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The response of a paramagnetic spin in a metal to applied time-dependent magnetic fields can be described
in terms of frequency-dependent susceptibilities of the Kubo type. The diagrammatic technique used here
to evaluate these susceptibilities has the advantage that approximations are made by expanding in powers
of a small parameter, so that corrections to the results are known to be small if certain conditions are satis-
fied. For example, corrections to the formula given below for the transverse susceptibility are of order
p(~ —u~) and pF2, where co is the applied frequency, cop is the resonance frequency, and F2——T2 ' is the trans-
verse relaxation rate (k=1); corrections to the formula for the longitudinal susceptibility are of order Pu
and pF&, where F&= T& '. An effective spin S=$ is assumed. The results of the diagrammatic analysis are
interpreted in terms of the Bloch equations, modified to include relaxation to the instantaneous value of the
magnetic field. The resonance frequency is calculated to second order in the interaction between spins and
conduction electrons, while the relaxation times T~ and T2 are calculated to third order, and to this order
all quantities are found to have a Kondo-like dependence on the logarithm of the temperature. The Korringa
relation between the shift of the resonance frequency and 7& is found to break down as the Kondo tempera-
ture is approached from above, but to third order in the interaction, the relation Tj ——T2 is found to be true
for an isotropic interaction. Departures from thermal equilibrium of the conduction-electron system have
been neglected in this work.

I. INTRODUCTION by Wangsness and Bloch' and others' 7 corresponds to
the hypothetical situation where the interaction be-
tween the spin and its surroundings is absent up until
the time t= 0, and that previous to the time t= 0, the
surroundings had achieved a state of thermal equili-
brium at a given temperature. I'urthermore, it was
assumed that the surroundings remained in thermal
equilibrium at all subsequent times. The artiGciality of
this method of specifying the initial conditions is
certainly undesirable and not unavoidable in certain
cases. Also, it is important to be able to take into
account the deviations from thermal equilibrium of the
surroundings, since these are important in some in-
stances, for example, in the theory of the phonon
bottleneck, and in the description of the so-called
bottleneck effect in paramagnetic resonance in metals.

An improvement in the general formulation of the
theory was achieved by Kubo and Tomitag in their
treatment of magnetic resonance absorption via a
linear response theory. In this theory the important
quantities are frequency-dependent susceptibilities,
which are expressed in terms of spin correlation func-
tions. The main purpose of this paper is to develop a
Geld-theoretic method of evaluating these so-called
Kubo formulas for the susceptibilities describing para-
magnetic resonance and relaxation experiments. The
result of our eBorts is essentially a microscopic deriva-
tion of the Bloch equations.

To exploit Geld-theoretic techniques, and, in par-
ticular, Wick's theorem, a representation of spin
operators in terms of fermion creation and annihilation
operators is employed. This representation is due to
Abrikosov, " and certain aspects of its application to

' 'X 1946, Bloch' proposed a phenomenological equa-
- - tion describing the motion of a nuclear-spin system
subjected to both a static and a time varying magnetic
field. This equation successfully describes a wide variety
of magnetic resonance experiments, although to obtain
a valid description of low-frequency phenomena, it is
necessary to modify the original equation so that
relaxation takes place toward the instantaneous mag-
netic field. ' 4 Theoretical justification of the Bloch
equation was provided by Wangsness and Bloch, ' by
Bloch, ' and by Redheld. 7 The method of these papers
was to develop an equation of motion for the reduced
density matrix describing the spin system, and was
found to be most useful when the perturbation re-
sponsible for the relaxation of the spin system had a
very short correlation time. Sher and Primako6' later
examined the equation of motion for the density matrix
in greater detail.

In the equation-of-motion approach, ' 7 the speciGca-
tion of the initial conditions involves the assumption of
some explicit form for the density matrix describing the
system (the system includes both the spin and its
surroundings, which in the case studied below will be
the conduction electrons in a metal). The choice made
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' F. Bloch, Phys. Rev. 70, 460 (1946).
'R. S. Codrington, J. D. Olds, and H. C. Torrey, Phys. Rev.
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the problem of paramagnetic impurity spin resonance
in metals have been described in a previous paper. "

In its formal aspects, the calculation of the spin
correlation functions describing paramagnetic resonance
has many similarities to the evaluation of other trans-
port coefficients, such as the electrical conductivity of
a metal. ""In particular, Holstein's paper" on the
electrical conductivity of the electron-phonon gas has
had a strong influence on our work. Thus, it will be
shown that it is important to sum the so-called ladder
diagrams occurring in the perturbation expansion of the
two-particle Green's function, and to accomplish this,
an equation for the external-field vertex function is
obtained. Once the external-field vertex function is
known, the spin correlation functions are easily found.

To interpret the work on spin-lattice relaxation in
terms of more familiar concepts, the populations of the
spin energy levels are introduced and related to the
components of the external-field vertex function. The
equation determining the external-field vertex function
is then found to be very similar to the rate equation
often used to determine the rate of decay of the popula-
tions from some initial nonequilibriurn condition.
However, inherent in the linear response theory, in
terms of which the problem is formulated, is the fact
that an external 6eld has been applied to the spin
system. This fact manifests itself in the rate equations
in that the populations are found to tend toward values
corresponding to thermal equilibrium in the instan-
taneous magnetic field. Similarly, the work on the
paramagnetic resonance linewidth is interpreted in
terms of a rate equation which is shown to be a trans-
verse component of the Bloch equation, modified to
include relaxation toward the instantaneous magnetic
field.

A very important aspect of the method described
below is that approximations are made by expanding
various quantities in powers of a small parameter. In
the theory of paramagnetic resonance line shapes, it is
the value of the transverse susceptibility for frequencies
co close to the resonance frequency co+, which is of
interest, and the expansion parameters are p~cp —tp~~

and pcs where p=(kT) ' and Fs is the transverse
relaxation rate. In the theory of spin-lattice relaxation
it is the value of the longitudinal susceptibility for
frequencies close to zero which is of interest, and the
expansion parameters are ptp and ppt, where I't is the
longitudinal relaxation rate. Thus, the susceptibilities
are accurately determined at all frequencies closer than
kT to the frequency at which they have a resonance.

"M.B.Walker, Phys. Rev. 176, 432 (1968). Subsequently this
paper will be referred to as I. Also, in referring to equations from
I, Eq. (3.18) of I, for example, will be referred to as Eq. (3.18)
of I.

"A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii,
Quantum Field Theoretical Methods in Statistical Physics (Per-
gamon, Oxford, 1965), 2nd ed.

~3 T, Holstein, Ann. Phys. (N. Y.) 29, 410 (1964).

The particular problem attacked below is that of an

impurity spin in a metal interacting with the conduction
electrons via an eftective exchange interaction. The
calculation of the resonance line shift is carried out to
second order in the interaction strength, while the
calculation of the transverse and longitudinal relaxation
times is carried out to third order. Since the treatment
is essentially perturbative in nature, the results are
valid only at temperatures relatively high in comparison
with the Kondo temperature. The calculations are of
sufficiently high order, however, that the lowest order
"Kondo-like" corrections to both the resonance fre-
quency and the relaxation rates are obtained. Thus an
idea is obtained of how these quantities change as the
Kondo temperature is approached from above.

A fact which limits the domain of applicability of our
theory is that deviations from thermal equilibrium of
the conduction electrons have been ignored. It is hoped,
in a future article, to extend the method used in this
paper to the case where the deviations of the conduc-
tion electrons from thermal equilibrium are important.

