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With increasing pressure the first-order APE-PE
transitions in PbZr03 and PbHf03 acquire the charac-
teristics of second-order transitions. These effects un-
doubtedly reRect important pressure-induced changes in
the ionic displacements accompanying these transitions.
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The Van Vleck moment expansion is applied to a pure dipole system. On the basis of the long-range nature
of the forces, sequences of diagrams are selected that give the dominant contributions in the lattice sums.
A selection of diagrams contributing to the entropy and susceptibility is displayed. There are three different
summations to be performed for each type of diagram: the trace over the spin variables, the lattice summa-
tion, and the summation over the Cartesian coordinates. The second was performed on a computer, and
the last is obtained by means of the Kramers-Wannier diagonalization. In order, to obtain the contributions
of diagrams of higher order, a Fourier transform is employed. The calculations are performed for cerous
magnesium nitrate using a g factor that is zero along the c axis. The results are compared with experiments.
The susceptibility p was calculated for a uniform and for a nonuniform Geld, and it is suggested that the
critical temperature is determined by the in6nity of x(q) for g/0, rather than by that of x(0).

I. GENERAL CONSIDERATIONS
' 'N order to predict a critical point T, and. the state of
~ - magnetization below T„one needs a complete set of
parameters to describe the magnetic system. They are:

(a) The lattice structur- the type of crystal struc-
ture and the actual lengths and orientations of the
lattice vectors a, b, c, as well as the parameters u, e, etc.,
describing the atoms in the unit cell, if more than one.

(b) The g factors, more specifically the tensors, one
for each atom per unit cell.

(c) The interaction as a function of the relative
distance J(r;;), which in general can be of the tensorial

type, i.e., not necessarily dependent on the distance
only.

Suppose all these data were available, how can we go
about determining the critical temperature?

Before answering this question let us take a look at
the availability of the data just mentioned. As far as (a)
is concerned a sufficient amount of good data is usually
available from x-ray work. The only practical trouble
is that the lattice parameters are not always determined
at the temperature range one is interested in and
although the changes at low temperatures are usually
minute, the coefficients to be calculated later are very
sensitive to the values of the parameters.

The g factors are also sufFiciently known in most cases.
The values of g& and g» as well as the axis with respect
to which they are parallel and perpendicular are very
often known from paramagnetic resonance experiments
in diluted crystals.

The third quest for data, the interaction as a function
of the relative distance is the weakest link in the chain.
Although recently a number of successful experiments
have been performed to determine the nearest- and
next-nearest-neighbor interactions between pararnag-
netic ions from satellite lines in a number of moderately
diluted crystals, ' the data are far from complete. There
is one exception, however, the salts in which the dipole-
dipole interaction is dominant. It is reasonable to
assume that the permeability of an insulator is the same
as that of the vacuum and although occasionally pseudo-
dipole forces have been proposed' one feels that the use
of the "free" dipole-dipole interaction is a good descrip-
tion in cases where the exchange forces seem to be weak.
It is much less clear that higher multipole forces should
not be taken into account.

The attraction to study the case of dominant dipolar
forces as a challenge for the theory is clear: Here one

r See, for instance, M. T. Hutchings R. J.Birgeneau, and W. P.
Wolf, Phys. Rev. 168, 1026 (1968); 1 9, 275 (1969).

s J. H. Van Vleck and J. van Kranendonck, Rev. Mod. Phys.
30, ~, (&958).
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can pretend that the interaction is known and it is up
to the theory to predict the critical point.

From the point of view of the theory, however, the
situation is much less appealing. Almost all theories are
approximations; the only exception is of no use, since it
deals with an Ising interaction between nearest neigh-
bors in a two-dimensional model. To what extent
approximate theories are useful depends of course on
the number of steps, terms, or iterations necessary to
obtain a reasonable result. However, most theories need
an assumption about the magnetic state the system
condenses into: ferromagnetic, antiferromagnetic, or, in
general, some kind of staggered magnetic structure.
Moreover, if a guess can be made for the ground state,
it is not yet sure whether this state will be identical with
the state just below the highest critical point. The un-
certainty about the magnetic state stems from the fact
that the dipole interaction has both signs, depending
on the direction.

The methods presently at our disposition are:

(a) The molecular Geld method.
(b) The cluster variation method. A minimization of

the free energy of a cluster in which the environment is
treated as an effective field The simplest form is the
Oguchi constant coupling method.

(c) Low-temperature expansions either by Gipping
one spin at a time as in the Ising model or by spin waves

(d) Green's functions, a combination of spin waves
and molecular field methods.

(e) High-temperature expansion or the Van Vleck
moment method.

For all these methods except the last, one has to know
the ground state, since this state is completely unknown
for a pure dipole-dipole system. Hence the calculation
was performed with the Van Vleck method.

II. DISCUSSION OF PREVIOUS WORK

What has been done before? Lorentz pointed out' that
the dipole-dipole forces cancel out in cubic symmetry
and in a spherical sample. This leads to the result that
the leading term in the specific heat is equal to zero,
which we used as a test case. Lorentz's calculation was
actually done for induced dipoles, but the result holds
for permanent dipoles as well.

Second, Luttinger and Tisza4 determined the ground
state by a combination of cluster method and an almost
correct diagonalization. The technique used is formu-
lated as replacing a strong constraint by a weak con-
straint, and is identical to the sphericalization method
applied to a cluster rather than to the whole system.
The major drawback of their conclusion (an antiferro-
magnetic ground state) is that the magnetic periodicity
is a priori Gxed. Hence one cannot expect much else

'H. A. Lorentz, The Theory of L'lectrons (Teubner, Leipzig,
1909), Sec. 117.

J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).

than either a ferromagnetic or an antiferromagnetic
ground state. If the ground state is ferromagnetic, then
the magnetization will depend on the shape. It is,
moreover possible that the ground state is not homo-
geneous, that it would consist of domains; it is extremely
difficult to prove that this is not so.

In 1952 Lax' described the behavior of a dipole-dipole
system in the spherical approximation. He found an
ordered state at low temperature. He did not compute
the k value of this state, since he remained critical of
the spherical-model assumption.

The first few terms in the high-temperature expansion
were calculated by Daniels et aL in 1953.' The (1/kT)'
term in the specific heat and the Curie-Weiss 6 in the
susceptibility were explicitly calculated for cerium

magnesium nitrate (CMN) and a number of other salts
with pure or predominant dipole-dipole interaction.
This paper also contains the algebra for the next higher-
order terms.

