , New York, 1950), 2nd ed. , Sec. 5.05,
Kq. 3.

IV. SIMPLE EXAMPLES

An unrealistic but easy example of a surface irnperfec-
tion for which we may obtain an approximate analytic
solution may help to clarify the method used here.
Suppose the surface had spheres on tall thin stems,
like unopened toadstools, distributed on it. The tall
stems will be assumed to be short compared to the wave-
length of incident radiation and so thin that they have
negligible influence on the fields. They are there only
to hold up the spheres. The applied field in the neighbor-
hood of a sphere is given by Eq. (5). The polarization
of an isolated sphere of volume V per unit applied
field is given by the expression

P= L3(e—1)/4n (e+2)]V.

This expression can be obtained using a spherical
harmonic expansion in a uniform field and is a standard
elementary electrostatics problem. " We have verified
that numerically equivalent results are obtained by
solving the simultaneous equations of Eq. (1) for surface
divergence, using a sphere well above a flat surface,
except that we also get polarization on the flat surface
below it equivalent to the image, so that the value of
P differs from P as described in Eq. (7). Notice the
resonance that occurs at c=—2 for the isolated sphere.
If the sphere is far enough from the surface that the
field near it is not distorted much by its own image
in the surface but is near enough that the uniform
part of the field around it is essentially in phase with
that at the surface, then the amplitude of radiation in
the direction of specular reflection is approximately the
sum of the amplitude that would be reflected by the
flat surface, plus the amplitude coherently back-
scattered by the spheres, plus the amplitude coherently
forward scattered by the spheres and then reflected
back. The 6rst term is Es in Eq. (6). The sum of the
last two terms is given by the remaining term on the
right of Eq. (6). For this simple example, Eqs. (7)
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and (9) show that

6=4~(RO ImL6/(a+2)],
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FIG. 7. Correction form factor for the same type of surface
roughness described in Fig. 6, plotted along several lines parallel
to the real and imaginary e axes to show how localized the reso-
nance effect is in the complex e plane. Contour intersections are
at computed points in e, 8 space. The curves are interpolated.
The "surface" of 8 as a function of e can be estimated by interpo-
lation between these curves.

were computed and the edges of each of the "collars"
assumed to have approximately radially invariant
surface divergence of electric field for each such irregu-
larity. Figures 5(a)—5(c) show the form factor 8 of
reflectance anomalies for each of the irregularities
illustrated in Fig. 4 as a function of ~ in the region
where 6 is large Lcf. Fig. 2(b)]. Dotted curves are for
bumps and solid curves for pits. Vertical bars represent
points at which computations were made and at which
Jasperse et aI. reported measurements of reflectance.

It is interesting to note that there is no great differ-
ence between the perturbation caused by a bump and
that caused by a pit having the shape of its reflected
image, particularly when the bump or pit is rather
shallow, as shown in Fig. 5(c). However, there is a
tendency for the total strength of the perturbation,
represented by the area under the curves, to be some-
what smaller for broad, shallow irregularities than for
smaller, deeper ones of the same volume. Thus, a surface
with gently rolling contours would not diGer as much
in reflectance from a Qat surface as would one whose
irregularities had steeper sides.

Since real rough surfaces are likely to have bumps
and pits of various shapes, we took an average of the
six form factors illustrated in Fig. 5, which would
describe a surface with one-sixth of each of the six
types of irregularities, and plotted the form factor for
that mixture on Fig. 6(a). Figure 6(b) shows the form
factor for the same mixture over the whole infrared
dispersion loop for LiF and shows that the form factor
is relatively insigni6cant except in the region of small
negative, mostly real values of ~.