The first detailed study of the paramagnetic reso-
nance and relaxation of paramagnetic spins in a metal
was that of Korringa, "who calculated both the reso-
nance shift and the spin-lattice relaxation time and
stated his now famous relation

Tt (Ate/cp p)
'= (h/4vrk T) (tp,/top) ',

where Ace is the shift of the impurity spin resonance
frequency from ~o due to the conduction electrons, and
~, is the conduction electron spin resonance frequency.
The calculations below show that if coo and or, are
sufficiently different, Eq. (1.1), which is a valid result
at high temperatures, becomes incorrect as the tem-
perature approaches the Kondo temperature.

There is a good deal of recent work" "on the problem
of paramagnetic resonance in metals. This work will
be referred to and compared with our own at appro-
priate places below. It is, however, perhaps not out
of place to reiterate the distinctive features of the pre-
sent paper. These are erst, that approximations are
made by expanding in powers of a small parameter so
that the order of magnitude of the corrections to the
various formulas is known, and is known to be small.
Second, the calculation of the resonance linewidth has

"J.Korringa, Physica 16, 601 (1950).
r' H. Hasegawa, Progr. Theoret. Phys. (Kyoto) 21, 483 (1959);

H. Giovannini, M. Peter, and S.Koide. Phys. Rev. 149, 251 (1966);
H. J. Spencer and R. Orbach, ibid. 179, 683 (1969); R. Orbach
and H. J. Spencer, ibid. 179, 690 (1969); M. Peter, J. Dupraz,
and H. Cottet, Helv. Phys. Acta 40, 301 (1967); H. Cottet, P.
Donze, J. Du raz, B. Giovannini, and M. Peter, Z. Angew. Phys.
24, 249 (1968; S. Schultz, S. R. Shanabarger, and P. M. Platz-
man, Phys. Rev. Letters 19, 749 (1964); D. C. Langreth, D. L.
Cowan, and J. W. Wilkins, Solid State Commun. 6, 131, (1968).

"H. J. Spencer and S. Doniach, Phys. Rev. Letters 18, 994
(1967); H. J. Spencer, Phys. Rev. 171, 515 (1968); V. L. Wang
and D. J. Scalapino, ibid. 175, 734 (1.968); R. Orbach and H. J.
Spencer, Phys. Letters 26A, 457 (1968); B. M. Khabibullin,
Fiz. Tverd. Tela 9, 1874 (1967) /Soviet Phys. Solid State 9,
1478 (1968)g.
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been carried out to third order in the interaction
strength, at which point, Kondo-like terms first show
up. Thirdly, a discussion of the frequency-dependent
longitudinal spin susceptibility is given.

II. PHENOMENOLOGICAL DISCUSSION OF
PARAMAGNETIC RESONANCE

LINE SHAPES

Suppose that a paramagnetic ion with an effective
spin 5= —, is subjected to a strong static magnetic field
along the s axis and a small microwave field normal to
the s axis. The interaction between spin and the static
field is described by the Hamiltonian

H =a)p5, = —hpS, . (2.1)

V(t) = ——',(S+hi +5 hi~)e' '"+'~t, (2 2)

where 5~=5 &i5„,h~~ = h~, &ih~„and e represents a
positive infinitesimal, indicating that the microwave
field is turned on adiabatically at an infinitely remote
time in the past.

The response of the spin variable 5, to first order in
the driving microwave field, is given by'

where
(5 ),= x (~)h, e-'"', (2.3)

Units A=1 are used, and hp=yHp, where y is the
gyromagnetic ratio and Hp is the applied static mag-
netic Geld; henceforth, hp will also be referred as a
magnetic field. Also, note that (5,)= —

2 tanh(2P&uo) and
that the static susceptibility defined by Xp= B(5 )/Bho,
is given by Xo——~p sech'( —',p~o). The interaction between
the spin and the microwave field contributes, to the
Hamiltonian of the system, a term

essential to take into account the fact that relaxation is
to the instantaneous value of the applied magnetic field
if one is to obtain correct results at low frequencies, and
in particular, for the longitudinal susceptibility. In our
notation, the Bloch equations can be written

8(S)t (5,) t
—(S,)(hi, /ho')= (S),yh(t) —i

T2

(S.) t
—L(5,)+xohi, (t)j—jK —,(2.5)

T1

where h(t) =ho'+hi(t) includes both the static and
microwave applied magnetic fields. The static field
hp ho+h ff where ho is the externally applied field,
and h, « is the effective field at the impurity spin due to
the conduction electrons. The circularly polarized com-
ponent of Eq. (2.5) which is proportional to the vector
1+1J is

a(5 ),
ZMt2(5 ) t

(5 )t —(5.)(hi /ho')
— —i(S,)h (t) . (2.6)

T2

In Eq. (2.6), the static field ho' has been written
hp = —Cott. Also, h (t) is assumed to be a small quantity
and only terms linear in h (t) are retained. The assump-
tion that (5 ), and h (t) have the time dependence
exp( —itot) leads to the result

x ((u) =—,'i dt(LS (t),5 ]) "" ". (2.4) (uit+ir—2 (5,)x ((0) =
(v —(utt+ir2 hp'

(2 7)

The subscript t in (5 ), indicates that the ensemble
average is over an ensemble describing the nonequili-
brium state of the system at the time 3 in the presence
of the driving field. Note that Eq. (2.3) does not contain
terms proportional to h~+. This is because it has been
assumed that (LS (t),5 7)=0.

The phenomenological equations of Bloch, ' modi-
fied to include relaxation towards the instantaneous
value of the magnetic field, ' 4 are known to provide an
accurate description of a wide variety of paramagnetic
resonance and relaxation experiments. It is thus reason-
able to use the Bloch equations to obtain a phenomeno-
logical expression for X (cv). Pake" and Deutch and
Oppenheim" have previously discussed certain aspects
of the relation of the Bloch equations to the Kubo
susceptibilities. It should be emphasized that it is

G. E. Pake, Paramagnetic Resonance (Benjamin, New York,
1962).

'8 J. M. Deutch and I. Oppenheim, Advan. Mag. Res. 3, 43
!1968).

~t2+ir2
X (hatt) =xp pb)t2((1

~tt+ir2
(2.8)

whereas in the low-temperature limit pari2))1, Eq. (2.7)
gives

11—i(r2/~~)
x ((u) = ——,ptdit»1.

2 a) —t2+ir2
(2.9)

The microscopic theory presented below demonstrates
that the expressions (2.8) and (2.9) are correct so long
as the conditions P ~

cu —catt
~
&&1 and PI'2&&1 are satisfied.

Thus the validity of (2.8) is independent of whether the
resonance frequency co& is large or small relative to the
relaxation rate 12,' furthermore, note that the zero-
frequency limit of X (cu) is X (0)=Xtt, as it should be.
With respect to the validity of (2.9), note that the

Two limiting cases of (2.7) are of interest. In the
high-temperature limit, Pa&t2«1, (5,)~—XOMt2 giving
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conditions P&oz))1, PI'2&(1 can only be satisfied when
re~))1'2, thus, to lowest order, L1—i(1'2/~a)7= 1, and
in this order this microscopic theory obtained below
agrees with (2.9).