In 1964 Daniels and Felsteiner did a Luttinger-Tisza
calculation for CMN. Lattice sums were again calcu-
lated by Peverley and Meijer to obtain the dependence
on small changes in the lattice constants.

Recently Wong, Dembinski, and Opechowski' ob-
tained the dependence on gt/g„which is expressed in a
power series in this quantity.

The recent experimental work' "has been reviewed

by Hudson. "
III. VAN VLECK MOMENT EXPANSION

The first extensive calculation of the partition func-
tion of a paramagnetic salt was done by Van Vleck in
1937. The method can be further improved by using
the results of the diagrammatic method.

The partition function in a high-temperature expan-
sion is given by (P= 1/ET):

- (—a~)"
Z=Trg

n=O g!
(3.1)

where the trace has to be taken with respect to all the
spins in the Hamiltonian. The detailed form of the
Hamiltonian will be described below. It is convenient

' M. Lax, J. Chem. Phys. 20, 1351 (1952). See also R. Rosen-
berg and M. Lax /ibid. 21, 424 (1953)j who calculated the suscep-
tibility up to T 4 for cubic lattices.' J. M. Daniels, Proc. Phys. Soc. (London) A64, 673, (1953);
and J. M. Daniels and J. Felsteiner, Can. J. Phys. A42, 1469
(1964).' S. Wong, S. T. Dembinski, and W. Opechowski, Physica 42,
565 (1969).' R. P. Hudson and R. S. Kaeser, Physics 3, 95 (1967).

K. W. Mess, J. Lubbers, L. Niesen, and W. J. Huiskamp,
Physica 41, 260 (1969)

"W.R. Abel, A. C. Anderson, W. C. Black, and J. C. Wheatley,
Phys. Rev. 147, 111 (1966)."B.M. Abraham and V. Eckstein, Phys. Rev. Letters 20,
649 (1968).

'2 D. J. Abeshouse, G. O. Zimmerman, D. R. Kelland, and E.
Maxwell, Phys. Rev. Letters 23, 308 (1969).

'3 R. P. Hudson, Cryogenics 9, 76 (1969).
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to introduce the symbol ( ):
(p) = Trp/(Trl),

where
g; g,'P 3g; ~g,.Par;, xr"

. .3rij
where p is an arbitrary function of the spin operators
and 1 the unit matrix in (25+1)~-dimensional spin
space. E is the total number of spins. In this notation
we find

- (—px)"
lnZ=1V ln~ 1+P

n!
(3.2)

The second term cari be expressed in a semi-invariant
expansion

- (—~).
lnZ=Ã ln(2S+1)+ P -M'„,

n=S ~!
(3.3)

where the semi-invariants or curnulants are given by

1 (K') "*'-

M =n~ P (—1)'-'-'(Zn; —1)!11—
~n;} -ni z !

and the susceptibility tensor X &

8 lnZ
P& P=lim

~ 'II BH!'
(3 3)

in a straightforward way. H is the magnetic field, with
components H .

The Hamiltonian consists of three parts:

K,=P J,,"5;5;,
i&j

(3.6a)

KD =—Q [(p;p, )/r;, ' 3(p;r;,) (p,r,;)/—r;,'j, (3.6b)

(3.6c)

where K, is the exchange interaction between nearest,
next nearest, etc., neighbors. The dipole interaction XD
and the Zeeman interaction BC, are expressed in the
magnetic moment p of the ion. This moment depends
on the spin (or in the case of many rare-earth ions rather
on the effective spin) via the g tensor:

p;~= ping, ~S,s (n,P= x,y, s) .

This leads to the following expression for BCD.

Kg) ——Q 4P,, PS, S,P,

(3 7)

(3.8)

or simply by the statement that one should omit all
disconnected diagrams. The leading diagram has weight
factor 1:

~n (~ )conn ~

From this, one can obtain the entropy

tl —1
5/Ark —ln(2S+1) = cr = ——Q ( 0)—"~ —(3.4)

~!

as was pointed out by Daniels. ' In almost all cases (the
notable exceptions are the Tutton salts) the g tensor is
independent of the position i.

In the case of cerous magnesium nitrate one can (a)
neglect the exchange interaction, (b) use an effective
spin 5= ~„and (c) take g«equal to zero.

A short discussion on the shape dependence is in
order. The internal magnetization will be homogeneous
only if the sample has an ellipsoidal shape. If the sample
has an arbitrary shape it generally is assumed that it
will break up in homogeneously magnetized domains
although no firm proof exists. Shape dependence from
one ellipsoidal form to another can be calculated by
means of demagnetization factors. The zero-field
behavior is shape-independent, that is, the critical
point and the magnetization above T, presumably
contain only terms that converge unconditionally.
Below T, the magnetization curve may depend on the
shape. Whether it does so can be investigated by looking
at the conditionally convergent terms in the high-
temperature expansion. '4

IV. DIAGRAMS OF HIGH-TEMPERATURE
EXPANSION

The expression

x"=(Beg)+~,)" (4 1)

contains two types of terms: One term: BC&" is the sole
contribution to the zero-field specific heat. A set of
terms containing n —2 factors LCD and two factors BC,

will determine the susceptibility. In order to calculate
the latter, one has to realize that the two parts of the
Hamiltonian do not commute with each other. There
are -', n(n —1) positions of the two K,'s between the Xo's.
Using the cyclic property of the trace there are:

(i) If n is even: ~n different traces, each occurring
n times except the one where X, is sandwiched between
an equal number of XD's (on a circle); this term occurs
only ~n times.

(ii) If n is odd: —',(n —1) different traces, each occur-
ring n times.

If one needed to calculate the off-diagonal elements
of X ~ one would need to take into account the fact that
the two Zeeman terms do not commute. Here, however,
we need the diagonal parts only, since gl&=0 we have
yzz y~z &"z=0 and & "=0 on the basis of symmetry
(one can show that only one layer contributes to X,„).

