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temperature variation of the magneto-elastic energy is
higher in the ferromagnetic state than in the helical
state. Noteworthy is the minimum of the magneto-
elastic energy in the helical state, at 95'K. At this
temperature the volume compressibility, Fig. 4, is at
its minimal value.
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The spin response functions for the electronic and nuclear spins in a cubic antiferromagnet are obtained
in the random-phase approximation. These response functions are then used to investigate the coupled
electronic-spin —nuclear-spin —phonon system. Predicted changes in phonon velocity and attenuation in
RbMnF3 due to interaction with electronic and nuclear spin waves are obtained. Some of these predictions
agree with previous experiments and theory, and others can be checked by further experiments.

I. INTRODUCTION

HE coupled system of electronic and nuclear
spins'' and its interaction with acoustic pho-

nons'4 in an antiferromagnet with cubic symmetry have
been of some interest lately. It is the purpose of this
paper to treat this coupled problem consistently from a
unified point of view within the random-phase approxi-
mation (RPA) and, in particular, to obtain detailed pre-
dictions for RbMnF3. Because of the complicated geom-
etry of the equilibrium magnetization of a cubic anti-
ferromagnet, this treatment is limited to configurations
in which an external magnetic field lies in a restricted
range of a (110}plane. As will be seen, because of the
relatively strong coupling between the electronic and
nuclear spins in RbMnF3, the combined system must
be taken into account in order to obtain correct results
for the effects of the antiferromagnetism on the phonons.

The Hamiltonian used to describe the coupled elec-
tronic and nuclear spins is

H. = ', P J(, ')S()—S(')—QAI() S()
u, a'

E,=-',E(S„'+S„,'+S,,') (1.2)

per site. The subscript c denotes the usual coordinate
system coincident with the cubic axes of the crystal.

The spins and phonons interact through the single-
ion magnetostriction Hamiltonian H.~ which, for a
lattice with cubic symmetry, takes the form

+(cyclic permutations) }+G44P (e,„(n)

XLS (n)S„(n)+S„(n)S.(n)]

+(cyclic permutations) }. (1.3)

The strain componets e;;(n) can be expressed in terms
of the phonon displacement operation U;(n) by the
equation

for antiferromagnetic coupling, Ho is a uniform applied
magnetic Geld and p, (p„) is the electronic (nuclear)
magnetic moment. H is a term describing the elec-
tronic-spin anisotropy energy which, for a cubic system,
1s

where S(~) and I(n) are the electronic- and nuclear-spin
operators, respectively, at the magnetic site n. The ex-
change interaction is written so that J(o.,n ) is positive

*Work supported in part by National Science Foundation
under Grant No. GP-9573.' W. J. Ince, Phys. Rev. 184, 574 (1969).

'L. W. Hinderks and P. M. Richards, Phys. Rev. 183, 575
(1969).' R. L. Melcher and D. I. Bolef, Phys. Rev. 180, 491 (1969).
Hereafter referred to as M 8z B.

4 A. Platzker and F. R. Morganthaler, Phys. Rev. Letters 22,
1051 (1969).

(1.4)

The method of attacking the problem is to first cal-
culate the electronic-spin correlation function using
thermodynamic Green's functions and then to use it to
obtain predictions about various experiments. Section
II contains a discussion of the model, the approxima-
tions employed, and the use of the spin correlation
functions. In order (it is hoped) to make the paper more
useful to a variety of readers, formulas for the spin
correlation functions are derived in Appendix A, while
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(-,'Gu)'So'/M =be'pe/pMo,

G44'So'/M =bo'p. /pro
(1.6)

Here, 3f is the mass of a magnetic cell, p is the density
of the system, and Mp is the magnetic moment per unit
volume of the system.