The condition PI'&(&1 for the validity of the theory
can be understood in a simple way. Suppose, for
example, that we estimate the contribution to the
resonance linewidth which is due to the finite lifetime
of the spin eigenstates by using ordinary time-dependent
perturbation theory. The expression for the probability
per unit time of a spin Rip due to the scattering of a
conduction electron contains a 8 function expressing
the law of energy conservation. The argument of the
8 function will have an uncertainty equal to the un-
certainty in the energy of the spin, which is the order of
I'2. However, this uncertainty will not be important if
the other energy-dependent factors in the expression for
the transition probability vary little when their energy
is varied by an amount of order I'&. Since the most
rapidly varying factors are Fermi factors, which vary
significantly when their energy is changed by kT, the
usual expression for the transition probability will be a
good approximation only when I'2«kT. %hile exact
expressions for the paramagnetic resonance line shape
provide the starting point of the investigation below, it
is found that, in the performance of certain integrals, it
is convenient to neglect energy uncertainties in certain
expressions and to approximate them by 8 functions
Le.g. , see Eq. (4.32)7; the situation there is very similar
to the one just described and leads to the conditions
pl'&&(1 and p ~

&u
—co+

~
&&1 for the validity of our theory

of line shape.
Spencer and Orbach" recently suggested that the

transverse spin susceptibility should have the form
(2.8) and showed how (2.8) could be derived in a
phenomenological way by insisting that the impurity
spins relax to the instantaneous microwave field. There
is, however, some disagreement between various authors
(see particularly Orbach and Spencer" ) as to whether
the exchange coupling between the spins and conduction
electrons can cause relaxation to the instantaneous field
or whether relaxation to the instantaneous field is due to
other relaxation mechanisms. The microscopic deriva-
tion given below partially clarifies this point by showing
that the exchange coupling between the spin and the
conduction electrons does, in fact, cause relaxation to
instantaneous value of the applied field, at least when
the departures of the conduction electrons from thermal
equilibrium can be neglected.

It is interesting to note that the assumption

&P (t),s.7)= &Ls-(o),s.7) -'-"-"~
~

gives

which is in marked disagreement with (2.7) if the
resonance frequency is sufficiently low that it becomes
comparable to the relaxation rate. On the other hand,

the assumption

&{S (t),S,})=&{S (O),S,})-'- —,(2.1O)

where {S (t),S+}=S (t)S~+S+S (t), can be shown to
lead to the correct results, (2.8) and (2.9), assuming
Pr,«1 and P~

—~, (&(1.
Besides demonstrating the correctness of the phe-

nomenological equation (2.5) under certain conditions
(these conditions have been outlined above), the micro-
scopic theory described below gives quantitative esti-
mates of co~ and I'2, correct to second and third order in
the interaction strength, respectively. Thus, co+ is
given by

~~= ~o{1+(Jp) (~ /~o) 2(~'p—)'
XLlnD/T+C —(4&/~0) ln27} . (2.11)

There is a misprint in Eq. (3.17) of I which, if corrected,
gives (2.11)."The result obtained below for I'~ in the
limit kT)&coo, ~, is

I"2=47r(J'p) 'k T
X{—51+(J/J')'7 —4(Jp)LlnD/T+C7}. (2.12)

Here, D is the half-width of the conduction-electron
energy band, p is the conduction-electron density of
states, C is a constant approximately equal to unity,
ba=ao —co„and J and J' are the longitudinal and
transverse components of the exchange interaction
defined by Eq. (4.3).

At temperatures well above the Kondo temperature,
kTz= D exp( —Jp) ', perturbation theory converges
rapidly. It is then sufficient, for most purposes, to
calculate corrections to the resonance frequency only
to first order in J and J', and to calculate the linewidth
to second order in J and J'. However, as is evident from
(2.11) and (2.12), as the temperature is lowered toward
the Kondo temperature, the next higher-order con-
tributions to the resonance shift and relaxation rate
become increasingly important. For temperatures lower
than the Kondo temperature, (2.11) and (2.12) are
completely inadequate, and a nonperturbative treat-
ment is required.

The new result which is present in Eqs. (2.11) and
(2.12) is the expression for the lowest-order (i.e., third-
order) contribution to the relaxation rate I"2, which is
logarithmic in the temperature. In I, it was shown that
the individual level widths contained terms proportional
to ln(D/T) in third order, but that these terms ac-
counted for only a part of the full resonance linewidth
I'~. Below, all contributions to I'2, to third order, have
been calculated and the result is Eq. (2.12).

The other terms in (2.11) and (2.12) have been
obtained previously. Townes, Herring, and Knight"
estimated the magnitude of the first-order correction to

' I wish to thank R. Orbach for drawing this to my attention,
and for a discussion of Eq. (2.5) in the limit Pcs'))1."C. H. Townes, C. Herring, and W. D. Knight, Phys. Re@.77,
852 (1950).



3694 M. B. WAL KER

the resonance frequency and showed that this correc-
tion explained the shifts of the resonance frequencies
of nuclei in metals observed by Knight. " (For nuclei,
both ceo and J would be negative. ) Shortly afterward,
Korringa' gave a detailed calculation of the first-order
resonance shift and the second-order contribution to
spin-lattice relaxation and stated his now well-known
relation LEq. (1.1)g between them. The first direct
calculation of the second-order contribution to the
linewidth (T2 had previously been inferred from the
relation T&= T2, which is valid only when J'= J, and
Korringa's result'4 for 2'i) was given by Orbach and
Spencer. ' Interest in obtaining higher-order corrections
was sparked by Spencer and Doniach's letter, "which
showed that the second-order contribution to the g shift
had a Kondo-like logarithmic dependence on tempera-
ture, and by Khabibullin's article, "which predicted a
Kondo-like temperature dependence of the linewidth.

The interpretation of paramagnetic resonance experi-
ments in metals is often carried out in terms of the
surface impedance of the metal. The surface impedance
can be determined in terms of the susceptibility x (&o).

Suppose, for example, that the metal occupies the region
of space s&0, that a static magnetic field is directed
along the z axis and that a circularly polarized electro-
magnetic field proportional to i+ij is normally incident
on the metallic surface. The surface impedance can then
be shown to be"

(2.13)

where x (&u) relates 3II to H, i.e., M =x (co)H . For
Pa&ii«1, x (~) will be given by Eq. (2.8) with Xo replaced
by pp, where xp relates the equilibrium magnetization
density 3E, to the static field Hp, i.e., 3f =xpHp. The
quantities x (cu) and X (~d) differ only because we have
chosen to use reduced units throughout this paper. Also,
in Eq. (2.13) 0. is the electrical conductivity of the metal
and ho ——(1+i)b '), where 8 is the skin depth. Equation
(2.13) could also have been obtained from the work of
Dyson.

III. PHENOMENOLOGICAL DESCRIPTION OF
SPIN-LATTICE RELAXATION

In one type of paramagnetic relaxation experiment, '
a radio-frequency magnetic field is applied along the
s axis, which is taken to be the direction of the strong
static external field. The effect of this radio-frequency
field is accounted for by adding to the Hamiltonian of
the system a term of the form

V(t) = —S,h exp/( —ico+ e)t).
"W. D. Knight, Phys. Rev. '76, 1259 (1949).
2' This equation is the zero diffusion limit of Eq. (3.23) of M. B.

Walker, Can. J. Phys. 48, 111(1970).
'3 F. J. Dyson, Phys. Rev. 98, 349 (1955)."C.J. Gorter, Paramagnetic Relaxation (Elsevier, New York,

1947).

In analogy with (2.1) and (2.2), the response of the
s component of the spin to this driving field can be
written

where
(85 ) =X(&o)h8 '~' (3.1)

x(a&) =i d&($5, (&),S,j)e '"— ' (3.2)

and 85.=5,—(S,), (5,) being the value of 5, averaged
over a thermal equilibrium ensemble.

The modified Bloch equation (2.5) may be used to
obtain a phenomenological expression for the longi-
tudinal susceptibility X(&u). By taking the s component
of (2.5) and retaining only terms linear in hi„one finds
the equation

a(5,), (5,) —L(5,)+&oh, (t)j
(3.3)

The assumption that all quantities have the time depen-
dence e '"' and the use of (3.1) leads to the result

x((u) = xo/(1 —i(uTi) . (3.4)

alld

bn, =n, (t) n—
nt =nto+x(0)h„(/),
ni =ni' —x(0)hi, (t) .

