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where I", is real. The relations I',=—m„, and I', - to third order in terms of the parameters J and J' of the
=—ttt„- can also be shown to hold to third order. model (4.3) is straightforward. The result has already

The calculation of the relaxation rate I"t=tvtt+tvtt been quoted /see Eq. (3.14)g.
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We present a simple theory of the effect of impurity-induced changes in atomic force constants and changes
in atomic mass on the lifetime of coupled spin-phonon modes in paramagnetic crystals. The result is then
employed to study the effect of impurity scattering, boundary scattering, and scattering of the coupled modes
by longitudinal fluctuations in spin density on the temperature dependence of the thermal conductivity, and
the frequency distribution of the heat lux. The theory can account for the experimental data on MgO doped
with Cr'+ reported recently by Challis, McConachie, and Williams and offers support for the interpretation
of the data presented by these authors.

I. INTRODUCTION

~

~ ~

HEN paramagnetic ions are introduced into
insu1ating crystals, phonons may induce transi-

tions between the Zeeman levels. This spin-phonon
interaction thus gives rise to spin-lattice relaxation,
shifts of the g factor, ~ and a number of other phenomena.
When the wavelength of the resonant phonons (i.e.,
phonons with energy Ittto equal to the Zeeman energy)
is large compared to the mean spacing between the ions,
Jacobsen and Stevens' have pointed out that the normal
modes of the system are coupled spin-phonon modes, in
which the motion of diferent spins is correlated through
the phonon field. The resulting modes have properties
similar in many respects to the coupled magnon-phonon
modes considered earlier by Kittel. 4

In the theory of coupled spin-phonon modes in para-
magnets, one linearizes the equations of motion by
replacing the combination S,u by (S,)u, where u is the
phonon amplitude, S, the s component of spin, and the
angular bracket denotes the thermal coverage. The
normal modes are well defined only so long as this
approximation is valid. The finite lifetime of the normal
mode that results when the correction term (S,—(S,))u
is retained in the equations of motion was studied in an
earlier work. ' This term gives rise to a scattering of the
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coupled mode by spatial fluctuations in the s component
of the spin of the ions. Since this work, other authors
have also studied the lifetime of the coupled modes from
other points of view. ~

One finds that the scattering produced by the Ructu-
ations in S, has a resonant character, in the sense that
the scattering rate is strongest for modes with frequency
in the vicinity of the Zeeman frequency cop. The width
of the resonance is roughly equal to the width of the
frequency regime within which the coupled modes
contain a large admixture of spin motion.

Detailed experimental studies of the thermal con-
ductivity of crystals of MgO doped with Cr and other
transition-metal impurities have recently been corn-

pleted by Challis and co-workers. ' The experiments
were carried out in the liquid-He temperature range,
and the Cr concentration ranged from 10 ' to 10 ',
depending on the sample. Also, the dependence of the
thermal conductivity on the magnitude and direction
of the magnetic field was measured. '

These authors analyzed their data in zero magnetic
field~ by employing a phenomenological model with a
Debye spectrum of phonons combined with a frequency-
dependent relaxation time. They included three terms
in their expression for the inverse relaxation time
r '(co): a frequency-independent boundary scattering
term, an impurity scattering contribution proportional
to co4, and a. resonant term proportional to coz(coz —covz) ',
where cop and the coefficients of the various terms were
determined by comparison with the data. It was sug-
gested that the resonance term may possibly have its

6 E. M. Yolin, Proc. Phys. Soc. (London) 85, 759 (1965); and
R. J. Elliott and J. B. Parkinson, ibid'. 92, 1024 (1967).
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Roy. Soc. (London) A308, 355 (1968).

L. J. Challis, M. A. McConachie, and D. J. Williams, Proc.
Roy. Soc. (London) A310, 493 (1969).
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origin in the scattering of the Jacobsen-Stevens coupled
modes from the fluctuations in S„as described above.
Also, a consistent interpretation of the data could be
obtained by assuming the co4 impurity scattering and
resonant scattering are associated with the same ion.
From studies of the effect of x radiation on the crystal,
it was inferred tha, t the Cr'+ ion is responsible for the
very strong resona, nt scattering; the value of ~0 was
deduced to be about 8'K, so the resonant scattering is
associated with the coupling of the phonons to a level
that is split off from the ground. state in zero magnetic
field. The presence of the resonant scattering term is
also consistent with the magnetic field studies, since
varying the Zeeman splitting of a second ion strongly
coupled to phonons allows one to probe the frequency
distribution of the heat flux. s

While we have concentrated our discussion on the
work of Challis and co-workers, deGoer ha, s also ob-
served resonant scattering of a similar sort in A1203
doped with transition-metal impurities. ' The data have
been analyzed in a similar fashion.