II. MODEL

The electronic-spin correlation function or dynamic
susceptibility can be defined as

Qo

D(nn', (o) = — dt e'"'( [S,(n, t),5,( a', 0)]),
It o (2.1)

s, (Q, t) =S,(a, t) —&5'(A)),

where the angular brackets ( ) denote that the ex-
pectation value is to be taken over a thermal ensemble.
This complex susceptibility can be thought of as giving
the response of 5,(a.) to a perturbation on 5,(n') with a
frequency co. It is directly related to the absorption of
electromagnetic waves by the spin system, and it can
be used in approximations to obtain the effects of the
spins on the phonons.

It is also convenient to Fourier-transform D(an', ~)
in space. Since there are two magnetic sublattices, a unit
cell of the system contains two magnetic ions. Thus, the
position index n is a combination of a vector index 1

denoting the unit cell and an index u denoting the posi-
tion of the ion within the unit cell. The index a takes the
values 1 and 2 corresponding to the two magnetic sub-

The notation in this paper, in so far as is possible, is like that
of Refs. 1 and 3. Values for the parameters in RbMnF3 are given
in these references.

the magnetoelastic coupling is treated in Appendix B.
In Sec. III, the correlation functions are discussed for
values of the parameters appropriate to RbMnF3. Also,
some of the effects of the antiferromagnetism on acoustic
phonon velocity and attenuation are considered with a
comparison to experiment.

In order to make contact with other work, 5 the
following definitions are made:

So=
o (St+So), Io =

o (Ii+Io),
h&A p eHA 3 ~~p y

'IIE peHE ~pJp y

(1 3)
hM~@ =IJ,&H~@=c41p, p, &Hp = hoop,

X,=p, '/Jo, A(o~ =p,Hv ASo, ——

where S~ (I~) and So (Io) are the average electronic
(nuclear) spins per site on the two magnetic sublattices
and Jo is the sum of J (u,a') over all sites a!' of sublattice 2
with n fixed at a site of sublattice 1. The magnetic sites
form a simple cubic lattice with nearest neighbors be-
longing to different sublattices. The microscopic con-
stants G;; can be related to the phenomenological
magneto-elastic coupling constants b, of MRB through
the equations

lattices. Since the system possess translational sym-
metry, D;, (a&n&) can be Fourier-transformed as

D,, (agao 1$ lo) =1V p D;;(aza2, q)e'o & '-'», (2.2)

where 2V is the number of unit cells in the crystal and
the summation is over all values of g in the first Bril-
louin zone.

This treatment of the spin correlation functions is
restricted to cases where Ho lies in the (1 1 0) plane be-
tween the [001) and [110]axes. Further, P, the angle
between Ho and the [001)axis, is restricted to the range
from 0 to arcsin —,

' and the point f= '7r. —

First consider the case where 0(P(arcsin —„which
shall be called case A. It is convenient to work in the co-
ordinate system defined by the equations

x = (x,+y,)/K2, z =z„
y = (y, —x,)/K2.

(2.3)

The lowest-energy solution of the above equations is the
one which minimizes

~ g ——,'~
~

.
It is also convenient to introduce the following co-

ordinate systems, one for each magnetic sublattice,
denoted by a bar:

x(a) = [S,(a)x S.(a)z)/S(a), —
5'(a) =y,
z(a) =[5.(a)x+5.(a)z)/S(a),

(2 5)

where x, y, and z refer to Eqs. (2.3).
In these coordinate systems, z(a) points along the

direction of magnetization of the sublattice a, and the
common y direction is perpendicular to both sublattice
magnetizations. The utility of this transform is that
D,,(aa, q, &u) is zero if i is z(a) or if j is z(a ).