The dispersion curves of many media, such as ionic
semi|.-onductors ag.d many metals, pass through points

t.o-

0.8-

06—

0.4—

0.2—

0 1

200
1

400
v(cm ')

1

600
l

800

Fro. 8. Reflectance of flat LiF surface (solid line) and reflectance
of surface with 500 A. surface roughness of type described under
Fig. 6 (dotted line) as a function of wave number.

much farther from the real axis on the complex c plane
than that of LiF even though they may be quite
reQective in some regions of the spectrum. Such more
optically absorbent media would show much less
pronounced perturbation in reflectance caused by sur-
face roughness. Figure 7, which is a three-dimensional
plot of the perturbation term 5 as a function of both
real and imaginary parts of e, illustrates this point.
The same mixture of shapes of bumps and pits was
used to compute values of 8 for Fig. 7 as for Fig. 6.
Notice that the decline in absolute value of 8 has
roughly the same steepness in both real and imaginary
directions, as one moves away from the region where e;
is very small and e„ is between about —2 and —~.
In particular, notice how much shallower and smoother
the contour is along the line e;=2 than along the line
e;= 0.1, the opposite extreme on the graph.

Figure 8 is a plot of the reQectance computed for a
LiF sample with the mixture of irregularities just
described if the sum of absolute values of volumes of
all irregularities per unit area (lVV) is equal to 500 A
(dotted line), superimposed on the reflectance curve
computed for a perfectly flat sample. 500 A is a large
value for XV compared to the values one might expect
for surfaces to be used in optical studies with visible
light. However, one might incorrectly suppose that
such a surface was good enough for reststrahlen
measurements on LiF, where radiation of wavelength
10' A is used. Even. a surface with 500 A root-mean-
square (rms) roughness would not look polished
(particularly if its visible light scattering were observed
in good light), and the parameter EV is generally
smaller than the rms roughness.

(As an illustration of the difference between EV
and rms roughness, consider a model composed of
cubic bumps and pits of side A in a rectangular array
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FIG. 9. Reflectance of fiat aluminum surface (Ref. 10) (solid
line) and reflectance of aluminum with 1A and 5A roughness
parameters (dots) as a function of photon energy.

of spacing 3A. XP would equal —9A, while the rms
roughness parameter would be -', A. The two parameters
are not equivalent. The first is the one that is significant
for the resonant effects discussed in this paper, while
the second is one that is important in the study of
incoherent scattering, which is a different phenomenon. )

The refiectance anomaly predicted for LiF by these
computations is probably larger than one would actually
observe with an ordinary sample with the assumed
degree of roughness. This is because samples probably
would not have surfaces such that the imaginary part
e; of dielectric constant is as small in the top few
hundred A as it is deeper unless extreme care were
taken to relieve strains and avoid other damage that
would enhance mode damping near the surface. Larger
values of e; result in weaker resonances, as illustrated
in Fig. 7. A layer of material a few hundred A thick
with a value of e, different from that of the underlying
material would not alter refiectance very much unless
e; were small enough for the type of shape-dependent
resonance described here to be noticeable, or else were
very much larger.

We will not show complete figures for refiectance
correction in other types of material. However, we shall
briefiy describe the effect in aluminum as a second
interesting illustration (see Fig. 9). Values of e for
aluminum derived from Kramers-K. ronig analysis or
dispersion curve fitting of refiectance data" pass along
very nearly the same path at frequencies corresponding
to photon energies between about 6 and 16 eV, as those
for LiF do between about 400 and 700 wave numbers
(cm '). Hence, the correction form factor 5 for any
particular surface shape is very nearly the same as for
LiF. However, the wavelengths involved P, in Eq. (1)j
are smaller by about two orders of magnitude for alumi-

num than for LiF. Consequently, the measure of
roughness that would cause the same change in reQec-
tance for aluminum as was illustrated for LiF is only on
the order of atomic dimensions. It is not reasonable
to expect accurate results for Al from our method
because of our approximation that ~ is independent
of position in the medium. The anomalous skin effect
would probably make this a poor approximation.
However, our results do indicate that one cannot
expect to make an aluminum sample fiat enough to
obey Fresnel's reflectance equations accurately within
that range of photon energies. The difhculty in obtain-
ing reproducible results for refiectance or for e near
plasma frequencies in metals is well known and various
explanations have been proposed, " most of which
probably explain parts of the difhculty correctly. In
the light of our calculations, the fact that anything
near to consistent and reproducible results can be
obtained for e at these frequencies seems more sur-
prising than the difFiculty in obtaining them.
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APPENDIX

We now give a brief exposition of the derivation of
Eq. (2), and show the method used to evaluate the
matrix elements A;; approximately.