(3 &)

(3.8)

The quantities 8, defined by (3.8) are the values which
the populations would have at time t if the system were
to come instantaneously into thermal equilibrium in
the total (static plus driving) magnetic field. Thus Eq.
(3.6) assumes that the populations relax toward their
instantaneous thermal equilibrium values. If all
quantities in (3.6) are assumed to have the time
dependence e '"', these equations are easily solved, and
the results, when combined with (3.5) and (3.1), give
again the expression (3.4) for X(~d). One additional
piece of information is obtained, however, and this is
that the relaxation rate I"~ is given in terms of the

Another way of arriving at an expression for the
longitudinal susceptibility is to note that (85.), can
be written

(85,),= —',fbnt(t) —8m&(t) j, (3.5)

where bm, (t) =n, (t) —n, ' is the deviation of the popula-
tion of the spin level 0, n, (t), from its thermal equili-
brium value n, '. The populations obey the rate equa-
tions

t cf. Eq. (30), Van Vleck and Weisskopf'j

d'art (t)
Viiii, 6nt+7iiit Oni, —, ,

(3 6)

dani�(/)

—=mggMt —mgt Ong,
dt

where
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transition probabilities zv„by
1 t=tct4+rc4t ~ (3 9)

where 8(t) = 0, t(0 and 8(t) = 1, t) 0. The increment in
the magnetization is given by

The microscopic discussion given below shows that
(3.6) is correct to third order in perturbation theory, in
the sense that if the transition probabilities are calcu-
lated to third order using the results of ordinary time-
dependent perturbation theory and are substituted into
(3.6), correct results are obtained. To go to higher than
third order it is necessary to use a renormalized inter-
action between the spin and the conduction electrons.
The microscopic discussion also shows that (3.6) and
(3.4) are valid only for P~ I'~((1 and for frequencies
sufficiently low that Pro«1.

Another point of interest is that the assumption

({8S,(t),S,})= ({8S,(0),8S.})e r'~'~ (3.10)

is equivalent to the assumption of the validity of (3.3)
in that both lead to the same expression, Eq. (3.4), for
the longitudinal susceptibility. To prove this, the
identi6cation Xp ——P((bS,)') should be made.

The above description applies to experiments which
measure directly the susceptibility as a function of
frequency. "A second type of experiment, " in which
the transient recovery of the paramagnetic resonance
absorption is observed following the application of a
saturating pulse, is more difficult to describe theoreti-
cally, since the saturation of the spin system is a non-
linear process. It is possible, however, to think of a
closely related experiment which can be described in
terms of linear response theory. Suppose that one slowly
switches on a small increment in the static Geld be-
ginning at time t= —~ and then suddenly switches it
off again at t=0. A measurement of the rate at which
the magnetization decays to its thermal equilibrium
value then gives the spin-lattice relaxation time. The
perturbing part of the Hamiltonian associated with the
prescribed process is

(rpz happ

ppp

1—4Jp ln—. 3.15

Another point of interest is that for an isotropic ex-
change interaction, the relation T~ ——T2 is correct to
third order in J Lcf. (3.14) and (2.12)j.

IV. MICROSCOPIC DESCRIPTION OF
PARAMAGNETIC RESONANCE

LINE SHAPES

The evaluation of the transverse impurity spin
susceptibility will be described in this section. The
notation of I will be closely followed, and it will be
assumed that the reader has an intimate knowledge of
the Grst three sections of that paper. Before proceeding
further, however, a few relevant points from I will be
reviewed.

The paramagnetic impurity, which is characterized
by an effective spin S=-'„canoccupy either of two
eigenstates,

~ f) or
~
J). The 6rst main point to note is

that Abrikosov's" diagram technique for spins is used.
Thus, for each spin eigenstate ~m), a pair of pseudo-
fermion creation and annihilation operators, a and
a, which obey the usual fermion anticommutation
relations, is introduced. In the pseudofermion repre-
sentation, the spin operators are

(4.1)g of spins interacting with conduction electrons;
the result obtained is valid when pro~))1 and when the
temperature is higher than the Kondo temperature, and
is given by

1' =4s (J'p)shT{1 4Jp—/ln(D/T)+C j}. (3.14)

As mentioned above, the second-order contribution to
I'& was obtained previously by Korringa. It is interesting
that the Korringa relation (1.1) fails to be valid (unless
happ= rp and J=J') as the temperature is lowered toward
the Kondo temperature. By comparing (3.14) with
(2.11) for the case of isotropic exchange, i.e., J'= J', it
can be seen that a suitable extension of the Korringa
relation to include the lowest-order Kondo-like cor-
rection is

(3.12)

Again, the component of the linearized Bloch equation
along the s axis can be used to obtain a phenomeno-
logical expression for the response. The solution of Eq.
(3.3) with hr, (t) =h8( —t)e" is the required response, and
is found to be

(BS,),=Xphe", t (0
(BS,),=x,he rr' t)0. (3.13)

Below, I'~ has been computed to third order in the
interaction strength for a particular model (see Eq.
"P. L. Scott and C. D. JeGries, ':Phys. Rev. 12/, 32 (1962).

and the explicit form of the Hamiltonian is

H), =g X„a„ta+g e„c~tc„

(4 1)

+ Q J„.
„„

a ta c„tc,. (4.2)
mtn'uy'

Here, p—= (k,o), and X =X+e, where

6f = 2C00) 64 =
gGOO )

1 1

and X will eventually be allowed to tend to infinity so
as to project out unphysical pseudofermion states. In
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explicit calculations, J» will be assumed to be
independent of k and k' and denoted by J
furthermore, its only nonvanishing values will be
assumed to be

RIld
Jitti =Assi = —Jtiii = —Ait t = —(I/O&)

Ji i&i =Ai ti = —(I'/fl) . (4 3)

Note that Eq. (2.11) of I is incorrect and should be
replaced by (4.3).

The single-particle pseudofermion propagator is de-
fined to be

P(~ —X„)&&1will be satisffed for all frequencies for
which G (u&+io+) has an appreciable magnitude, and
it will in general be a good approximation to keep only
the first term in (4.9). Similarly, I' (co) can be replaced
by r„(K). Equation (4.8) can now be written as

G (co+io+) =Z„/(o)—I +ir„), (4.11)

where I' =Z I' . Finally, it should be noted that if, in
the rules for evaluating the diagrams, the propagators
G (a&&io+) are replaced by the propagators

(4.12)

G-(s.)=— dg e'""(T{a„(u)a„t)) (4 4) while, at the same time, the exchange interactionJ» is replaced by its renormalized value

and can be written in the form +mm'»' (ZmZm') +mm'y g' y (4.13)

G„(s„)=
I
s.—X —3E„(s.)j '. (4.5)

M„i'&(z„)=g J„„„~f+(e,) (4 6)

m'us'

The first- and second-order contributions to the self-
energy are given by

the final result for the contribution to any given
diagram will remain unchanged.