Case 8, where if= o7r, is somewhat simpler because
~5&~ is equal to ~5&~ and Ho is perpendicular to S&—So.
In the coordinate system dined by

x = (—qx, +gy, +z,)/v3,

y = (x,—y, +2gz, )/Q6,
z = (x,+y,)/&2,

(2.6)

where z is along the [110)axis and is parallel to Ho, x is

This is the coordinate system used in Appendix A in
which both sublattice magnetizations lie in the x-s
plane. The equilibrium configuration for the spins in
this case has been worked out by Ince. ' Hp makes
an angle P with the z or [001) axis, and the sublattice
spins S~ and So make angles of B t and B—+7r+t,
respectively, with the s axis. The equilibrium values for
0 and t are given by the formulas

Hp'(1 n) sfn2—$+3HsH~ sin2B(1 —
2 sin'B),

t =Ho sing/2Hgg, $=B iP, n =—x„/X, , (2.4)

5,—S,=X„Ho cosP/p, .
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along the [—q q 1) axis which is parallel to Si—Sp,
and y is along the [1 —1 2p) axis which is perpen-
dicular to S& and S2. The quantity p takes on the
values +1 and —1. The sublattice spins Si and Sp
make angles of t and x —t, respectively, with the x axis,
and the equilibrium value for t is

&= Hp/2Hz. (2.7)

The energies associated with the two values of q are
degenerate. Equations (2.5) can also be used to define
the bar coordinate systems in case B, where the x, y, s
system is now given by Eqs. (2.6).

In Appendix A, equations for the electronic-spin cor-
relation functions D;; (a a', q,or) are obtained and solved.
The Hamiltonian given by Eq. (1.1) is used together
with the RPA for all terms except the H term, which is
treated semiclassically. For small values of g, the
magn. etoelastic coupling given by Eq. (1.3) will have a
negligible effect on D;,(a a', q, or) because the coupling is
a deformation potential. On the other hand, this cou-
pling is responsible for the changes in the phonon modes
due to the antiferromagnetism, as is derived in Appendix
B.The reason why the nuclear-spin modes couple to the
phonons in this scheme is that they appear in the elec-
tronic-spion response function. This is further discussed
in Sec. III.

III. RESULTS

D;g(aa, q,or) =Dg;(aa, q, or) = (or,+' —0 ')F+(or)

+(0 ' —or, ')F (or),

Dgg(aa, q or) = —Dgg(aa, q, or) = (or ~' —0+')F+(or)
+(0+'—.-')F-( ),

D;g(aa, q,or) =D„-;(aa,q,or) = D;g(aa, q,or)—
= —Dg;(aa, q,or)

2i =pocroorsg[F+(or) —F (or)),

F+(~)= [Sp~z/&(~.+'—~.-'))[(~'—~.~') '

+(2~zan '~zz/~4g') (~' or.p') '), —
where

(3.1)

0+' ——op'(2 sin'Q —1)+2orz[orzz+-,'or&f(8)+orzQ (q) ),
0 '=orpP(sin'P 1)+2orz[—or~z+porgg(8) jorzQ(q)),

or,~'=-', {0+'+0 '+4orp' cos'y (3.2)
&[(0 '+0 '+4oro'cos'y)' —40 '0 )'r )

orny =orv [1 (2orzorzz/ore~ ))—

Although the Appendixes contain expressions for the
spin correlation functions at arbitrary temperatures,
the results in this section are restricted to situations in
which X„ is unimportant (that is, to low enough tem-
peratures so that (x„/x,) is nearly zero or to large
enough H p, so that cosP is nearly zero). Neglecting
terms of order (orp/orz)', (orzz+or~)/orz, and 'o/rz

orz(or~+orrpz) compared to 1, the electronic-spin cor-
relation fundtions for case A can be written as

The g dependence of these quantities is contained in

Q(q) which, with the quantities f(8) and g(8) are de-
fined by Eq. (A22). As is expressed by Eq. (A14),
D,;(a a', q, or) means that z is z(a) and j is j(a'). The
equations for the spin correlation function in case 8
are also given by Eqs. (3.1) and (3.2), but with
8=$=-'rr.