The Hamiltonian parts BC~ and X, commute with
themselves, but one has to be very careful about a
product of factors of a given configuration (i.e., a

P. M. Levy, Phys. Rev. 170, 595 (1968).
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CX: Q
(2-2)

(5-S)b (5-S)c (5-2)

(3-2)

(4-4) (4-3)a {4-3)b (4-2)

(e-e) (e-5) a

(e-5)d

(6-5)

(6-5)e

(5-5) {5-4)b
(e-5) f (6-5)g (6-4)a (6-4)d

(5-4)c {5-4)d {5-3)a

(a

!6-g)b (6-o)c~
(6-4)e

N(2«s«I( ~{~-2) (4-Z)
n

"(4-2)a o(4 2)b (5 4)

-".". ~ o-«~
(5-~)c

(5-~)d (5-3)e ~ (5 2)
v G-&—4

(6-5) (6-4)a0
D-«X.M D—X

(6-4)b {6-4)c {6-4)d

(6-5)a

(6-~)e

",,x~ n~
{6 &)9 (6-5)h

{6-S)f

(6-5) I

(b)

(6-2)a {6-2)b

Fro. 1 (a). Diagrams contributing to the entropy. (b) Diagrams contributing to the susceptibility.

diagram). Here the order of the factors is as important
as the individual terms of the series contained in XD" do
not commute. To take care of this difhculty each cluster
has to be symmetrized.

The diagrams related to the entropy: The lowest-order
diagram contributing is given by

(3C ).. =(16/4)(g S; P,, eS,e Q S 'P„'&'S e'),

j= k lead to a nonzero result. We have

(S; 5; ') = (TrS, S, ')/Trl =-,'8
Hence

(~D') =s 2 (P' ')'
=&2 L(Po **)'+2(Ps'")'+(Po "")')

=2X4 r, (S' S'")P6'P'2"'&S2'S2") (4 2)

The factor 2 which we will call the abundance stems
from the fact that both i =k with j=l and i = l with

(for g„=0). Note that both i, j, and j, i should be
counted in this notation.

In general, a ring diagram of order n is a non-self-

crossing loop of n steps. The abundance of such a
diagram is 2" '(n —1)! The resulting form for the
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(a) (b)

FIG. 2. (a) Elements to construct the susceptibility diagrams. (b) Cancellation of diagrams
that have articulation points with odd vertices.

entropy is

where

00 s—1
( 1)»+1 P»P

Q n=2 2s
(4.3)

The susceptibility is, then, to second order in l3,

X =-',Petr, &u,
—sP'PP, , ~tr, tj;S+ . (4.6)

P ~ P..app. py. . .P, eu
A&T gl ti

s&y&l». . . t

From this point on, each succeeding term in the series
(4 4) for the chain diagram can be written down immediately.

The general term contains the factor
where i,j,l, . . . ,t are all different. The actual computa-
tion of these ring diagrams will be discussed in Sec. V.

We indicated in Fig. 1(a) all diagrams with six or less
vertices. Besides the ring diagram there is an ever
increasing number of nonring diagrams, which are
ordered according to decreasing number of bonds.
Further ordering is arbitrary. The contributions of the
fourth- and 6fth-order diagrams to the susceptibility
are given in Appendix B.

The Chagres related to the slsceptibility. One can
choose a local coordinate system such that the g tensor
is on principal axes. In Garnets and Tutton salts one
needs an additional transformation, from local to
crystal system, but in CMN the local axes are universal
and can be taken along the crystal axes.

As mentioned before the nth-order term in the
susceptibility series contains (n —2) dipole-dipole
operators 3'.~, and two Zeeman operators 3C,. For these
diagrams we need Zeeman bonds as well as interaction
bonds. The heads of the Zeeman bonds remain free
(representing a "connection to the magnetic field, " and
not to a lattice site); they will be represented by an X.
Thus, diagram (2-1) of Fig. 1(b) has an "abundance"
of unity and gives

(X,')=H H~g&u tr s.

Before we proceed with the evaluation of diagram
(3-2), we write out X' and use the cyclic property of
the trace operation to 6nd that

K'= (MD+ Be.) '= 3x,Dx, '
+(terins not involving H') . (4.5)

The abundance of this diagram is 2 because end-p
can be tied onto end- j, while end-q must be fastened to
the one remaining free end in either event. (Compare
Fig. 2(a)). However, the 2 is cancelled by the sr which
comes from the summation convention in Eq. (3.6b),
and therefore

P„,= p . .app. pyp &8~.up 8 (4.7)

V. LATTICE SUMS

A. Fourier Transforms of Ring Diagrams

For each diagram one has to calculate the lattice sum
which is most conveniently done by a computer. The
number of kinds of lattice summations is actually less
than the number of diagrams, since the summations
belonging to diagrams with articulation points can be
derived from the lattice sums of the nonarticulated
diagrams.

Despite the speed of the computer, the number, n, of
vertices one can sum is rather limited since each requires
three cycles of Do loops and for a radius of, say, 10, this
is about 10'" operations. Hence it is more eKcient to
consider Fourier transforms, in particular for the ring
diagrams, as well as for the chain diagrams.

By way of illustration, we 6rst examine P3 the third-
order term in the entropy series for the ring diagrams.
It is defined as follows in Eq. (4.4):

Ps PP;, sP, P&Pi;& . —— (5.1)

The next step is to transform to a representation in k

space by writing the following Fourier series:

(5.2)

where r;; is the vector from ion i to ion j, that is,

Equation (5.2) implies that

where i,j,l, . . . ,t are all di6erent. The contributions of
the remaining 6fth-order diagrams to X"p are listed in
Appendix A.

X'=3&(2H Hs P'P;; fit,'t, ti

+(terms not involving Hs) .
P s(r;;)= P s(k)e '~""dk,

Vg 'j'Egg

(5.3)
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where V~ is the volume of the first Brillouin zone. It is
clear that

P ~(k+k, )=P s(k),

where k, is a reciprocal lattice vector.
At this point it becomes necessary to rewrite Eq. (5.1)

in a slightly diferent form. First, we choose the ith ion
as the origin of our coordinate system; second, remove
the restrictions on the lattice sum by adding and
subtracting the terms with i= j, so that

P, =XP P;,-sP;P P„'- Xg P—,,-&P,P P„-. (5.4)

more summation. Therefore, we will neglect the first
term when we combine the result with the last term in

Eq. (5.7) to yield

3
L" p p, aPP, a8P 4yp. »]

4(&T)4,p, ~, 4 pw

which is added to hS/1VE. In essence, then, the contri-
bution from diagram (4.3)a of Fig. 1 is partially can-
celled, as indicated by the loss of the terms with 8=P
in the above expression.