It remains to show that (8"6 /R&") p"r . On
differentiating the expression (4.7) for the second-order
contribution to the self-energy, it is found that

BM (o)+io+)
I ~mm'»' I

m'yp'

aa (~)
g —I

826

BM
(4»)

A rough argument, to be sketched below, shows that
the nth derivative of 6 (ao) with respect to cv has a
magnitude which is the order of p"r . The expansion
(4.9) is thus essentially an expansion in powers of the
parameter P(co —X ). Since the work of this paper will
be restricted to situations where Pr «1, the condition

where f+(e~) =
I exp(&Pe~)+1j '. The rules for finding

the higher-order contributions to 3II (s„)are given in I.
The quasiparticle approximation, which plays an

important part in subsequent calculations, can be
justi6ed as follows: Consider the analytic continuation
of the propagator G„(s„)from the upper half-plane to
the real axis, i.e., consider

G ( + o') =
I

—&-—~ ( )+ r-( )j ', (4 8)

where 3f (io+io+) =6 (cu) iI' (co)— G(~.+io+) is
sharply peaked at the frequency co=3, +6 (&u) and in
general, it is the value of G (id+io+) for frequencies &u

within I' of the peak which is of interest. To proceed
then, consider the function f(cd) defined by f(co) =&a

—6 (~d). The renormalized energy K is de6ned to
be the solution of f(li )=0. The Taylor series expansion
of f(co) about the point cg=X is

f((0)= ((v —X )Z„'+(~0—li„)'I' '+ .
, (4.9)

where

If the quasiparticle approximation is assumed on
the right-hand side of (4.14), the differentiation of
G (~d+e~ —e„.+io) with respect to co can be replaced
by differentiation with respect to e~. An integration by
parts then transfers the operation of differentiation to
the Fermi factor f+(e„)(the variation of J» and
the conduction-electron density of states with energy is
relatively slow and can be neglected). Since (8f+(e)/Be)

Pf+(e)f (e—), one effect of the differentiation of
3E (&o) is to multiply it by the factor P. The extra factor
of f (e) in the integrand also reduces the domain of
integration, since it goes to zero rapidly for e& —kT.
Comparison of the expression for BA /Bco with that for
F now leads to the result M /Bid Pr . Higher-order
differentiations and higher-order diagrams can be dis-
cussed in the same way. This discussion has provided a
self-consistent justification of the quasiparticle approxi-
mation, for the assumption of its validity on the right-
hand side of (4.14) is shown to lead to the conditions
which are necessary for its validity.

Since the quasiparticle approximation will be made
throughout from this point on, it will be unnecessary to
retain the tildes to denote renormalized quantities.
Thus, Eq. (4.12) will be written

(4.15)

fron1 ilow on.
It is now possible to proceed to a study of the two-
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particle propagator G +(x„)defined by relation

G ~(x„)= —4n du e*""(T{5(N)5+)), (4.16) Z1

x (or) = ', G ~((—u+-io+).

G +(x.) is determined by the equation (see I)

(4»)

Zj

where
~—Lzzkg (1y z

—P~o) —1 (4.17)

and 5 and 5+ are given by Eq. (4.1). Once G +(x„)is
known, X (&v) can be found from the relation I„(zg,zz) =

d(u I((o)

2Ã s] Z2 —
cO

(4.26)

as in Eqs. (4.9) and (4.10) of I.
The analysis of Eq. (4.24) begins with the conversion

of the sum over s~ to a contour integration. Thus,

To begin with, a treatment correct to second order
in perturbation theory will be given. For this purpose,
I„(zq,zz) can be written

1+P 'Z Fp(zl)RF(zl, zz)FV(zz) ~ (419) g( „)
ZQ~Z2 2' Z

da) I(cv)
dz2

2z-zg —zz —(v z "+1
where the reducible particle-hole interaction R is given
in terms of the irreducible interaction I by the Bethe-
Salpeter equation

R,(zg, zz) =I„(zg,z~)

+P ' Q I„(zg,z,)F„(z,)R„(z,,z,) (4.20)
Z3

and
F„(z3)= Gt(z3)G)(za x„). —(4.21)

If Eq. (4.20) is iterated, the result can be written
symbolically in the form

R= I+IFI+IFIFI+ . (4.22)

Obviously the (n+ 1)th term differs from the nth by the
presence of an additional factor FI. It will be seen
explicitly below that the extra factor l contributes an
extra factor of the order of magnitude of I' to the
(n+1)th term, whereas a partial fraction expansion of
the term F=GtG csee (4.32)j shows that for fre-
quencies close to the paramagnetic resonance frequency,
it contributes an extra factor the order of F '. The
product of these two additional factors is of the order
of unity, indicating that all terms in the series on the
right-hand side of (4.22) must be summed to obtain a
good representation of E.

Now consider the external-6eld vertex function
A(z~, zq —x„),defined in terms of the reducible particle-
hole interaction by

1
+ — G~(zg)G~(zz —x„)&(zg)zz —x„)) (4.27)

e
—&" 1

where the contour C~ is shown in Fig. 1. The term
(e ~"+1) ' in the factor in square brackets is included
to make the integrand nonsingular at the point
s2=s& —~. It will now be assumed that the only singu-
larities of the function A(z~, zq —x„),considered as a
function of s~, for fixed x„,are branch cuts at the lines

Imzq ——0, and Im(zq —x„)=0. This assumption can be
shown to be a self-consistent one. The integration over
the contour C& can thus be replaced by an integration
over the contour C& shown in Fig. 1.Finally, A.(z&, z& —x.)
is analytically continued in the s plane to the boundaries
of its regions of analyticity, namely, Ims&=0 and
Im(z& —x„)= 0, and x„is then put equal to &u«+i0+, a&.

being the externally applied frequency. The three
different boundary value functions obtained by this
procedure are

h.++(x,(o,„)=A(x+i0+; x—(o, +i0+),
A (x,cu, ) =A.(x—i0+, x—(o. —i0+),

Im (z~-x„)=0

A(zy) zy —xp) =1+P 'Q R„(zg,zz)Fp(zz). (4.23)

Equation (4.20) can be combined with Eq. (4.23) to
yield the basic equation

A(zg, zz —x„)=1+P ' Q Ip(zi, zz)

( ii+
I( i& i( c

( iig

Im z&=0

)&F„(zz)A(zz,zz —x„), (4.24)

which will be used to determine A. Once A is known, the
two-particle propagator can be determined using the

FIG. 1. Contours used in the evaluation of integrals
(see text).
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and

A~ (x,M. )=A(x+i0+, x—M. —i0+).
Now, consider the expansion

The three coupled integral equations obtained for these &, & &, 0+x f~1 t x t~1three functions can be summarized in the equation

A„,„,(x,M, ) =1—
2%-i

dx' —I(M)e( —M)
2'

8
girt + ~ (4 30)

Bx x—Xt+i0+

Gt(x'+i0+)Gi(x' M, —i0+)—A+ (x',M. )
X

X X M+Zgi

Gt(x' —i0+)Gg(x' —M, —i0+)A (x',M, )

X X M+17)i

Gt(x'+i0+)Gi(x' M. +i0—)+A +~( 'x, .M)

X—X' —M+ZY/g

Gt(x'+i0+)Gi(x' —M, —i0+)Ap (x',M, )

X X —M+1'g2

When integrating the product of (4.30) and some
slowly varying (in the sense described above) function
over x, an integration by parts transfers the operator
8/Bx in the second term of (4.30) to the slowly varying
function. Thus, for the purposes of a rough calculation,
8/Bx can be replaced by P, and it can be seen that the
expansion (4.30) is an expansion in the parameter Prt.
Since the quantity pr& will be considered a small
quantity throughout this paper, it will be generally
permissible to keep only the 6rst term in expansions
such as (4.30). In a similar way, it is possible to argue

(4.28) that the expansion

where p stands for 0+ or 0; also, the quantity
[exp(Ps2)+1j ' in (4.27) has been put equal to zero,
since s2 ~ x' in. (4.28), and only values of x' such that
x' X are important; n(M) is defined by

n(M) = [ee"—1]-'.

—+ (MR —M ex
—1r))

x—a), —) g
—zI'g x—P t —z0+

8 1
X — —+ " (4.»)