Except for the q dependence of the modes, Eqs. (3.2)
are the same as derived by others. ' All these modes have
also been observed' electromagnetically in RbMnFS.
On the other hand, the present treatment also yields
the spectral weights of the modes in all directions. Thus,
one can see that when P is —,'rr, or,+——0+ and that the
electronic and nuclear modes labeled plus depend on Ho
and can be excited only by a spin perturbation parallel
to Hp, while the modes labeled minus do not depend on
Ho and can only be excited by spin perturbation per-
pendicular to Ho, Sq, and S2.8 One can also calculate
50 and X» within the RPA by using these functions. '

In Appendix B, some of the effects of the antiferro-
magnetism on the phonon spectrum are derived. A
convenient way of expressing these results is through
the equation

or'=or pP(qX)+31 'SpP P —{C;(a)D.-;(aa', q,M) C,(a')
a, a'

+Cg(a)Dg g(aa', q, or) Cg(a') ), (3.3)

where co and g are the frequency and wave vector of the
phonons, M is the mass of a magnetic cell, and orp(q, X)
is the frequency of the phonons in the branch X in the
absence of the antiferromagnetism. The C's for cases
A and 8 are given by the equations

C;(a) = pG [rSi'*(a)S,(a)/S'(a)5(e, q,+egqg 2e,q,)—
+G«{LS.(a)S.(a)/S'( ))(e*q.+e.q*)

+LS '(a) —S.'(a))/~S'(a)
&& (q,e„+q„e,+q,e,+q,e,)),

Cg(a) = pG»[S (a)/S(a))(qgeg —q*e )
+G44[S.(a)/v2S(a))(q, e„+q„e. q,e, q—,e„),—

(3.4a)

for case A and

C*(a) a2-G»n=p(6'")(q*e* q.e.)—
+(G44/6'I')( q,e„q„e,—q,e,—q,e,)—, —

(3.4b)
C„-(a)=$G»q(2' '/9' ') (2q,e, q,e, q—„e„)—

+[G44/(1g) 'I')[2g(q„e.yq. e„)
+(q,e„+q„e,—q,e,—q,e,))

See Ref. 1 and references therein.
7 D. T. Teaney, M. J. I reiser, and R. W. H. Stevenson, Phys.

Rev. Letters 9, 212 (1962); M. J. Freiser, P. E. Seiden, and D. T.
Teaney, ibid. 7, 293 (1963); A. J. Heeger and D. T. Teaney, J.
Appl. Phys. 35, 846 (1964).

8 This differs, however, from notation used in Ref. 7.

for case B. In these equations, e; and q; refer to the
phonon polarization and wave vector along the cubic
x, y, and s axes of the crystal, and S,(a) and S,(a) refer



COUPLED ELECTRONIC SPINS, NUCLEAR SPINS,

TAsLE I. CoeKcients C,' and C„' to be used for cases A and B in Eq. (3.5). The vector q
is the phonon wave vector and e is the polarization vector of the mode.

Elastic Mode

1[001]
][100]
I[110]
I[1&0]

qll[»0], e ll[»0]
q|l [I10],e II[001]

C 2 for case A

9G11 sin 8 cosmic

(9/4) Gus sin'8 cos'8
(~~G&i+G44) sm 8 cos 8

$(G11—G44) Sin g CoS g

0
G&4' (cos'8 —sin'8)'

C~' for case A

0
(9/4)GqP sin'8

0
0

(9/4) GqP sin'8

0

C ' for case 8
0

gG11'

0
0

$G112
-'G44'

C„' for case 8
2G112

~~G112

(2/9) (Gi, —G44)'

(2/9) (kG11+G44)'
0
0

to the components of sublattice spin in the coordinate
systems given by Eqs. (2.3) and (2.6). Since these
equations are somewhat ponderous, the results are
tabulated in Table I in the form

cp'=cpp'(qX)+4M 'g'Sp

X$C,'D;;(aa, q, tp)+C„'Dgg(aa, q, oi)j (3.5)

for a few elastic modes. For acoustic phonons in
RbMnF3 and frequencies less than or of the order of
tp„~ (less than 10" sec '), the q dependence of the D's
is negligible and is henceforth neglected.