The last term is identically zero. After substituting
Eq. (5.2) into Eq. (5.4) we make use of the relation

(5.5)

to argue that

P3 P——s(k)p»(k)P& (k)dk, (5.6)
(2s.)' y,

where 0 is the volume of the unit cell in real space. If
we follow the same procedure in evaluating I'4 the
result is

P, = P ~(k)p»(k)p&'(k)p' (k)dk
(2~)' VR —2' p P;;& P,,"P;g'&P;g». (5.7)

B. Nonring Entropy Diagrams

There are a number of nonring diagrams contributing
to the entropy. They can be further subdivided in
diagrams with and without articulation points. Among
the last there are diagrams that contain internal single
links, for example (6-5)a in Fig. 1(a). Such diagrams
lead to shape-dependent results in the lattice sum as
was noticed by Levy, " since they contain a partial
summation, that is, they are conditionally convergent.
Hence it looks at 6rst sight that the specific heat would
be slightly shape-dependent. One can show however,
that for topological reasons these diagrams do not
contribute to the zero-field entropy. The argument is
as follows (compare Fig. 3): For each diagram with a
"stick," we have a counterpart where the rest of the

diagram is reflected. The circles A, B, and B' represent
the rest of the diagram. An example is (6-5)c of Fig. 1.
Since we have

Tr(SsS S,)= —Tr(S,S„Sp),

The last term in Eq. (5.7) results from the removal of
the restrictions on the lattice summations, and it adds
to the expression for hS/EE an amount equal to

3 —Z P','P;,"P,a"P;~".
4(QT)4 4, 14

This term resembles, but is not equal to that represented
by diagram (4.3)a of Fig. 1(a) which itself adds to
hS/EE the quantity

p,, Pp, pp ~svp ~pe

4(KT)4 4, ~

which becomes

[p p, .~Op, ~pp, pvp, pv. .

4(XT)4

Q p. .~pp. ~pp. »p. Pv].

The second term in the above expression is approxi-
n1ately E times as large as the &st, since it has one

the net contribution will be zero. If the vertex is not a
triangle but a larger odd polygon, the same argument
holds. In the case that the vertex-polygon at the end of
the "stick" is even, then the situation is slightly more
complicated. In such a diagram Ltake (6-4)b in Fig. 1(d),
for example) we find that there is always at least one
odd-vertex. In this vertex the circulation can be taken
both clockwise and counterclockwise, which leads again
to cancellation.

Note that the above arguments are only valid for
articulation points. If we deal with odd vertices in

multiply connected diagrams such as (3-2) in Fig. 1(a)
or (5-2) in Fig. 1(b) the reversal of the cycle will affect
both vertices simultaneously and there will be no sign
change, hence no cancellation. The fact that the
articulation point is at the end of a "stick" is irrelevant;
for instance, (5-3)a in Fig. 2 is of the self-cancelling type
and so is any articulation point from which emanates
an odd number of bonds to one or more pieces of a
dlagrarl1.

The considerations are general. In CMN we can use
a much simpler rule. If gl&=0 we deal with a two-
dimensional spin hence all diagrams with odd vertices
are zero, which includes now for instance (3-2),
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C. Fourier Transform of Chain Diagram

We will begin by considering the fourth-order chain
diagram,

(5.8)Di ——-', N(g P,,'&P;a»)p Ij,p

Similarly, if we define

D~= ——', Q' P',"P,7 "pii'py' »p,

if we assume that the g factor is the same for all the
cerium ions. Utilizing Eqs. (5.2), (5.5), and (5.8), we
6nd that

D,= i2Np p-PP &(k=0)p»(k=0).
P* (k) P*&(k) P*'(k)

P(k) = P~*(k) P»(k) P"(k)
P**(k) P ~(k) P* (k)

(5.11)

These summations can then be interpreted as matrix
rnultiplications, and

D. Tensor Summation

Finally, one is faced with a multiple summation over
the Greek indices, which describe the tensorial character
of the interaction. (Compare Eqs. (4.4) and (4.7).jThis
step is greatly simplified by a procedure originally
introduced by Kramers and Wannier. " Consider
Pap(k) as a 3X3 matrix; this is

we can show that

D5 'Np ——IJp—p-&(k=0)p&'(k =0)pip(k =0)

P P(k)p»(k) P' (k)

=TrLP P(k)PP~(k) P~ (k)3

+Ny p Q Pg &P,,&'P, i' 'Ag" 0 0

+~Np pP Q P',"P;a"Pt 'P
j,k

=Tr 0 Xg" 0 =Q X;"(k), (5.12)

.0 0 A3".

The last two terms appear in the expression for D5 as
a consequence of resorting to unrestricted summations. wher there are m of the P(k) matrices under the sum-

For the sake of clarity in what follows we shall label mation. The X's are the diagonal elements of the matrix
P P(k) so we can rewrite Eq. (5.6) as follows:

Dg' Ny pP Q P;;——&P,P'P, iiP,
j, l

D,"=2', y Q P;i P;g 'Pi
j,k

32,V g'P, -pp; -pp, ;&I,-» (5.3')

and

These two terms resemble the contributions of diagrams
(5-3)a and (5-3)b, respectively, which are given by

LXi3(k)+l~g'(k)+X/(k)]dk. (5.13)
(2s )

We shall defer the explicit calculation of the X's until a
later section and now attempt to apply the prescription
of Kramers and Wannier to a calculation of the suscepti-
bility as represented by the chain diagrams. A glance at
Eq. (4.7), (5.8), and (5.11) will reveal that the (n+2) th
order contribution to the susceptibility, denoted X +2
can be expressed proportionately as

16)V Q P;; PP,7,P&pi,;& p, p;, (g 3'lb( ' ) x ap p a ppay(k 0)
~, v & u, P

and once again making use of unrestricted summations
we can write for diagram (5-3)a

32' p' Q P,,"Pp~pPP, ,a'

32N~a~8 P P, aPP. aPP .a5 (5 3~)

XP"(k =0) .P'P(k =0) . (5.14)

Suppose that B is the orthogonal transformation that
diagonalizes P, i.e.,

X=B 'P08,

where Po represents the 3X3 matrix, P P(k= 0) and

where the second term can be neglected, since it is of
the order 1/N of the first term, which in turn partially
cancels D~', leaving

0 0
X(0)= 0 X2 0

.0 0

—32.V
a, P, y, b yea

(p p'PP;, P~p P;( '). Proportionality (5.14) is then more simply expressed as

Similarly, (5-3)b and D,"combine to yield
gn+2 @@POPO ' ' PO

=ppBLX(0)j"B '. (5.15)

(p I
' 2 Pv'»i "Pi'")

a,P,y, 5 5&a j,k

"H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252
(&957).
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Therefore, we find the following series representing

(5.16)

Once X(0) and B are determined, one could then in-

spect each component of g for possible singularities. It
is more than likely that the component with the highest
singular temperature T, will determine the direction of
the magnetization as well as the critical temperature.
Below this temperature the moment method is no longer
valid.