Bx x—) g
—i0+

where co&=At —A, &, is essentially an expansion in the
The product Gq(x+i0+)Gi(x M,x i0+) —can —be ex- parameter p(MR M,„irq).—Thus—, (4.29) can be written

panded in the partial fraction expansion

G&(x+io+)Gi(x —M. —io+) = —(M, —M +ir)—' 2s.i5(x —'Ag)

Gt(x+i0+)Gi(x —M. —i0+) =—,(4.32)
Mex MR+Zr

(4.29)
x Xg+ir—g x—M, —Xi —irg where I'=rt+ri, provided pr«1 and the external

frequency is suKciently close to MR that /~M —MR~&&1.
where MR ——Xt —X& and I'= rt+r&. Now, notice that the A similar expansion of the quantity
factor

dMe( M)I(M)(x —x' M+iq) —'— Gt (x i0+)Gi (x M—i0+)——

shows that the erst nonvanishing term is

in (4.28) is a slowly varying function of x' in the sense
that it varies appreciably only when x' varies over an
interval the order of kT. Furthermore, it will be assumed
that A»»(x', M, ) is slowly varying in the same sense.
[This assumption allows A„,„,(x,M. ) to be computed and
the result, Eq. (4.35), is indeed a slowly varying func-
tion, a fact which provides a self-consistent justification
of the original assumption. ] On the other hand, the
factor in square brackets in (4.29) is rapidly varying in
the sense that it changes appreciably when x varies over
an interval the order of I' near x Xt or x Xg+M,„.
(Recall that throughout this paper the assumption
pr «1 is made, which allows us to make this distinction
between slowly and rapidly varying functions. )

8
Gt (x—i0+)Gg (x—M —i0+) = —— (4.33)

Bx x—Xg —i0+

The corresponding expression for

Gt (x+i0+)Gg (x M i0+)——

can be obtained by taking the complex conjugate of
(4.33).

The expressions (4.32) and (4.33) are now substituted
into (4.28). The second and third terms in the curly
brackets on the right hand side of (4.28) can be ne-
glected in comparison with the first and fourth terms,
since they are smaller by the factor p(M, —MR+iI').
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Thus, (4.28) becomes

+'glTJ2(x) ppax)

A+ (xt,a), ) GM—rs( —(o)I(pp)
(d —

Gpss+

ZI 27l

1
X((4.34)

x—Xg —M+17/y x—Xg —N+z'gp

Equation (4.34) yields 4++=4 =1, and

A~ (x,(a. )
in( x+).&)—I(x )g)A+ —(Xg,(u. )

(4.35)
M —ppg+iT

It is now a simple matter to solve (4.36) for

~ (Xg,or) and to substitute the result into (4.39), thus
finally arriving at an expression for the transverse
susceptibility comparable to that derived earlier by
phenomenological arguments. Before doing this, how-
ever, the connection between Eq. (4.36) and the phe-
nomenological equation of motion (2.6) for (S ), will be
demonstrated. This is easily done by first eliminating
A+ P,q, m,„)from (4.36) in favor of X (&u) using (4.39).
Equation (4.36) then becomes an equation for X (cv),
which can be written

—i(uX ((o) = (—keg —I'2)& (pp)

+-',i tanh-', t3pp ,'iP(co——co~+—iI'2), (4.40)

By putting x=kq in (4.35), this equation becomes an
equation for h+ (Xp,&o. ), namely,

where

(4.41)

where

Ap (Xg,pp, ) =1—
pp~+iT

(4.36)

(4.37)

Since P~~ —ppgi&&1 is assumed, the function tanh2'p~
can be expanded in a Taylor series about the point
pp=pp~ giving, for the last two terms of (4.40), the
expression

The method of evaluating Eq. (4.25) for G +(x„)is
much the same as the method just used for solving the
equation for A. First the sum over s& is converted to a
contour integral over the contour C2 of Fig. 1 giving

1
(4n) 'G +(pp+i0+) = ——dxf(x)

2%i

&& [(1—ee")Gt (x+iO+) Gg (x—pp —i0+)A+ (x,a). )

—Gg (x—i0+)Gg (x—(o —iO+)

+Gg (x+pp+i0+) Gg (x+i0+)), (4.38)

where the result 4++=5 =1 has been used. It is
important to note that at sufFiciently low frequencies co

the factor (1—e~") Ppp is a small quantity; thus, under
certain conditions, all three terms in brackets in (4.38)
can be of comparable magnitude, and it is not per-
missible to neglect terms proportional to

Gt (x+ i0+)Gg (x pp+ i0+)—
and

Gt (x i0+)Gg(x —~ i0+)——

as was done in the derivation of the equation for A.
When (4.32) and (4.33) are substituted into (4.38) and
the integrals over x are performed, it is found to lowest
order in Pl' and P~~ —a&~~ that

X (co) = —-', G +(o)+i0+)

2 tanh(~~Pcs)A„P g,a))
+-'P (4 39)

4&8+iI

—i(S,)—i((o—(ug) (-,'P —xp)+gPI" 2. (4.42)

The second of the three terms is negligible both when
P&ug))1 and when P~g&&1. Furthermore, the third term
is comparable to (S,) only when P~z&&1 (since Pl'2&&1

is always assumed) and can therefore be replaced by
[(S,)/hp')I'2. Now, multiplying (4.40) by

h (t)=h exp( —idiot)

and writing (S )g=X (a&)h exp( —ippt) gives

d(S-)~
=(—i~g —I'2)(S )g

+[(S )/hp )I'2h (t) i(S )h (t) (4—.43)

which is precisely Eq. (2.6).
It was shown in I that I'g and I"g correspond to the

widths of the spin-up and spin-down energy levels as
determined by the standard quantum-mechanical
damping theory suitably generalized to take into
account finite temperature e8ects. It was also stated in
I that the paramagnetic resonance line width was not
simply a sum of the two individual level widths, but
that a complete theory should include vertex corrections
as well. This complete theory has now been provided,
the contribution F, being the contribution of the vertex
corrections to the transverse relaxation rate given by
Eq. (4.41).

It is not dificult to generalize these results to third
order in perturbation theory. To do this the expression
for the third-order irreducible interaction is needed.
This expression can be written

I„(sg,s2) =
dM I(s]) sl xp) z2, s2 xp) M)

2' Sy —Sg —
GO
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where

I(slv si xvj spv s2 xvj ~) =2s P JtmipnpxJmttppp2Aimpaf (ppa)
4'+1

PIP2Paml

+[f (ppi)G-i(sl —ppt+ pps) f—(pp2)Gmi(ss —p»+ppe)]~(ip —ppi+ppn)

+2Ã P Jimypgp2 JmgJ, pypIJtt pgpif+(pp) [f (ppg)Gmi(si & p+ipp2 xv)
PIP283ml

f—(p»)G, ( s2 p»—+p» x„—)]+two similar terms. (4.45)

The first two terms in (4.45) are the contributions of
the two diagrams in Fig. 2, and the "two similar terms"
referred to are the contributions of the two third-order
diagrams identical to those of Fig. 2, but with the arrows
on the conduction-electron lines reversed in direction.

The main point to note in (4.45) is that the third-
order particle-hole interaction has the same analytic
properties as the vertex function A(si, si —x„)examined
above, that is to say, considered as a function of s'& or
sp for x„fixed, J(si, si —x„;sp, s& —x„;cu) has as its only
singularities branch cuts when Imsi= Im(si —x„)= Imsp
= Im(s2 —x„)= 0. Thus, the contour integration and all
the steps involved in the derivation of (4.36)—(4.43)
from (4.23) and (4.25) can be carried out exactly as
above. Instead of (4.37), however, the quantity I'„is
defined by

I' „=—lim n( x+Xt)I(—x+i0+, x (u,„i0+—;'—

X,yio+, ~,—,.—~0+; *—~&) (4.46)

where I'„is real. Formula (4.43) is again obtained.
The resonance line width and the shift of the reso-

nance frequency can now be evaluated explicitly. This
has been done for the simple s-d exchange interaction
model described by (4.3). Furthermore, it was assumed
that the temperature is sufficiently high that kT))MO M, .
To second order in perturbation theory, the resonance
frequency is given by ~+= Xt —X&. Since the X 's are the
renormalized spin energies, the resonance frequency can
be written a&g=G)p+Dg —A$ where ppp is the resonance
frequency in the absence of the interaction. The level
shifts Ag and Ag were calculated in I, and the result of
this calculation was quoted earlier [see Eq. (2.11)].