If the normal modes of the crystal are mixed spin-
phonon modes, then the contribution vq ' to the relax-
ation rate from impurity scattering will not simply be
proportional to co4. As the frequency of the mode enters
the region where a strong a,dmixture of spin motion is
present, to compute ~1 ' one must take account of the
reduced phonon content of the mode, and the effect of
the shift in wave vector from the value ~, c,„where c, is
the velocity of sound. Also, one must take account of
the effect of the change in density of states of the normal
modes, and the change in group velocity to compute the
frequency distribution of the hea. t flux, as Elliott and
Parkinson have done. ' These corrections will be especi-
ally important in systems in which the spins are strongly
coupled to the phonons, since the modification of the
normal modes is then important over a wide range of
frequency.

The purpose of this note is to present the theory of
the scattering of coupled spin-phonon modes by the
changes in force constants and mass associated with the
impurities. We do this by introducing appropriate
phenomenological terms in the model Hamiltonian

employed in earlier work. We include the scattering
from longitudinal fluctuations in 5, in the theory, and
rewrite this spin fluctuation contribution 7,-g to the
relaxation rate in a form convenient for computational
purposes. We then present some numerical studies of
the dependence of the thermal conductivity E on
temperature and impurity concentration, along with
computations of the frequency distribution of the heat
flux. A wide variety of behaviors is obtained, depending
on the relative values of the boundary scattering,
impurity scattering or the spin fluctuation scattering
rate. With the appropriate choice of parameters, we are
able to reproduce the observed dependence of E on

' A. M. deGoer, J. Phys. (Paris) 30, 389 (1969).

temperature, for the case of MgO doped with Cr'+. We
feel that some features of the data would be quite
dificult to explain without invoking the coupled-mode
picture.

II. CALCULATIONS OF RELAXATION RATES

We shall consider a phenomenological model of a
single branch of a Debye phonon spectrum that is
coupled to a, number of paramagnetic impurities
randomly distributed through the solid. The model may
be applied to any two-level system coupled linearly to
phonons, provided the Zeernan frequency is replaced by
the separation between the energy levels. Following
Ref. 5, we describe the phonons by a single scalar-boson
field amplitude

p (x) =2 (&(+~—( t]e' '*
~ (2pp(p(, )"'

and its canonically conjugate momentum

pr(X) =i Q —', (pp(p(, )"'[a(,—u (,t]e'" x.
k

In these expressions, po is the density of the crystal,
cok ——c,k is the frequency of a phonon of wave vector k,
and we employ units with 5 =1.The crystal is assumed
to have unit volume. The variables (p(x) and m. (x)
satisfy the usual boson commutation relations

Lpp(x) p-(x')] =8(x—x') .
We then introduce the model Hamiltonian

1
H= d'x &(x) (x)+-,'(x)Vx"(x) Vx(x))

p(x)

d'x vr(x)S, (x)+(vp d'x S,(x) . (4)

The first term is the contribution to H from the
phonons. We assume the density of the medium varies
with position, and the effective elastic modulus n(x)
also varies with position. In this fashion we introduce
the effect of mass and force constant changes produced
by the paramagnetic impurities. We shall write

p(x) =pp+AM P 6(x—x;),

and a similar expression for n(x), where hM is the
change in mass of the impurity located at the site x,.

The second term in Eq. (4) describes the coupling
between the spins and the phonons. The operators
S;(x) are the spin-density operators associated with the
impurity svstem. Specifically, if S,(") is the ith Cartesian
coordinate of the spin located at x„, then

S,(x) =P S;("'5(x—x„),
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and the S;(x) obey the commutation relations

LS, (x),5;(x')j=se;;sS~ (x)5 (x—x'),

= —+—Q S;,
p C, i=*,v, ~

(5a)

Bx'—=v (vp),
8t

(Sb)

where ~;,I, is the Levi-Civita symbol.
The last term in Eq. (4) is the Zeeman energy of the

spin system.
We obtain the following equations of motion for the

various operators:

and

P COpO', p

2,= —2 (S.—(5,))V'
c 2

f 8' i'V(kn) P' An Ap cj')
GVp +—v' ———

I
. (6")

R k pp pp pp Bi )
The quantity C,2=Exp, i'pp is the velocity of sound.