If D,,(aa', 0,&u) in Eq. (3.3) is approximated by its
zero frequency limit, our results are equivalent to the
theoretically results in MRB' and in M' for case A.
Their results were derived by neglecting the dynamic
coupling between the electronic and nuclear spins (the
D term in Eq. (A9) which is correct (except for very
small correction terms) for cp =0.

In spite of the fact that our results are essentially
equivalent in case A, a couple of points are worth
mentioning. First, when Hp is parallel to L001], cosP
=cosg approaches zero sharply but continuously as
Hp approaches the spin-flop field, ,H=(3H sH)~' ', I

from below. Since co„+ is equal to zero when H=H„
the zero-frequency limit is not appropriate near this
point. Because of this, the fact that higher-order terms
have been neglected, and the fact that a small error in

P can have a large effect, the equations are somewhat
unreliable for /=0 in small neighborhood of Hp near
H, . Second, the theory and experiments agree only for
angles f up to about 40' instead of arcsinss =54.7'. The
reason for this is presumably that at least part of the
sublattice magnetization is somewhat different from
what has been used here.

Our case B is in agreement with the experimental

findings of M but is in disagreement with his theoretical
findings. The reason for this is almost certainly an
error in the equilibrium magnetization used in M.

In addition to being in essential agreement with

low-frequency (cp((pp„~) measurements, Eq. (3.3) can
also be checked against acoustic measurements at +
near co„' " or co,+. Since the theory used includes no

R. L. Melcher, Ph.D. thesis, Washington University, 1968
(unpublished). Hereafter referred to as M.

'0 The nuclear acoustic resonance for Mn in RbMnF~ has been

mechanism for damping or line broadening, the phonon
absorption derived from the imaginary part of Eq. (3.3)
is a sum of 8 functions. This is cleariy unrealistic and
may be remedied phenomenologically by replacing
a&+sr ', where r is a phenomenological relaxation
time. On the other hand, the change in phonon velocity
near, but not on, resonance is relatively insensitive to
~ if ore))1.

Preliminary investigations" indicate that the changes
in the phonon velocity near the nuclear resonance fre-
quencies predicted by Eq. (3.3) are correct to within
experimental error. A value of bi= 2.5&&10s erg/cm and
the values used by Ince' for the quantities in Eqs. (1.5)
where used in this comparison. These values of the
parameters in Eq. (3.3) also give good agreement with
the work of MRB and M. The reason for the differ-
ence in the value for bj used here and in the value used
in MkB is that we have used Ince's value for H~ and
they used a somewhat lower value. Except for Hp near
H„as discussed above, their measurements" depend
only on the ratio his/Hz.

Finally, a brief summary of the approximations used
in Appendix 3 to obtain Eq. (3.3) from the electronic-
spin correlation functions is in order. These approxi-
mations are essentially the ones used by Bennett and
Pytte'4 in a higher-temperature regime. First, only the
lowest-order perturbation theory correction to the
phonons through the magneto-elastic coupling is used.
In view of the smallness of the coupling involved, this
should be a good approximation. Next, a four-spin cor-
relation function is approximated by the sum of all
possible factorizations in terms of second-order (or
less) correlation functions. This is the most shaky ap-
proximation used in the Appendix. Finally, only those
terms that involved only one time-dependent correla-
tion function were kept in obtaining Eq. (3.3). Clearly,
only those terms contribute significantly for frequencies
near co,~ and ~„~.The contribution from the remaining
terms at low frequencies and at the sums and differences

reported by J. B. Merry and D. I. Bolef, Phys. Rev. Letters 23,
126 (1969).

"The mechanism coupling the nuclear' spins and phonons used
here is essentially that used for a uniaxial antiferromagnet by S. D.
Silverstein, Phys. Rev. 132, 997 (1963)."J.B. Merry and D. I. Bolef (private communication).

"The diAerences in the values for the anisotropy Geld is pre-
sumably due to differences in the crystals.