It is generally assumed that the singularities in the
specific heat and the susceptibility coincide. Hence, a
knowledge of the specific-heat singularity (as found
from the entropy series) can be of assistance in deter-
mining the behavior of the susceptibility just above the
critical temperature.

E. Susceptibility in a Nonuniform Magnetic Field

Up to this point we have only considered the case of
a uniform magnetic held H acting on each magnetic ion.
It would be instructive to insert into the Hamiltonian a
nonuniform field H(r) given by

H'(r) =Q Hz'e'g' r =x,y, z (5.17) kx

where g is an arbitrary wave vector and H'(r) is
periodic with an as yet unspecified periodicity. If the
only nonvanishing Hz, in Eq. (5.18) were Ho' we
should have a uniform field, which has occupied our
attention to this point. We would emphasize the point
that Eq. (5.18) allows for the possibility of antiferro-
magnetic behavior below the transition temperature
using a staggered held, whereas the assumption that
only a uniform field is acting precludes any investigation
of the susceptibility not associated with the ferro-
magnetic state.

The pattern linked with antiferromagnetism is given

by Eq. (5.1) with three equal nonzero wave vectors:

It is evident that such an arrangement can only occur
in a cubic lattice.

If we imagine a "staggered field, " of periodicity g
acting on the sample, then Eq. (5.18) reduces to

Yl (m () v (~)
FIG. 3. (a) and (b) projected view of unit cell in two different

representations; (c) and (d) same in three-dimensional form. (e)
and (f) primitive vectors in the crystal and in k space.

TABLE I. Inhuence of c/a ratio on the lattice sums
with P(r/R) =1.

VI. PARAMETERS ASSOCIATED WITH CMN

The crystal structure of CMN is trigonal. Only the
cerium atoms need be considered as they are the sole
carriers of a magnetic moment, and so the lattice can
be described as follows: Imagine three sets of parallel
planes at a=0) 3cp and 3c each containing a triangular
array of atoms separated by a distance a. The relative
orientation is given in Figs. 3(a) and 3(b). An alternative
way to view this structure is shown in Figs. 3(c) and

H~(r)=H scag r (5.18)

(5.19)

To find the susceptibility for the chain diagrams under
these conditions we return to the previous section.
There is one significant difference: If the ends of the
chain are labeled i and k, then both Hz'(r, ) and Hz'(rl, )
explicitly enter the calculation at the outset. The rest
of the calculation proceeds as before with the result that

pcs
pwv

pay

(P~*)2

(Puv) 2

(pry) 2

(p**)3
Pxa (Pry)2
puu (p&u) 2

(puu) 3

1.73

0.72
0.72
0

19.08
19.08
15.15
49.89
44.82
4.15

90.56

1.57

0.70
0.70
0

22.84
22.84
18.94
56.18
56.29
1.58

110.88

1.41

0.49
0.49
0

28.70
28.70
24.73
59.60
69.25

—2.45
131.3

0
0
0

40.49
40.49
35.90
65.65
82.18

—3.22
151.0

10.5
10.5
10.5
10.5
10.5
10.5
3.0
3.0
3.0
3.0

1.225 Radius
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was constructed algebraically by looking for sets of
integers n; that fulfill the conditions

2k G+G'= 0, G= 2'(nia~*+n2as"+nsas*)

Fro. 4. Brillouin zone for CMN in actual proportions.

ag= 1/2v3

r r 0
as = 1/2v3, as-— —1/v3

2

4(a). Figure 3(a) represents one atom per unit cell,
inasmuch as each corner is shared by eight cells, and
further corresponds to a cube that is elongated along
the body diagonal. The actual value of c/a used in
the calculations was 1.572 with a being equal to
11.004A." Ratios 10% above and below 1.572 were
also utilized to study the inhuence of a lattice contrac-
tion or expansion, and the results can be seen in Table I.
If the lattice were cubic, there would be no contribution
to the dipole lattice sum for the usual spherical
boundary, as is well known from the Lorentz theory. '
This fact can be and was used as a test for the numerical
calculations on the computer. The results are in
Table I, the next to the last column. If we assume that
the nondipolar interaction between spins is indeed
small, and there are experiments to confirm this, one
could conceivably improve the crystal, from the
thermometric point of view, by introducing a me-
chanical deformation to make the crystal more cubic,
thereby lowering the critical temperature.

The choice of primitive lattice vectors a; is given in
Figs. 3(e) and 3(f) along with a;, the resulting primitive
lattice vectors in k space. If we use units such that
a= 1 (therefore c means c/a), the expressions are

for the vectors 6 closest to the origin. In general, there
are two possible types of Brillouin zones for the trigonal
structure depending on the "openness of the cone"
formed by the three primitive lattice vectors. In one
zone the cone is more "open" than a cube; in the other
it is more closed than a cube. For our case the primitive
lattice vectors are more closed than a cube, hence the
inverse lattice vectors are more open and we obtain a
Brillouin zone of the "Qat-top" type. '~ However, the
c/a ratio is not that much different from a cube, so the
figure was drawn to scale to show the actual shape of
the zone in Fig. 4.

Because of symmetry, it is only necessary to calculate
the integers, n;, for those faces in the octants k,)0,
k„)0, k.~& 0, and these faces correspond to the following
equations (using c/a= 1.577):

2k„/v3 —k,/c = 5.452,

k.+k„/VS+k, /c= 5.452,

2k„/~3+2k, /c= 9.242,

k, —k„/V3 —k,/c = 5.452,

k,+k„/43 —2k,/c =9.242,

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

k, = 5.977, (6.6)

k,= —5.977. (6.7)

The corresponding Miller indices are found in Table II.
One final parameter associated with CMN is needed
for the calculations. It is the g tensor which has been
measured by Cooke, Duffus and Wolf. "They give a
value of g&= 1.84 and g«~& 0.1. As a result, the matrix
P(k) can be diagonalized explicitly in accordance with
Eq. (5.12) to yield

) (k) ..=-;LJ'.*(k)+& "( ))
~ f49'**(k)-~""(k))'+P'*"(k))')'"

X(k) s
——0.

Our program used initially this formula, but was
later revised to do the three by three diagonalization.
This was done to study the inQuence of a small g, l,
which is of no importance as was shown in Ref. 7, but
also to be prepared to handle other compounds besides
CMN in the future.