We obtain the dispersion relation of the coupled
modes by ignoring the term Z, p and looking at the
solutions of Spy=0. The dispersion relation for our
model obtained by this means is found from the secular
equation

((u' —cop') (tp' —c 'k')+ (2y'pppupk'/c ')n (S )=0 (7)

BS
pr (S.—S„)—(opS„,

C8

BSy—= ~(5.—5,)+tppS„
dt c,

(Sc)

(Sd)

We have replaced the mean value of the spin density
(5,) by e,(S,), where m, is the number of ions per unit
volume, and (g,) is the mean value of the s component
of spin for one ion. We write this equation in a form that
facilitates comparison with earlier work. ' lt will be
convenient to rewrite Eq. (7) in the form

c,'0'!tp' =ri (tp),
BS,—= —s.(5„—5,) .
dt c,

(Se)

where'p

2y copnpez(eSz))
ri(cp) = 1+—

c,4(cups —Q') )
We now write p=pp+Ap(x) and n=np+hn(x). We

suppose that the effect of d p and An may be treated by
a perturbation approach. In this spirit, we rewrite Eq.
(5a) in the form

~P ~v 7+—QS, .
Bt pp pp Bt c,

We neglect the term proportional to ykp, and terms of
order (Ap)' and higher.

Following Ref. 5, we derive a single equation for the
phonon amplitude p. We replace S, by the combination
(5,)+(5,—(5,)) in order to separate out the terms that
describe the scattering of the mode by the fluctuations
in S,. We also retain only terms first order in Ap and An,
and neglect the contributions proportional to S,,„V'y
and S,,„x.These latter terms have been found to give
contributions to the relaxation rate of the coupled mode
that are small compared to that from the 5,—(S,) term
in the resonance region. ' ' We then obtain an equation
of the form

Notice that with our sign convention, (5,)(0.
The dispersion relation of the coupled modes is

sketched in Fig. 1. The quantity ~ is given by

P GDp(Xp
1/2

——1&g.) I

2c,4

We can compute the lifetime of the mode by treating
the terms in Z, p by a perturbation theoretic technique.

=cgk

&pp +&.v'=o
~ (6)

where we have the operators

8 8 2p Ggg&p

Zp ———gyps —+c,'V' —— (5.)V'
Bt2 R2 2

(6')

FIG. 1. Sketch of the dispersion relation
of the coupled spin-phonon modes.

M For the Hamiltonian of Eq. (1), notice that (Sz) is a negative
quantity.
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We shall follow the procedure employed previously. '
We introduce a Green's function G(r, t) that satisfies

ZoG(r, t) =8(r)8(t),

and obeys the appropriate outgoing wave boundary
condition. The amplitude of the scattered wave is then
found from

q, (r, t) = G(r —r'; t —t') Z, q (r', t')dor' dt'. (9)

In Eq. (9), we suppose Z, &p is nonzero only within a
region of the crystal of finite spatial extent.

The details of the construction of the Green's func-
tion, and the evaluation of the integrals in Eq. (9) have
been discussed elsewhere. ' We should mention that one
approximation we make is to ignore the time dependence
of the fluctuations in S„i.e., we treat the scattering as
if it were quasi-elastic. As we have argued previously,
this should be a reasoDable approximation if 6 is large
compared to the level width. This condition is a reason-
able one if the spin-phonon coupling is large.

The amplitude y, of the scattered wave then assumes
the form

(V )"' koV(kor —lro)e '"'~""'626

42r' fl (ko)&' (ko)[Qi'(ko) —Q2'(ko)] lrl
(10)

In Eq. (10), V, is the volume of the region within which
Z, y is nonzero, the incident wave is presumed to have
wave vector ko and frequency 0;(ko). The index i is a
branch index, with i =1 referring to the lower branch
and i=2 to the upper branch of the dispersion curve,
and v;g(ko) is the group velocity of the mode (lro, i).
Finally,

6(x 8p 2p 03p&p

V(kor —ko) =ko'(r ko)—+0,'(ko)—+ —85, . (11)
Pp pp &s

2

~5.( ) =Z(~.'"' —(~.))~( —-)

1=—Q 85,(q)e+'& *

V, a

In Eq. (11), Bn, 5p, and 85, are the Fourier transforms
of the functions d,n(x), Ap(x), and 65, (x), respectively;
the Fourier transforms are evaluated for the wave
vector kpr" —kp.