"H. S. Bennett and E. Pytte, Phys. Rev. 155, 553 (1967).
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of p)„+(q), p)„(q), ep,+(q), and &p, (q) are now under One thus obtains
investigation.

aD, i(nt, n't')
+i 2 e')p{p~[Hp)+H)' (n)]Dp~(«)u t )APPENDIX A jk

In this Appendix, the equations of motion for the
electronic-spin correlations are obtained and solved.
Units where A = 1 are used, but A is reinserted when the
formulas are used in Sec. II.

The contribution to (BS,/Bt) from the anisotropy
energy is treated semiclassically by quantizing the
torque term

+P J(n, n)[5, (a)Dp((nt, n't') —5,(n)Dp)(nt, n't')]

+A [I,(n)Dpi(nt, n't') —5;(n)Dg)(nt, n't')])

=i Q e(, 5(n)8(n, n')8(t —t') (AS)

ejD, i(nt, u't')
(A1) i +i Q e,)p([t),„Hp)+AS;(n)]Dk)(nt, n't')

Bt j,k
—I,(a)Dp((nt, n't')) =0. (A6)

where the Latin subscripts denote Cartesian directions.
The operation 5 denotes that 5 goes into 5+85 and

that only erst-order terms in 65 are kept. The result
is conveniently written in the form of a magnetic 6eld
contribution as

It is convenient to Fourier-transform these equations
in both space and time. The time transform is the usual
one employed with thermodynamic Green's functions:

D(pp, ) = D(t) e'""'dt
) (A7)

(
85;

= —Q e);pt)eH) &Sa)
8t

(A2)

85,(n)
i — = i Q e;)):{—p, [Hp)+H, ,'(n)]5), (u)

j,k

+Q (J,n)n5( ))n5( ))nAI ( ))5n—( p))n, (A3)

BI;(n)
i =i P e;)7)[ tJ' H p)'I))(u) —A 5)(a)—I))(a)],

where e;;k is the usual antisyrnmetric tensor. The term is

quantized by replacing 85 with the operator 5 and re-

placing the rest of the 5's by their thermal averages.
By including the rest of the Hamiltonian given by
Eq. (1.1), one finds that the operator equations of
motion for 5 and I are

where p)„ is (7rv/ iP) and the —integral runs from 0 to
iP —Here. , P is 1/kT, and )) is an even integer. The

retarded Green's function may be obtained by the
prescription

D(pp) = lim D(p)„=p)lie).
@~0+

(AS)

p)D, &(aa', q,p))+i P e;,p[B;(a)D&)(aa', q,~)
j', k

Using this and the spatial transform defined by Eq.
(2.2), one obtains the equations

p)D'l(aa, q,p))+i P e' [H7),;(a,q)D))&(aa', q, p&)

j,k

+J(aa,q)S, (a)Dp&(aa', q, p)) —AS&(a)D&((aa', q, pp)]

=i P e;~;5,(a) b(a, a'), (A9)

AI)(a)DI, &(aa', q, p&)] =—0, (A10)where Ho; is the jth component of Ho.
In order to obtain the electronic-spin correlation where a is 1 (or 2) if a is 2 (or 1), S(a) ancl I(a) are the

functions defined by Eq. (1.3), the following definitions thermal averages of the electronic and nuclear spins on
are made: the sublattice a,

"
and

D,,(nt, n't') = —i(T(5,(nt) S;(n t'))),
D;;(nt, n't') = —i(T(I;(nt) 5;(n't')) ),

where T denotes that the bracketed operators are time
ordered, 5 is defined in Eq. (2.1), and I is I (I).In-
the RPA, expectation values of a product of three
operators are approximated as follows:

. (A B C) =(A B)(C)+(A C)(B)
+(B C&(»+(»(B)(C&.