0
ay*= 1/v3, as"= 1/&3, as*= -2/v3

.1/c . .1/c . . 1/c .
The I'OZ plane and the XOI' planes are reQection

planes, and there is, of course, a threefold rotation
possible around the s axis. The resulting Brillouin zone

'6 A. Zalkin, J. D. Forrester, and D. H. Templeton, J. Chem.
Phys. 39, 2881 (1963).

VII. CALCULATIONS AND CONCLUSIONS

A. Lattice Sum Computer Program

The computer programs were written in FQRT~N IV,
and all the lattice sums calculated were expressed in

"G. F. Koster, in Sot'id' State Physics, edited by F. Seitz and
D. Turnbull (Academic, New York, 1957), Vol. 5.

'A. H. Cooke, J. H. Dufus, and W. P. Wolf, Phil. Mag. 44,
623 (1953).



LOW —TEMPERATURE BEHAVIOR OF PURE ~ ~ ~

TABLE II. The corresponding Miller indices. TABLE IV. Influence of the function F (r/R) on
second-order lattice sums with c/u= 1.577.

S2

n3

(5.1) (5.2)

0 —1
0 0
1 0

(5.3) (5.4) (5.5) (5.6) (5.7)

—1 0 0 —1 1
—1 1 1 —1 1

0 0 1 —1 1

dimensionless units by taking the unit of length equal
to the lattice constant a. It must also be noted that
henceforth all lattice summations referred to make use
of a symbol I';, & which does not include the constants
fis and g~~ anymore. [See Eq. (7.1).$ The 6rst lattice
sums computed were the following:

p p. .xx p p. ,xy p p. .yy

1

1

W1
Ni

R
Outer
radius

5
5.5

10.0
10.5
5
5.5

p;(p@ )'

(Pxx}2

22.64
22.65
22.69
22.69
22.56
22.59

(Pyy) 2

22.64
22.65
22.69
22.69
22.56
22.59

early calculations. This function is of the form

(r I
F~ —=

~R exp[/I (Br'/R' 1)j+1—

(p*y)'

18.75
18.76
18.79
18.79
18.69
18.71

(7.2)

Pp;*P;, PP;; Pg* Pp; P,;

where the sums were taken over all values of i for a
fixed j, which meant that the origin of the coordinate
system was at the jth ion. The calculations were done
by summing the contributions to each lattice sum over
successive spherical shells where E., the radius of the
outermost shell, was some arbitrary multiple of a. The
problem of convergence of g P*' and Q P» arises
inasmuch as each of these sums is equal to the difference
of two separately divergent sums. For instance,

X'j'
Z P'**=2 —3 Z

i rig. ,5
(7.1)

Tanr. z III. Influence of the function F (r/R) on
erst-order lattice sums with c/g = 1.577.

R
Outer
radius

It is well known (cf. References 6 and 19) that, for large
values of R, the contribution of each shell to P P * or
to Q P» can be replaced by an integral over the shell
and, further, that this integral is equal to zero. There-
fore to insure convergence one only needs to have the
lattice sums taken over a sphere so large that the con-
tribution of the next shell be negligible (see Appendix
Ii). In actual practice, however, F(r/R), the weighting
function of Peverley and Meijer, "was utilized in the

where A and 8 are adjustable parameters. Peverley
and Meijer demonstrated by their computations that a
modl6ed sum)

did converge to the same limit as the sum without
F(r/R) and indeed did so at a faster rate. Our calcula-
tions seem to indicate that the limits were essentially
the same. This is illustrated in Table III. The effect of
the weighting function is not as pronounced in Table IV,
for it appears that P P' converges better than P P.
In Table V we tabulated some results for the lattice
sum of diagram (3-3) in Fig. 1 and various combinations
of different weighting factors were tried. By way of
explanation F1 is defined by Eq. (7.2) with r; substituted
for r, Ii2 has r;, and F3 uses r;; for r. No conclusions
concerning the effect of the weight factors can be drawn
from this table and in any event the length of computer
time for this lattice summation became prohibitive so
it was pursued no further. However, the results shown
in Table V did more or less corroborate the assumption
made in Sec. III that the lattice sum for Diagram (3-3)
would give a contribution of the order of E times as
large as diagram (3-2) in Fig. 1. With all the weighting

TABLE V. Inhuence of the function F(r/R) on
third-order lattice sums with 1;/a =1.577.

P;, Pg~&P, P&pf;&

1

1

Wi

5
5.5

10
10.5
5
5.5

0,6698
0.8308
0.6804
0.6874
0.6883
0.6913

0.6698
0.8308
0.6803
0.6873
0.6883
0.6912

' J. R. Peverley and P. H. E. Meijer, Phys. Status Solidi 23,
353 (1967).

Fls

all in
all in
all in
F3=1
F2=1
F3=1

R
Outer
radius

3.0
3.5
4.0
5.0

5.0

(Fax)3

54.22
55.89
56.86
57.68

57.86

(Fwv)3

107.8
109.7
110.6
111.4

111.6

54.82
SS.57
55.82
56.11

1.261 ~
1.748
2.114
2.388

56.19 2.433

Pxx(Pxy)2 Pyy (Pxy)2
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20—
/2

/0

/2

I

6
Kx

"2

5
IKl

20—

/2

/2
4.72

5
Ky

6
fK(

(c) (d)

-2

3,8 4.0
jKl

"3

(e)

FIG. 5. Fourier transform of the lattice sum for various directions in k space, from the origin to the zone boundary. Inserts
indicate the direction chosen. The g factors are not incorpoarted in the sum. Units are g=1 and c/g = I.572.

functions equal to unity and R= 10.5, we found

P (P;,**)'=2.347,

Q (P;,»)'= —3.5708,

whereas the values in Table V are at least an order of
magnitude greater. It must be pointed out that the c/a
ratio for Tables III—VI was 1.577, while Table I depicts
the influence of the c/u ratio on the lattice summations,
while the remaining tables use a value of 1.572 for c/a.
In Table VI we can note the following. First of all the
use of double precision in the computer program was not
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Kz

justified for the erst- drs - an second-order te
is a tained at R= 11

the sum for R=12 0
'

ris not even 1 r
it is again evident that P I"conver g f t th PP

T bl VII dan in this case better
en ropy is evident at
o resort to double reci

'

l tt' fo 'tho

unequal, and of cour
r wi out it the last two co columns were

ourse, this cannot be.