Ke then calculate the relaxation time of the mode,
again following the earlier approach. ' We do this by
forming

~
62,

~

', and computing the energy flowing out of
the volume V, by integrating the appropriate quantity
over solid angle. In this computation, one encounters
the quantities

~
85.(kor" —lr6)

~

',
~
8n(kor k&&)

~

', and—
~
&p(kor —ko)

~

' as well as cross terms between the three
functions 8S„5n, and bp.

Consider ~85, (kor"—Iro) ~2. We have

dn(x) =ha P 6(x—x„),

where AM is the change in mass of the impurity at x„,
and Au represents the change in the elastic properties of
the crystal (the change in force constants) in the
neighborhood of the impurity, for our simple model.

Then, following the discussion above, we find

and
((@(q) ~

);,=~.(~m)

(I ~n(q) I'&'-.=2"(~~)'.

The expression for the relaxation time then de-
composes into two terms:

Simp &sf

where v; ~
' is the contribution from the scattering

produced by the mass and force-constant changes, and
is the contribution from the disorder in the 2, corn-

ponent of spin density. Equation (12) insures that there
is no interference between these two contributions.
Explicitly, one has

1 p QpGop k 6jg2 (g )2}

r i c ir v' (ko)&' (ko)[&1 (ko) &2 (ko)]

and

&imp 4'r pp
/I 3 2

ko (Q)o 0' (ko)) [0' (ko)(AM) + oko (ka) ]
n, (k,).,'(k, )[n, '(k, ) —n, '(k.)]'

The expression in Eq. (13) is the result for the scat-
tering from longitudinal spin fluctuations described
earlier, ' except 5' has been replaced by 5' —(5,)', as

We now form ~85, (q) ~2 and average over the spatial
positions of the impurities. For a two-level system,
where (S.') =S', this gives

(~85,(q) ~2); o=n, (S2—(g,)2) independent of q,
where 22, =X,/V, is the number of spins/unit volume.
It is this averaged expression for ~BS,(q) ~2 that we

employ in the computation of the lifetime v.. One easily
shows that the interference terms vanish:

(» *(.q)~ (q))' ,-(=».*(q)~p(q))' .-o—= (»)
We write

Dp(x) =AM g 5(x—x„),
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Simp 2'' pp c G)p

There are three effects that combine to determine the
behavior of ~''

p in this region. First, the "phonon
content" of the mode decreases, and this inhibits the
ability of the wa, ve to feel the effect of Aa or DM. At the
same time, the wave vector of the mode is very much

"In Ref. 5, we displayed the result only for the high-tempera-
ture limit, where&go«ksT Then (S,') is small com. pared to S', and
one may ignore the factor of ( g,').

"We have assumed that Ag and AM are associated with the
same impurities that couple to the phonons to produce the mixed
modes. However, if the defect scattering is produced by a second
species, Kq. (14) still applies, provided the factor of r4 is replaced
by the density of centers responsible for the mass and force con-
stant changes.

noted below, "and the host elastic constant np appears
explicitly. One sees that r, g

' has a resonant form, ~ and
is strong for incident frequencies within 6 of the I-armor
frequency cop of the spins. Also, when c,kp((Mp 7- f is
proportional to kp, while when c,kp))Mp, 78f ap-
proa. ches a constant value.

The defect scattering contribution to r ' is displa, yed
in Eq. (14).There are several features of this result that
should be discussed. First of all, the lack of a cross term
involving the product AMha is a property of our
particular model. The mass defect scattering has
s-wave character, and the scattering from the changes
in force constants (Aa) produces only E-wave scatter-
ing. Thus, there is no interference between the two for
our model.

The expression for ~; „'exhibits the well-known 0'
dependence on frequency, in the absence of spin-phonon
coupling. Suppose we apply the expression to the life-
time of a mode on branch 1, the low frequency branch
of the dispersion curve. As p —+0, Qs(kp) ~Mp fol'

ko(coo/c„while Q~(kp) ~ c, kp. Then

1 ekp4
lim — —= — L(AM) 'c,4+-', (ha) 'j.' ' r;~n(k) 4~'pose, o

The same limiting form applies to the lifetime of modes
on the upper branch as p ~ 0, when kp&(op/c, .

It is interesting to note from Fq. (14) tha, t the mass
defect scattering is proportional to the fourth power of
the frequency of the mode, while the scattering from
force constant changes is proportional to the fourth
power of the wave vector. This is reasonable from a
phvsical point of view, since a change in mass affects the
response of the crystal to a disturbance of finite fre-
quency, but zero wave vector. A change in force con-
stants, conversely, affects the response of the crystal to
a disturbance of finite wave vector, even at zero
frequency.