B;( )=tJ,„Ho;+AS;( ). (A12)

It is convenient to first solve these equation by
neglecting the D term in Eq. (A9). Using the easily
verified facts that

Q 5;(a)D;,(aa') =P D,,(aa')S, (a') =0

H;, (a,q) =p.[H; (a)+H p;] J. (aa,0)S;(a)—
[J(aa,0) J(aa,q)]S,(a)—+AI, (a),—(A11)
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D') («') =D'(.),)(")(«') . (A14)

The indexes ti and v take on the values +1 and —1.
After some straightforward algebra, one obtains the

following formulas:

D„„(aa)=5) '( —vS(a) X)/(p+Q(pS(a)+K-(a) S(a)]
X LCi(u)((pS(a) —vRv(a) S(a))
—Cp(a)v J(aa,q) S(a) S(u)]/S(a)(p

+[J(au, q)S(a)/(d]

XLCp(u)((dS(a) —vR„(a) S(a))
—Ci(a)vJ(ua, (I)S(a) S(a)]},

D„,(ua) =n—'( Lti(pS(u)+x„-(u) S(u)]
X [C&(u)((dS(a) —vÃv(a) S(a))
—vCi(a) J(aa, q) S(a) S(a)]/p)S(u)

+LJ(aa q)S(u)/~]
X [Ci(u)((dS(a) —vXv(a) S(a)

—vC, (a)J(aa, q)S(a) S(a))],
where

X)=Ci(1)Ci(2) —Cp(1)Cp(2),

C,(a) =(p' —& (a).Ãv(a) —J(12,q)J(21,q)S(1) S(2),
C,(a) =J(aa, q) S(a) (K„-(u)+R„(a)), (A16)

K„(a)= (H.„(a),O,H,„(a)),
X„-(a)=(H„(a),O,H.,(a)) .

In order to obtain the electronic-spin correlation
function for the system of couple electronic and nuclear
spins, the coupled equations (A9) and (A10) must be
solved. Towards this end, the further restriction that

~
S(1)

~
equal

~
S(2) ( is imposed. Further, it is assumed

that Hp can be neglected with respect to AS(a) in
Eq. (A12), so that S(a) and I(a) are parallel. These
restrictions are discussed in Sec. III.

In contrast to Eq. (A9), Eq. (A10) is a vector equa-
tion where D, ~ is considered as a vector in the index i.
Schematically. the equation reads

p)D+iBXD —iAIXD =0.

Using the fact that S D and S.D are zero, one easily
obtains the equation

SXD=AP —SXD(B I)—i(pD(S. I))/((p' —8').

and that S„(a) and H;, (a) vanish in the coordinate
systems defined by Eq. (2.3) for case A and by Eqs.
(2.6) for case 8, one can straightforwardly obtain the
solution D;, ( aa', q, p)). The solution is most conveniently
expressed in terms of the spherical components

D,„(aa') =D.;(aa'-) pvD—gg(aa')

+irrD„;(a-a') —ivD;„-(aa'), (A13)

where the q and co dependence of D has been suppressed
and D,;(aa') is a shorthand notation for H„'(1)=H,„'(1)=ESi' cos0 (5 sin'8 —2),

H „'(1)=ESi'sin0 (6—7 sin'0 ),
H„'(1)=2ES)P sin'8

0 =0—t,

(A18)

for the sublattice 1. Those for the sublattice 2 are ob-
tained by letting Si go into —S& and 0 t into 0+—t In.
what follows, it will be assumed that co~~~ and ~~co~~
are of the same order of magnitude and that co02 is, at
most, of this order of magnitude. Further, co~ is much
greater than coo, cog or co~~. These assumption are valid
for RbMnF3 for magnetic fields of the order of a kG
or less.

The electronic-spin wave-resonant frequencies are
obtained by finding the zeroes of the function given in
Eqs. (A16). With the definitions

i
Ci ——pp' —(Li&Lp) i,

2
(A19)

1
C2 =L3+L4,

2

X) can be written as

&=((d (Pw )(PP (Pe—) 7 (A20)
&=L)~Pp +(L4—Lp)(L4+Lp)]'

Neglecting terms of order (p~/pp~ compared to 1, one
obtains

Li ——(ppP(1 —
2 sin'Q) —p)p cos QP p&$&+2(dz(dzrs-

+2~z~~[f(0)+g(0) ]+2~s'Q(q),
Lp+L4=4(pp(p@ coslflf1 pQ!] q

I,=-', (ppP sin'y+(pp' cos'$ L1 —-', n]o.