B. Fourier Transform Program

A modihed la ttice sum program furn
1 of k. LS Fi

to ff t th 1

1 o it t,
'

ec e solution of K . ~5
'n egration over the first

some known l
as ocaculate for

va ue of k and multi 1 it
, or example, I' *(k)' for

of volume in k spa
u ipy it by an element

space, and then sum the pro

11 t}1 tll 1 f
)one. quations (6.1~—6.

e va ue of k was in
er o save computer time the fi~~l runs were

i ed
e results are given in Table VIII

Precision

Single
Single
Single
Single
Double
Double
Double
Double
Double
Double

Single
Single
Single
Single
Double
Double
Double
Double
Double
Double

Outer
radius

10.0
10.5
11.0
11.5
10.0
10.5
11.0
12.0
13.0
14.0

10.0
10.5
11.0
11.5
10.0
10.5
11.0
12.0
13.0
14.0

(A) P;P;, &

0.67186
0.69484
0.68696
0.69101
0.67215
0.69519
0.68732
0.68282
0.68796
0.68638

(&) Z (pe"~)'

(Pzx) 2

22.824
22.825
22.825
22.825
22.840
22.841
22.842
22.843
22.844
22.845

puu

0.67780
0.69485
0.69137
0.69099
0.67814
0.69518
0.69183
0.68630
0.69069
0.68856

(P»)2
22.825
22.826
22.826
22.826
22.840
22.841
22.842
22.843
22.844
22.845

0
0
0
0
0
0
0
0
0
0

(Pay) 2

18.924
18.924
18,924
18.925
18.936
18.937
18.938
18.939
18.939
18.940

TABLE Vl. First- and second-ordeTABLE con -order lattice sums
c g= . 18 aiid F(r/R)=1.
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TABLE VII. Third-order entropy correction and lattice sums in double precision with c/a= 1,5718 and Ii (r/R) =1.

Entropy
correction

(10 ')

6.7837
6.9020
6.9367

R
Outer
radius P (Pxz)3

56.2192
58.0373
58.4352

Z, (Pyy)'

110.804
112.184
112.677

g (P~y) 2pyy

1.8509
2.4083
2.4819

QPsypszPsy

56.1377
56.4974
56.7078

gP~ P yP*y

56.1377
56.4974
56.7078

for different radii, different numbers of points in k space,
with and without double precision. The best results
obtained are displayed in Table IX. The first column is
the number of bonds n; the second and third are the
Fourier integrals of both eigenvalues:

(2s)'
X;-dk,

The last column is the combined result for the coeK-
cients of T "in the entropy expansion, with T expressed
in mK. For testing, n=1 is also computed. Only for
n= 2,3 has the direct lattice sum been determined. The
c/tt ratio equals 1.5718 and VE, the volume element
in k space, equals Ak, hk„hk„where

I;= —Q X;"Ak,Ak„hk„ i=1,2
2(2~)'3 "~

where ip denotes inside parallelepiped.
The convergence of the Fourier transform of the

lattice sum is due to two entirely different processes.
One dominates in the region of small k and the other in
the region of large k. In the region of small k the con-
vergence is only conditional. In the region of large k the

aS2
(10 6)

R
Outer
radius

(A)

No. of
points in
parallel-
epiped

Single Precision

J (&+u) d& J'(~'+u') d&
over over

parallel- parallel-
epiped epiped

ZS3
(10~)

1.9958
2.9996
3.1866
3.1065
3.1420
2.0460
2.9380
3.3338
3.1857
3.1838
3.1420
3.1618
3.1712
3.1838
3.1930

3
3
3
3
3
5
5
5
5
5
3

4.5
5
5.5

27
135
357

1020
2223

27
135
357

1020
2223
2223
2223
2223
2223
2223

-0.94527
-0.33758
—0.21431

0,00349
0.00897

—0,89918
—0.32535

0.19256
0.04200
0.02963
0.00897
0.01634
0.02297
0.02963
0.03401

52.2736
78.5645
83.4621
81.3643
82.2945
53.5884
76.9521
87.3178
83.4379
83.3886
82.2945
82.8116
83.0601
83.3886
83.6296

—0.3919
5.9456
8.4741
6.7849
6.8064

—0.2368
5.4640
8.6907
7.3824
7.2828
6.8064
7.0626
7.1948
7.2828
7.3242

3.1069
3.3345
3.1861

(8) Double precision

1010 0.00345 81.3739
350 0.19247 87.3362

1010 0.04191 83.4491

6.7861
8.6998
7.3856

TABLE VIII. AS2 and b,S3, the second- and third-order entropy
contributions from the Fourier integrals of the ring diagrams, with
c/a = 1.5718.

convergence is the result of an interference of the
trigonometric part of the Fourier transform, similar to
the process in certain optical problems. Th question is,
is k large or small compared to what? The sample size
and the range of the lattice sum (the range is the radius
at which the distribution of points becomes virtually
continuous and the angular summation starts to average
out) are the only two lengths available.

The point we are interested in, the maximum of
P(k), is probably the point where our type of con-
vergence goes over into the other type. The difficulties
are aggravated by the fact that the summation is done
on a finite sample rather than on an infinite sample and
consequently the maximum of P(k) may be influenced

by the size of the sample. This will influence primarily
the position of the maximum, rather than the height.

C. Discussion of Results and Conclusions

l. EntroPy

C2, the second-order correction in the entropy, was
found from the direct lattice summation. It is the
coefficient of T ' in the entropy series, and is presented
in Table IV. We concluded that our best value for C2 is

C2= 3.17 mK',

where we made use of the following parameters:

a= 11.004 A, g= 1.8286, c/tt= 1.572.

Hudson, Kaeser, and Radford" determined that

C2-——3.15 mK'.

Using values of a= 10.92 A; g= 1.84; c/a= 1.577,
Daniels' calculated that

C2= 3.30 mK'.

The small differences in the ratio c/a are of no
consequence, but changes in the values of g and a do
turn out to be important.

We also utilized the Fourier transform technique to
calculate C2 and arrived at a value of 3.19 mK' for it.
This was done to test the accuracy of the Fourier
transform method, and the agreement was quite
satisfactory, as the two values of C2 differed by less
than 1%%uo.

R. P. Hudson, R. S. Kaeser, and H. E.Radford, in Proceedings
of the Seventh International Conference on Low Tenzperatlre Physics,
Toronto, 1960 iUniversity oi Toronto Press, Toronto, 1961},p. 100.
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TABLE IX. Contributions to the entropy from the ring diagrams.