It is interesting to explore the form of 7' p as
kp ~~ along branch 1, and also as kp —+ 0 along branch
2. For the former case, after some algebra, one finds

larger than for a pure phonon of the same frequency,
and the density of final states increases. These latter
two effects dominate the first.

As kp —+ 0 along branch 2, one 6nds

+imp

e,ok pa&p(63II) '—~pv'I(& ) I.
3p 2c 6

In the small kp region, the mass defect scattering
dominates, and ~ '

p ~ 0 as kp ~ 0.

( 8'y oopGpk

Q (k) —Q s(k)=l (ro s—c sks)s+ g l(8 )I
c 2

By using Eq. (8), one may eliminate the wave vector ir
from the right-hand side of this equation, and express
it entirely in terms of the frequency Q. We find after a
bit of algebra

Qs'(k) —Qr'(k) =
I
~ '+ b(Q) —2]Q'I . (15)

The explicit factors of k that appear in Eq. (13) and
Eq. (14) may be eliminated by the use of Eq. (8). The
group velocity vg may be found by differentiating each
side of Eq. (8) with respect to Q. Rearranging a bit then
gives

c„2 8'g
= rf+-', Q—,

BQ

where v"=Q/k is the phase velocity of the wave. One
then finds

0 Mp

v~(Q) =-
Qrf (2 —rf) Q' —rop'

(16)

The right-hand side of Eq. (16) is positive everywhere
that rj&0, i.e., for all frequencies except in the forbidden
region below orp. The use of these identities, along with
Eq. (13) and Eq. (14) allow one to write the total

III. THERMAL CONDUCTIVITY

In this section, we shall study the temperature de-
pendence of the thermal conductivity for various values
of the mean free time for impurity scattering, boundary
scattering, and scattering from the spin fluctuations.

Before we present the results of our study, we re-
arrange the expressions for 7' p and 7-,&. to place them
in a form convenient for computational purposes. One
of the difFiculties with the general expressions given in
the preceding section is that one requires the frequencies
Q;(kp) of the coupled modes explicitly in order to com-
pute the relaxation rate. That is, one requires explicit
solutions of the secular equation (7). While this presents
no problem of principle, much more convenient expres-
sions for 7.; p and v, & may be obtained. In effect, the
relaxation rates may be expressed entirely in terms of
the frequency Q=Q, (kp) of the incident wave.

Consider, for example, the quantity
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relaxation rate in the form

7 Simp &sf

rc @4~7/2 [(~ 2 Q ) (i(gg/p )2+c 4(g~/p )2~2)+4~4~ 2n (SP (S )P)c —]
) cop + ()7—2) QP

) (
0' —cop' [

(17)

In an isotropic system, the thermal conductivity K
is given by

K= P r(k)vo(k)'Ci(T), (18)

Thus, one has

where r(k) is the relaxation time of the mode of wave
vector k, and Cr, (T) is the specific heat of the mode. All

of the quantities in Eq. (18) depend only on the fre-
quency of the mode in our model. Thus, the sum over k

can be converted to an integral over frequency. Note
that the density of states associated with the coupled
modes is

Vga)2

frequency distribution of heat Qux in zero field [i.e., the
function K(co,T) t as well as the g factor of the second
ion.

Since the impurity scattering present in the work on
MgO 7 appears much stronger than that provided by
the mass change 63f alone, we have assumed all the
scattering to be associated with changes in force con-
stants near the impurity. We have thus taken 63f equal
to zero, and retain only the term in Aa. We introduce
the parameters

A = (n,/12rr'c, ') (ha/pp)'

and

8= (rc /rr'c ")p4co(Pnp2S'

For some purposes, it is useful to note that A may be
written in the form

dco K(T,co),

where
rico'r (co) rrg (co)C(co)T)

K(T,co) =
x'c '

and for C(co, T) we use the boson result

(19) A = (f.V./12m'c, ') (Dn/np)',

where V, is the volume of the unit cell and f, =m,/I is
the concentration of spins. Then Eq. (17) becomes

1 [(cop' —n')'A+(1 —(S )'/S')8)
g4~7/2 (20)

I»'+(n —2) fl'I Ill' —»'I

Furthermore, let P=2p'copnpe, Sc, '. Then.