Whereas terms depending logarithmically on tem-
perature appear in the second-order result for the
resonance shift, they do not appear in the linewidth
calculation until third order. It thus seems to be con-

/

V

FIG. 2. Two of the four diagrams contributing to the third-order
irreducible particle-hole interaction,

sistent to calculate the linewidth to third order in
perturbation theory, while calculating the resonance
shift to second order. The individual level widths Ft
and I'q were given in I to third order. I' can be
evaluated to third order by substituting (4.45) into
(4.46). Finally, I' t, I'i, and I'. can be combined as in

(4.41) to give the transverse relaxation rate I'2, the
explicit formula for the final result has already been
given [Eq. (2.12)].

As pointed out at the beginning of this section, the
exchange integral used in these calculations should be
renormalized in accordance with the prescription (4.13).
Note, however, that the first-order contribution to the
self-energy (4.6) is frequency-independent, so that
(Z Z )'I'=[1+0(J')].Thus it is permissible to use
an unrenormalized exchange integral in (2.11) and
(2.12) and still to have these expressions for the reso-
nance frequency and the linewidth correct to second
and third order, respectively.

V. MICROSCOPIC DESCRIPTION OF
SPIN-LATTICE RELAXATION

The theory of spin-lattice relaxation presented here
is based on the evaluation of the longitudinal sus-
ceptibility given by (3.2). The relevant Green s function
is therefore

G'(u) = —(T{5.(u)S,}). (5.1)

The prime indicates that the Abrikosov representation
has not yet been introduced. In the Abrikosov repre-
sentation, the Green's function (5.1) is written

G(u) = —n(T{ni(u) —ni(u), nt —ni}),
where

~ —i~ski(1 s—tlap) —1 (5 2')

(5.2)

The constant o. has been determined in such a way that
(5.1) and (5.2) are equal in the absence of the interaction
between the spin and the conduction electrons. The
presence of interactions modifies the value of the
constant e, but the magnitude of this effect will not be
estimated here. For further discussion of this point see I.

A few low-order contributions to the perturbation
series for G(u) are illustrated in Fig. 3. Notice that the
irreducible particle-hole interaction, shown in Fig. 4, is
conveniently represented by a matrix, its rows and
columns being labeled by 0- and a', respectively. The
rules for calculating the diagonal matrix elementsI„,„(si,ss) are precisely the same as the rules for calcu-
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When (5.7) is solved for Ai, the Green's function can be
determined from

]'l
{a}

n 'G(x.) =Q'F1A1.
1

(5 g)

lating the irreducible particle-hole interaction used in
the discussion of the linewidth (see I). However, an
extra factor of (—1) must be included in the rules for
the off-diagonal matrix elements I„-,.„(sis2).If there are
an even number of oQ-diagonal /;, in a given term,
the product of these extra factors of (—1) is (+1), as it
should be, since such a term will contribute to
(T{c2~(u)c2(u)citct}) or (T{c1t(u)ci(u)cgtcg}). Alterna-
tively, if there are an odd number of off-diagonal terms,
the resulting factor of (—1) is necessary because such
terms given contributions to (T{cit(u)ci(u)citci}) or
(T{c1'(u)c1, (u)c2tc2 }).

The equation determining the Green's function is

n 'G(x„)=P' F1++' F1R12F2,
1 12

(5.3)

where the reducible particle-hole interaction 812 is
determined by the Bethe-Salpeter equation

and

812=I12+Q I18F2R22
3

(5.4)

Fi ——G„(si)G.,(si —x.) . (5.5)

The index 1 in (5.3)—(5.5) stands for (a-i,si) and
Zi'=P 'Zi

The external-6eld vertex function is defined by the
relation

/X

hj

'

{c}

FxG. 3. Some low-order diagrams contributing to the Green's
function describing the response to a longitudinal field (see
Sec. V).

Except for the change of notation necessitated by the
incorporation spin indices, 0., in the particle-hole inter-
action, these equations are very similar to Eq. (4.19)—
(4.25) of the preceding section. A qualitative difference
results, however, from the differences in the quantities
called F and defined by (4.21) and (5.5). A partial
fraction expansion of (5.5) similar to (4.29) and (4.32)
yields

G.(x+i0+)G.(x—a). —i0+)
= 22ri8(x —X,)/(cu, +2il', ) . (5.9)

The fact that this factor has a resonance when the
external frequency is close to zero distinguishes it from
(4.32), which has a resonance when the external fre-
quency is close to the paramagnetic resonance frequency
or+ and can be shown to give rise ultimately to a reso-
nance in the longitudinal susceptibility at zero fre-
quency. The aim of subsequent work will be to develop
an accurate expression for the longitudinal susceptibility
where it is large, i.e., near zero frequency. This is shown
to be possible for frequencies such that p~~, ~&&1,

provided PF1«1.
The development of the theory of the longitudinal

susceptibility parallels the development of the theory
of the transverse susceptibility given in Sec. IV. To
begin with, a calculation correct to second order in the
interaction will be presented. First the sum over s2 in
(5.6) is converted to a contour integration over the
contour C2 specified in Fig. j.. Then approximations
such as (5.9) which are correct to lowest order in

P ~
cu,

~
and PF1 are introduced. This leads to an equation

analogous to (4.36), namely,

Xi=1++'R12F2,
2

and satisfies the equation

A1 1++ I12F2+2 ~«

2

(5.6)

(5.7)

A, .~ (xi,(0, )-1
2Iela2(+1 ~e2)22( +1+l1e2)Ae2;+ —(~e2, ~e«)

; (5.10)
cv «+2'

also, A, ++=A, =1.The factor I„„(~)appearing in
(5.10) is defined in terms of the second-order irreducible
particle-hole interaction I„„(si,s2) by

0

X/
CT

~ ~ W ~ ~ ~+.

Fio. 4, Two of the diagrams contributing to the irreducible
particle-hole interaction I, „(s1,s2).

I...,(s, ,s2) =
JM Iez ee (CO)

2' S]—S2—0)
(5.11)

in analogy with Eq. (4.26).
The evaluation of the Green's function is begun by

converting the sum over si in Eq. (5.8) to a contour
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integration, which gives

n—'G(a). +i0+) = —g
2' Z

X[(1—ee" *)G.(x+20+)G.(x—.„—i0+)

XA. y (X,(ee ) G.(—X+(u. 20+—)G.(X i0+—)

+G.(x+a). +i0+)G,(x+i0+)] .(5.12)

Equation (5.12) should be compared with Eq. (4.38).
Now, approximations similar to (4.32) and (4.33) are
introduced, leading to the result

n 'G((o, +i0+)

&ex—tl Q e elv— A.,p (Z.,(o. )-1 . (5.13)
(o. +2ir,

Perhaps the simplest, and certainly the most straigh &-

forward, way of proceeding is to put el= X„in (5.10), to
solve the resulting equation for A, ,+ P, ; &u, ), and to
substitute the solution into (5.13). It is, however,
important to show that these results have an extremely
simple interpretation in terms of a rate equation
describing the time evolution of the populations of the
spin energy levels. In the problem under consideration,
the spin system is subjected to a driving field of fre-

quency ~. Since only the linear response of the system
is considered, the deviations of the populations from
equilibrium have the same frequency, and can be
written

8n, (f) =g, (~)he '"' (5.14)

where h is the magnitude of the applied magnetic field,

as in Sec. III. Since the response of the system is given

by 8(S,),= 2(812t(t) —hn&(t)) t see Eq. (3.5)], the sus-

ceptibility is given in terms of g, (&o) by

X(~)= 2 Lgt(~) —gl(~)) ~ (5.15)

Now note that (5.15) is in agreement with (5.13)
Lrecall that G(&u+iO+) = —X(a&)] if gl(~) and g1(cv) are
chosen to be

A comparison of F„,just defined, with the transition
probabilities m„computed in the first Born approxi-
Ination shows that I'tt= —hatt, I'gg= —ming, Fgg=ztg,
and Fg t =xgt. F can also be expressed in terms of the
transition probabilities with the aid of the optical
theorem (see I) which states r,= 2P, le„.The elimi-

nation of A, from (5.19) in favor of g„and the use of the

relations between the quantities I', , F and the
transition probabilities, gives the equations

ill�—= legs—gl+le1tgl+4Pnletle ~"2,
(5.19)—~gl, = lellgl —leal gg

—4Pnze1l e»&.