2

3

5
6
7

9
10

5.1789
5.2212 X10'
5.8122 X102

7-3909X10'
1 0060X10'
1.4566 X10'
2 2061 X10'
3.4680 X10s
5.6147X109

9 3111X10'0

—5.1449
3.1411X10'

—2.1306X10'
1.5460 X10'

—1.1737X104

9.204 X104
—7.396 X10'

6.058 X10'
—7.037 X10'

4.240 X108

0.03401
8.3630X10'
3.6816X10'
8.9369X10'
8.8864 X104
1.5487 X10'
2.1321X10'
3.5286 X10s
5 5643 X101'
9.3535X10'

Same by
direct P

0.00
82.96

348.68

(I +I ) ( $)a+i
g'va'&o' "

(x
2N j 4%a'

~ ~ ~

—3.193
+7.324
—7.824X 101

+3.240 X10'
—2.298 X103
+1.272 X10'
—8.398X104

+5 273 X10'
—3.497 X10'

+ 2 P'~'P' ( '"t "+t;u')
C~, the third-order coef5cient, was also determined (4.2)a: 3 P'P, , ~P;; e(lj„ tJ„+tk, p, )

by the two methods, and the result of the direct lattice
summation was

C3= —6.94 mK'.

Using the Fourier transform, the third-order correction
turned out to be equal to —7.32 mK', so these two
values of C3 differed by about 5%.

It is not practical to attempt higher-order corrections
by means of the direct lattice summation in view of the
computer time required. As a consequence, only the
Fourier transform approach was utilized for the fourth-
and higher-order corrections. We found that

C4= 78.2 mK4.

The value of this coefficient is somewhat uncertain for
we estimated diagrams (4-2) and (4-3)b were of no
importance and determined (4-3)a to yield a 10%
correction.

As far as higher-order corrections are concerned, we
consider them as too unreliable to quote at present.

Z. SuscePti bitty

P e(k) attains its minimum value in a "staggered
field" at k =1.225, k„=0, k.=0 (a point which is
degenerate with two other points in the XOZ plane).
This minimum, P»(k) = —8.888 in units of a= 1 with
c/a= 1.5718, and it results in a Curie-Weiss 6 such that

6=3.474 mK.
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+2 2 P''P''(t" I "+t 't"),

(4.2)b:

(5.2):

~ ij ~ ij pi Pj &abp&pyr p

D . .aP D ..8y .p

2 Lp'~'Pv"'Pe'(u"t ~'+t "t ~') j,

(5.3)c:

(5.3)d:

(5.3)e:

Z P~j Pjk Pjk "t'ai tkk &pvg&Pllvy

zero,

zero,

(5 3)f: 2 e-~ P' "'P"'P' "'( "t "+t 't ')
+p"'p"'p'~"'(t "u'e+t'et") .

The symbol e is the Levi-Civita symbol.

APPENDIX B: INTEGRAL APPROXIMATION

(5.3)a: Q $P; ~~P ke'Pk'&tk tk &

+p, ,app byp pa+ p+ 5.
+Pe ~P;ke&pk teak Ijk&j

+P Par"ePy ke~Pk'~ (Ikl Ik"'+tkg tky +tkk tkk )j,
(5.3)b: Q (2P;, ~p, k' P;ke tk,'Ik,'

+p app „Byp „by~. .a~,p.)

We would like to examine the following integral
We would like to thank Dr. R. P. Hudson for his a roximatjon.

encouragement and criticism.
n(a)

APPENDIX A CONTRIBUTIONS
TO SUSCEPTIBILITY

The explicit contributions for the fourth and fifth-
order diagrams in the susceptibility are

lim P P**(r;,) cos(k r) = P P**(r,,) cos(k r,,)

00j— P**(r) cos(k r)dr, (B1)
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one ion on thevolume occupied y

h bleft hand side o t e a
equal to P**(k) which explains e

' '
r

this Appendix.
ith P*'(r) is given by

P' (r) = (3 sin'0 cos'p —1)/r'.

1n in terms of sphericaEquation (82) can be rewritten in
harmonics as

three successive integ rations byp " ' g
artsonthe6rsttermontherig t- an

the integral as follows:we can express t e in

3 "sinkr dr sinkr " coskr

(kr)' ii 2(kr)' ii

"coskr drsinkr " 1

2kr g 2

P*'(r) = 3(2ir/15) "'
yp yp Therefore,

well-known relations will beThe following three we-
utlllze ln'1 d

'
this development:

oo l

e"'=4ir P Q i'j i(kr)
i=O m=—t

(89
inkR 1 coskr dr

2 g2kR

3 sinkr dr sinkR c&skR

k' e r' (kR)' 2(kR)'

xyi"*(&~,p~)yi (&„q, , (84)

*y ~
' dQ= b~~)o)),

cos(k r) =-', (e" +e-" (8|') coskr drsinkr dr

k g r'

sinkR
(810)

he s herica esse13 1 function; 81, and q~ji( ) p
an les specifying t e or'

1 „,.;„f.„erform a simi ar
fh 1in the evaluation o

orthonormality r
Eq. (85), enables us to write t a

arts ena e us to write the lastTwo integrations by p
term in Eq. (88) as

3 coskR 3 sinkR

2kR

—3 "coskr dr

2(kR)'

b arts on the second term on0 1 one integration by parts on n
h

'
. 87;,.„, .(85) the righ ht-hand side of Eq. ( )

'

2'1
P*'(r) cos(k r) dr

3 "coskr dr
+

2 g
(811)

— 2~ 1S ~~2=4ir (4ir/5)"'y '(O, q ) —3(2m/1&

x(y~'(&a, q i)+y~'*(0~, q i)])
1 j (kr)dX—

a

2 —1= —[3 cos Og—'0 —1+3 sin Oi(2 sin pi, —)]
V

"ji(kr)dr

9 —811), and then substitute the
htth it l(BS), we discover t aresult into Eq.

cancel, and therefore,

"j~(kr) dr sinkR coskR

r (kR)' (kR)'
(812)

in, ' ' ' E s. (812) and. (87) in Eq. (81),Finally, utilizing Eqs.
(87) we have

e ~

The integral in Eq. (87) is given by

1 sinkr dr"j~(kr)dr 3 sinkr dr

r' k r'r R

3 "coskr dr

n(R)
P* (r,,) cos(k. r,,)1' P P**(r@)cos(k. rg ——

n ~no

+—L3 cos'Oi—'0 —1+3 sin'ei, (2 sin'yi, —1)]
V

slllkR co

(kR) ' (kR) '