C(po, T) = e(co) [1+re(co)$,
k~T'

where N(co) = [exp(Aco/krr T)—1] '.
Notice that all quantities in Eq. (19') may be ex-

pressed in terms of g(co), as we have seen.
We shall present numerical studies of the temperature

of K, as well as the shape of the function K(T,co),

including the effect of boundary'scattering as well as the
impurity and spin fluctuation scattering described
above. We note that Challis et ul. ' have pointed out that
one may obtain direct information about the form of

K(T,co) by studying the magnetoresistance. In their
case, the level responsible for the zero-field scattering is
split off from the ground state by crystal-field effects.
The resonant interaction of phonons with this pair of
levels produces a minimum in the zero-field form of
K(T,co). If one now uses a magnetic field to sweep a
Zeeman level associated with a second ion (say Fe'+) in

frequency, the change hE in the thermal conductivity
is roughly AK = K(T,cop)hco, where —Aco is the width of
the level associated with the second ion. This presumes
the second ion couples strongly enough to the phonons
to block the contribution to E of the modes in the band
of width her around coo. By these means, structure in the
magnetic field dependence of K may be related to the

Pl(S.)l/S -'
n(fl) =

I 1+
n —,p

(21)

Notice that the parameters A, 8, and P are all propor-
tional to the concentration e, of paramagnetic
impurities.

To facilitate comparison with the recent analysis of
the experimental data referred. to earlier, we shall ex-
press all energies in temperature units ('K), and we let
Q= (krrT/h)x in Eqs. (20) and (21). In all of the dis-
cussion that follows, we have taken coo to be 8'K, the
value inferred by Challis et al. appropriate to the reso-
nant scattering of phonons by Cr'+ in MgO, in zero
magnetic field.

First consider the temperature dependence of the
thermal conductivity. We first add in the effect of
boundary scattering in a phenomenological fashion by
adding to the inverse relaxation time of Eq. (20) a
frequency-independent contribution ~& '. We first
examine the temperature dependence of E for various
relative amounts of boundary scattering, impurity
scattering, and spin fluctuation scattering. Then we

present some curves of the variation of K with tern-

perature, for various concentrations. We compare the
last set of curves with the zero-field data of Challis e& al.
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FIG. 2. Function E/T3, plotted as a function of the temperature T for the case where (a) only boundary scattering is present, (b)
boundary scattering and impurity scattering are both present, and (c) boundary scattering and scattering from longitudinal fluctuations
in spin density are present. The values of the parameters employed in these calculations are discussed in the text.

In Fig. 2(a) we present the variation of the qus, ntity
E/T' with temperature, for various values of the spin-
phonon coupling parameter p for the case where only
boundary scattering is present. As Challis et ul. point
out, ' the ratio E/T' can be thought of as being propor-
tional to an average relaxation time f. The dip in the
E/T' apparent in Fig. 2(a) occurs when the peak of the
blackbody specific-heat function

C ((o,T) = (h'aP/hid T')e(ar) $1+v(a&)$

sweeps through the resonance frequency ~0. In effect,
the presence of the resonant level cuts a hole in the
distribution of heat Qux in frequency with a width the
order of P(S,)/g J~'.

In Fig. 2(b) we show the effect of introducing im-

purity scattering on the mean relaxation time E/T'.
We have chosen r~ ' ——2.4)(10 ' sec ', the value em-

ployed in the ea,rlier work. ' The curves are calculated
for the case where A =200'K '. For this value of A,
rii ' and contribution r ' from Eq. (20) with B=O be-
come equal when 0=11'K. Because of the strong fre-
quency dependence of v. ', the impurity scattering
completely dominates the boundary scattering for
0& 11'K.One can see that E/T' is a strong monotonic-
ally decreasing function of temperature. At 2'K, for
8=10'Ks, K/T' is depressed only by roughly 20%
compared to its value with 3=0 LFig. 2(a)j. Larger
values of A also produce values of K/T' that decrease
sharply with T, as one would expect from physical
considerations.

In Fig. 2(c), we illustrate the effect of scattering from
the fluctuations in g, on E/T'. These curves are com-
puted for P=1'K' and P=10'K'. We have taken A =0
and 8=10 'K. For frequencies 0((coo, ~,f ' is propor-
tional to 0, as in the case of impurity scattering. Thus,
K/T initially decreases, as in Fig. 2(b). When Q»cue,
an exainination of Eq. (20) shows that r, &

' becomes
independent of Q. Thus, when k~T is large enough that
most of the heat Aux comes from phonons with Q&~0,
introduction of v.,f is equivalent to introducing addi-
tional boundary scattering, as far as the dependence of
E on T is concerned. As a consequence, E/T' becomes
temperature-independent, with a value less than the
value appropriate to boundary scattering alone. In
Fig. 2(c), one sees a broad shallow minimum, with
K/T' approaching the asymptotic value at the higher
temperatures.