These equations are now multiplied by he '"', and —iu
on the left-hand side is replaced by the time derivative
operator d/dt. Also, in dealing with the last term on the
right-hand side, the static susceptibility

~(0) =P((~5'*)')=PHI+e'"')(1+e '"')) '

is introduced. In this way (5.19) can be written in the
form

dt

d 8221(t)—= weal f'1nl —vr128221 —rlX(0)he '"',
(9

(5.20)

where I'1——le&&+w&t. These equations are simply the
rate equations (3.6).

It is important to keep in mind that 8n, (t) has the
time dependence exp( —icvt), and that (5.20) has a very
limited range of validity, namely, it is valid for fre-
quencies such that Pcs«1. Equation (5.20) is easily
solved and the result (3.4) is obtained for the
susceptibility.

The extension of the theory to third order in perturba-
tion theory is accomplished by noting that, to third
order, the irreducible particle-hole interaction can be
written in the form

where, by definition,

—I'..= lim 22( —x+X.)I, (x—l1. ) . (5.18)
X~) 2r

tt Q)At

gl((o) = —2pne»&~ —1 ~,4y2irt i
(5.16)

I.1.2(sl, s2) =
Sy Sg GO

Ivrv2(Sly 21 XvV S2V 22 Xvj ~)

2'
(5.21)

h.,=1—g
co+21I

(5.17)

where A,—=A, .+ (X„~).
Now the equation determining A, must be trans-

formed into an equation determining g . The equation
for A, is Eq. (5.10), with sl= Xvl, i.e.,

where I„„(sl,sl —x„;s2, s2 —x„;sr) is given by an ex-
pression similar to (4.28). Considered as a function of sl
(ol 22) fol fixed X„I 1 (sl sl x, 22 22 x„'co) llas as its
only singularities branch cuts along the lines Ims&=0,
Imsl= x, (or Ime2=0, Ime2 ——x„).It is easily seen that
Eqs. (5.10)—(5.20) are unchanged by the substitution
of (5.21) for (5.11), with the exception that Eq. (5.18)
for —1, should be replaced by
—I'..= lim L22( —x+X.)I,;(x+iO+, x 1e. iO+;— —

x—&X2r

X. +i0+, X. —(o.„—iO+; x—71, )), (5.22)



PARAMAGNETiC-iMPURr TV SirN RESONANCE ~ ~ ~ 3703

where I", is real. The relations I',=—m„,and I', - to third order in terms of the parameters J and J' of the
=—ttt„-can also be shown to hold to third order. model (4.3) is straightforward. The result has already

The calculation of the relaxation rate I"t=tvtt+tvtt been quoted /see Eq. (3.14)g.
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Thermal Conductivity of Paramagnetic Salts at Low Temperatures*
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We present a simple theory of the effect of impurity-induced changes in atomic force constants and changes
in atomic mass on the lifetime of coupled spin-phonon modes in paramagnetic crystals. The result is then
employed to study the effect of impurity scattering, boundary scattering, and scattering of the coupled modes
by longitudinal fluctuations in spin density on the temperature dependence of the thermal conductivity, and
the frequency distribution of the heat lux. The theory can account for the experimental data on MgO doped
with Cr'+ reported recently by Challis, McConachie, and Williams and offers support for the interpretation
of the data presented by these authors.

I. INTRODUCTION

~

~ ~

HEN paramagnetic ions are introduced into
insu1ating crystals, phonons may induce transi-

tions between the Zeeman levels. This spin-phonon
interaction thus gives rise to spin-lattice relaxation,
shifts of the g factor, ~ and a number of other phenomena.
When the wavelength of the resonant phonons (i.e.,
phonons with energy Ittto equal to the Zeeman energy)
is large compared to the mean spacing between the ions,
Jacobsen and Stevens' have pointed out that the normal
modes of the system are coupled spin-phonon modes, in
which the motion of diferent spins is correlated through
the phonon field. The resulting modes have properties
similar in many respects to the coupled magnon-phonon
modes considered earlier by Kittel. 4

In the theory of coupled spin-phonon modes in para-
magnets, one linearizes the equations of motion by
replacing the combination S,u by (S,)u, where u is the
phonon amplitude, S, the s component of spin, and the
angular bracket denotes the thermal coverage. The
normal modes are well defined only so long as this
approximation is valid. The finite lifetime of the normal
mode that results when the correction term (S,—(S,))u
is retained in the equations of motion was studied in an
earlier work. ' This term gives rise to a scattering of the

*This research was supported in part by the Air Force OfIice of
Scientific Research, OfFice of Aerospace Research, U; S. Air Force,
under Grant No. AFOSR 68-1448,

t Alfred P. Sloan Foundation Fellow, 1968—1970.
'A good review of this subject has been provided by C. D.

Jeffries, Dynamic Nuclear Polarization(Interscienc, e, New York,
1963), pp. 33—69.

2 M. Inoue, Phys. Rev. Letters 11, 196 (1963);R. J. Birgeneau,
ibid 19, 160 (1967.).

3 E. H. Jacobsen and K. W. H. Stevens, Phys. Rev. 129, 2036
(1963).

4 C. Kittel, Phys. Rev. 110, 836 (1938).
~ D. L. Mills, Phys. Rev. 139, A1640 (1965).

coupled mode by spatial fluctuations in the s component
of the spin of the ions. Since this work, other authors
have also studied the lifetime of the coupled modes from
other points of view. ~

One finds that the scattering produced by the Ructu-
ations in S, has a resonant character, in the sense that
the scattering rate is strongest for modes with frequency
in the vicinity of the Zeeman frequency cop. The width
of the resonance is roughly equal to the width of the
frequency regime within which the coupled modes
contain a large admixture of spin motion.

Detailed experimental studies of the thermal con-
ductivity of crystals of MgO doped with Cr and other
transition-metal impurities have recently been corn-

pleted by Challis and co-workers. ' The experiments
were carried out in the liquid-He temperature range,
and the Cr concentration ranged from 10 ' to 10 ',
depending on the sample. Also, the dependence of the
thermal conductivity on the magnitude and direction
of the magnetic field was measured. '

These authors analyzed their data in zero magnetic
field~ by employing a phenomenological model with a
Debye spectrum of phonons combined with a frequency-
dependent relaxation time. They included three terms
in their expression for the inverse relaxation time
r '(co): a frequency-independent boundary scattering
term, an impurity scattering contribution proportional
to co4, and a. resonant term proportional to coz(coz —covz) ',
where cop and the coefficients of the various terms were
determined by comparison with the data. It was sug-
gested that the resonance term may possibly have its

6 E. M. Yolin, Proc. Phys. Soc. (London) 85, 759 (1965); and
R. J. Elliott and J. B. Parkinson, ibid'. 92, 1024 (1967).

7 L. J. Challis, M. A. McConachie, and D. J. Williams, Proc.
Roy. Soc. (London) A308, 355 (1968).

L. J. Challis, M. A. McConachie, and D. J. Williams, Proc.
Roy. Soc. (London) A310, 493 (1969).