+2~s~~Li(0) g(0)] (A21)—

L L=p)p cosp(2(p&&(—1 ', n)+ 2p—))p-(1 ', n) Q(q)—-
+-:~~Lf(0)+g(0)]+p~~~

XP4 —26 sin'0+24 sin'8]} + P
pp)~(pp

Xcos0 sing sin8L —4+6 sin'8],
where

f(8) = —ip (2—13 sin'8+12 sin'8),

g(8) = —-,'(2 —7 sin'8+3 sin'8),

Q(q) =L(J'(12,0) —J(12,q)J(21,q)) —2J(12,0)
X(J(11,0) —J(11,q))]/J'(12, 0) .

(A22)

Using this in Eq. (A10), it is easily seen that by making
the substitutions

(d ~ (p(1 —A 'IS/((p' —8'))
(A17)

X,;(a) —+ K;;(a)+A 'BIS;(a)/((p' 8')—

that Eqs. (A15) and (A16) are again valid.
Using the prescription found in Eqs. (A1) and (A2)

nonzero components of the "anisotropy fields" II' in
case A are easily found to be
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These equations are valid for values of q such that
(qg)' is less than or of order &u~/cd and (coo/~z)'.

The effect of the nuclear modes on the electronic-spin
correlation functions is evaluated only when X» can be
neglected. This restricts the treatment to either low

temperatures or magnetic Acids many times (HzH&)'.
Under these conditions and the assumption that co~2 is
much less than ~~co~, the nuclear modes are obtained
from Eqs. (A18) and (A19) yielding

~83 622 ~ll y

~12 623 ~31 ~21 G32 G18 644 7

(B2)

and the nonzero F's are

where the e;(qX) are the polarization vectors of the
phonon modes, M is the mass of a magnetic ion, and the
first summation is over q, a, a', 1, 1', i, j, 1, and m. The
nonzero G's are

~ay =~iv (1 2~z~zz/~ey ) .

As well as yielding the normal modes of the sy
the spin-correlation approach yields the spectral eight
of the modes. As a function of q and ~, one obtains
Eqs. (3.1) and (3.2).

The case where f is 2~m, case B, is also given by Eqs.
(3.1) and (3.3) in the text with g =8 = 2~.

The x, y, s here correspond to the cubic axes.
The approximation use here for the average of four

spin operators is the sum of all possible factorizations in
terms of lower-order correlation functions. Terms index
of t do not contribute, and one is left with

(A23) Fu —S,'——', (5„'+S,') and cyclic permutations,

F/2 —F2/ —
2 (5,5„+S„S,) and cyclic permutations.

stem) (83)

APPENDIX B

In this Appendix, equations are derived describing the
effect of the antiferromagnetism on the phonons. Using
the magneto-elastic Hamiltonian given by Eq. (1.3),
one can derive the change in the phonon dispersion rela-
tion due to the electronic spin to lowest order in the
magneto-elastic coupling'4

(T(S;(1)S,(1)Sg(2)S„(2)))—+ (t)'[D;g(12)D;((12)

+D,((12)D;1,(12)]+(i)[S,(1)5((2)D, I,(12)

+5;(1)Sg(2)D,i(12)+5;(1)Si(2)D;g(12)

+5'(1)5~(2)D ~(12)j,
D;~(12)—=D,a(ndi, n2t2) .

(B4)

~'=~0'(qX)+(1V3I) ' P e;(qX)e, (qX)G, &q&G, q

&&(—)(—P) ' «(T(F' (l~t)Ft-( ' 't')))

Xexp[fP&a, (t t') i—q (1——1')j, (B1)

In this paper, the terms in the first set of brackets are
neglected. They do not contribute significantly to the
phonon behavior near the spin wave-resonant
frequencies.

After some lengthy but straightforward algebra, one
arrives at Eqs. (3.3) and (3.4).