In Fig. 3 (a), we reproduce some of the zero-field da«
of Ref. 'l. Along side of this in Fig. 3(b) we present
theoretical curves for different concentrations. The
curves in Fig. 3(b) were calculated presuming that
A =15P, and 8=10'P. The effect of changing e, may
then be introduced by changing P, since A, 8, and P are
all proportional to e,. One can see that the theory
reproduces the trends evident in the da, ta. At the lowest
concentrations, a broad plateau is present, and the
plateau becomes difficult to pick out at the higher
concentrations. The plateau has its origin in the scatter-
ing from Quctuations in S„as we saw in our discussion
of the preceding paragraph, and the fall oB is due to the
presence of the impurity scattering.
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P =0.08

P=OA

P= 2.0

P =IO.O
~ P = 40.0

while it involves expressions quite different than ours,
also gives a good account of the data. If we identify
their resonance term with our r, g ', then we also assign
the various trends in the data to the same physical
phenomena. We feel our work. offers support for the
analysis in Ref. 7, since our expressions follow from a
simple microscopic model.

In Figs. 4—6, we plot the distribution in frequency of
the heat Aux for the cases described earlier. We write
K/T' in the form

K/T'= d*Q(,T),

(b)

Fro. 3. (al Experimental behavior of E/T' observed by Challis,
McConachie, and Williams for Cr'+ doped MgO. (b) Some plots
of J /T' for various ion concentrations obtained by supplementing
the expression in Eq. (14) by a boundary scattering term.

There is one feature of the curves in Fig. 3 that is
noteworthy. At small concentrations, the effect of the
resonant scattering of the coupled modes from the spins
is quite evident. At the higher concentrations, K/T
decreases smoothly and monotonically with T, very
much as if only impurity scattering is present. We feel
the t it is difficult to see how this behavior can be realized
within the framework of any theory that treats the
resonant scattering as a single-ion phenomena, since
such a model would produce a ~z ' and resonant relax-
ation rate which are both proportional to n„ for the
case where the impurity scattering is associated with
the same ion as that responsible for the resonant
scattering. The eRect of the resonant scattering should
then be evident even at high concentration. Intuitive
arguments that suggest that in the coupled mode
theory, the average effect of r, &

' should vary with e,
less rapidly than rq ' have been suggested elsewhere. 7

The phenomenological analysis of Challis et al. ,
~

where x is a dimensionless measure of frequency, defined
by the expression Aco=xk&T. In these figures the func-
tion Q(x, T) is plotted against the frequency &e, measured
in 'K. The quantity Q(x, T) gives the distribution of the
heat Qux in frequency. Its relation to measurements of
the magnetic field dependence of IC was discussed above.

In Fig. 4, Q is plotted for the case where only boun-
dary scattering is present, and P=10. In Fig. 5, the
function Q is plotted when boundary scattering is
present, and A =200'K '. This is the value of A em-
ployed in Fig. 2(b). The effect of the impurity scattering
reduces the contribution to E of the phonons with
frequency greater than coo. We note that these curves
look very similar to the curves present in Fig. 11 of
Ref. 7. In Fig. 6, we show Q when scattering from the
spin fluctuations is present. We have taken 8=10"K.
Notice that as T increases, the contribution from the
region below coo is reduced, compared to its value in
Fig. 4. As in the case of impurity scattering only (Fig.
5), the contribution from the region with frequency
greater than ~0 is sharply reduced. The peaks in -the
heat Aux curves for Q&coo are sharp and well defined in
Fig. 5. On Fig. 6, with only v~ ' and v, g

' present, the
peaks are much broader and flatter than those ot
Fig. 5.

FIG. 4. Dependence of the distribution
of heat flux Q(x, T) on frequency for four
temperatures. Only boundary scattering
is present in this case.
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FIG. 5. Dependence of Q(x, T) on fre-

quency for four temperatures in the
presence of boundary scattering, and
scattering from force constant changes.
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FIG. 6. Dependence of Q (x,T) on fre-
quency for four temperatures in the
presence of boundary scattering, and
scattering from Quctuations in S,.