An expression for the local normal component of
electric field just outside a point P, on the surface of a
dielectric with electric field surface divergence distri-
bution a. is

E„p=Ep n+ (A1)

' See, e.g., Optical Properties and Electronic Structure of 3/Ietals
and Alloys, edited by F. Abeles (North-Holland Publishing Co.,
Amsterdam, 1966).

(This equation follows directly from Coulomb's law. )
In this equation p is a vector from any point on the
surface other than P; to the point P;, d2p is an element
of surface area, and 0.; is the surface divergence at P;.
(See Fig. 1.) (o/4a. in Gaussian units, or o in rational-
ized units, may be thought of as the charge density on a
surface bounded on both sides by vacuum that would
produce. the same electric fields as the polarized di-
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electric does. ")n, is a unit vector normal to the surface
at P; Ko is the electric field that exists very near and
parallel to the flat surface (for normally incident
radiation) far from any imperfection. In this formula
we set p. n equal to 0 near the point P, The term
-', a; may be deleted and taken as part of the double
integral if the point at which E„+is Ineasured is taken
to be a small but finite distance above the surface.

Just under the surface the normal field component is

+n =+n+ &i ~ (A2)

The continuity condition for electric displacement
normal to a dielectric surface may be written

E +=6E (A3)

Combining the three preceding equations, we obtain

o p ' ll ~ 1+E.
d p+ —;o;=—Ep n;.

4x ' (A4)
P

We now approximate the double integral by a sum
of terms for coaxial collars, each with uniform surface
divergence o., along the azimuth line at &p=0. We
see that

og 11d p
=Q o,A, ,

4z p'
(AS)

Combining Eqs. (A4) and (A5) leads to Eq. (2).
Breaking collars up into E coaxial rings for j/i,
we get

IC

4vrE ~=~

2'
gg'Ice ' &i

cosy d//2, (A6)

where y, ~; is a vector from a point at y on the 4th ring
in the jth collar to a point P, at the center of the ith
collar at q =0, and r;/, is the radius of that ring. (See
Fig. 1 .) The integrals in Eq. (A6) were solved numeri-
cally with a computer to obtain matrix elements for
bumps or pits of each shape.

To get the term A;; for the collar containing the
point P,, we must cut out a region directly under P;

and treat it in a more exact manner than using a set of
rings as an approximation.

The terms A;; were evaluated by breaking them into
two parts, 5; and T;.5; is the contribution of the part of
collar i that is at angles q greater than some minimal
value y~ from the point P; at y=O. 5, was evaluated
numerically in exactly the same way as A;; for j/i,
except that the integral was taken from q ~ to 2x —pI,
rather than from 0 to 22r [cf. Eq. (A6)$. We chose

q ~ so that the region on the collar contributing the term
T; and omitted from S; was roughly square. (See
Fig 1)

In order to evaluate T;, we replaced the cut-out
segment in collar i with a cupped or saddle shaped
rectangle having the same two principal values of
curvature as the model surface at the point P;, and
having the same width and length as the orthogonal
medial lines of the cut-out segment of the collar.
Using I and v as the principal values of curvature and
f and 2/ as the half-width and half-length of the rec-
tangle, we get, by a little geometry and some integral
tables, "the result that

1 & & 2Nx2+22/y2T'=— dx dp
(g2+y2)2/2

( ( — ( 2 —1/2

=—
~

+clog -y
~E

2 —1/2

+2/$ log —+ — +1
~

. (A7))
The longest part of the computation is that in which

the matrix elements A;,. and A;; were evaluated. This
was done once for each shape of pit or bump. It is a
relatively small job to solve the set of simultaneous
equations (2) for various values of o for each shape of
irregularity.

"See, e.g., H. B. Dwight, Tables of Integrals and Other Mathe-
matical Data (The Macmillan Co., New York, 1961),4th ed. , Eqs.
200.01, 200.03, 202.03, and 626.2.