T= 4~K
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IV. SUMMARY

The results of Sec. III indicate that the coupled mode
picture of excitations in paramagnetic spin system can
give a good account of the data on MgO doped with
Cr'+. Our conclusions concerning the role of the various
scattering mechanisms in producing features in the
curves of E/T' versus T also agree with those of Challis
et al. ,

~ provided we identify the contribution to the
scattering rate from longitudinal spin fluctuations with
their resonance term. Of course, the details of our
calculation are very different from the earlier phenom-
enological discussions. ~ '

Some important questions concerning the validity of
the coupled-mode picture remain open. As pointed out
in earlier work, ' ' the coupled mode picture is only
strictly valid if the concentration of centers coupled to
phonons in a resonant fashion is suKciently high that
a cube with a side one resonant phonon wavelength long

contains many centers. For the case of Cr'+ in MgO, the
wavelength of the resonant phonons is X=c,/v, where

v is the resonance frequency. If ~0 is in the range o&

8'K, then —2)&10" Hz, and 'A—2& i0 cm, for
&.=SX10' cm/sec. The coupled-mode theory should

thus apply only for concentrations greater than about
10'r spins/cm'. In MgO, the number of lattice sites/unit
volume is the order of 10" cm '. Thus, so long as the
concentration of paramagnetic centers exceeds the range
of a few ppm, it appears that this criterion is met. The
concentrations encountered in these experiments are all

in the range of a few ppm or greater, so application
of the theory at the low end of this range may be

questionable.
A second assumption we have made is that the fre-

quency 6 of Fig. 1 is larger compared to the intrinsic

width of the resona, nt level. In this limit, one may treat
the scattering from longitudinal-fluctuations in 5, as a
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quasi-elastic scattering process. This assumption is
diS.cult to assess at the present time. The large e6'ect of
small concentrations of the Cr'+ ion on the thermal
conductivity of MgO, as well as ultrasonic attenuation
studies" show that this ion is very strongly coupled to
phonons. These data are thus consistent with a large
value of A. To obtain information about the intrinsic
width of the resonance level, one would need infrared
studies of the region around 8'K, where resonant
absorption of photons by the Cr'+ ion ought to occur.

Finally, as discussed earlier, the force constant
changes associated with the impurity need to be very
large to produce the values of A employed in this work.
The same difhculty has been noted earlier. ~ Since one
apparently needs to invoke the dynamic Jahn-Teller
eQect to explain the properties of Cr'+ in MgO, " this
ion may scatter phonons very strongly.

|A'e conclude by pointing out that studies of the
dependence of the velocity of ultrasound on concen-
tration of the Cr'+ and on temperature should contain
useful information about the nature of these resonant
centers. In the coupled mode theory, the observed
velocity of sound c, at frequencies well below the reso-
nance frequency coo is related to the velocity of sound c,
in the undoped crystal in the following manner:

In our analysis, we have found that the experimental
data are consistent with P in the range of 0.1 to 10'K',
for the concentrations employed in the experimental
work of Challis et al. ~ Particularly at the high end of the
concentration range studied in this work, the coupled-
mode theory predicts a substantial dependence of c, on
concentration. Recall that p is proportional to the spin
concentration m, . Also, c, depends on temperature
through the factor (S,) that appears in the last equation.
A measurement of the temperature dependence of c, in
a given sample should thus provide a measurement of

(S,). In our computations, we have supposed that

~
(S,)/S~ =tanh(sh~s/k~T), the expression appropriate

to a two-level system in thermal equilibrium. One
should compute the value of (S,) in a self-consistent
fashion, as Sears has discussed. " Corrections to the
free-ion value of (S,) should become important when

P/cuss becomes comparable to unity. An experimental
study of the temperature dependence of the sound
velocity in a sample containing a high concentration of
Cr'+ should allow an assessment of the importance of
corrections to (S,) from spin-phonon interactions. )For
the Cr'+ ion in MgO, (8,) =-', (X+—E ), where N+ and

are the populations of the upper and lower reso-
nanting levels, respectively. This quantity is not related
to the magnetic susceptibility in any simple fashion. ]

'3 J. R. Fletcher, F. G. Marshall, V. %.Rampton, and K. W. H.
Stevens, Proc. Phys. Soc. (London) 88, 127 (1966);F. G. Marshall
and V. W. Rampton, J. Phys. Cl, 594 (1968).

'4 See the discussion and references in the paper by Marshall
and Rampton, Ref. 13.
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