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Space-Time Correlations in Anisotropic Heisenberg Paramagnets at
Elevated Temperatures
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The structure of the space-time-dependent spin-correlation functions for an anisotropic Heisenberg
paramagnet with cylindrical symmetry at elevated temperature is analyzed in terms of a two-parameter
Gaussian representation of the generalized diffusivity. The parameters are chosen so as to exactly preserve
the frequency moments, i e., (oP")I (a =s, x, or y; I=012) of the longitudinal and the transverse spectral
functions. These moments are calculated for arbitrary spin S, arbitrary range of the exchange interactions,
and arbitrary dimensionality. The results for the correlation functions are worked out for one, two, and
three dimensions. In the extreme transverse limit, the results are compared with the exactly soluble XI'
model for a one-dimensional spin--, system with only nearest-neighbor (transverse) exchange. The agree-
ment of the results is found to be satisfactory.

I. INTRODUCTION

''N exchange-coupled spin systems, the static, i.e.,
~ ~ time-independent, correlation functions can be de-
termined to a high degree of accuracy in the paramag-
netic phase. The relevant computational procedures,
which rely on the development of appropriate high-
temperature series expansion of the equilibrium density
matrix, have now reached a great degree of sophistica-
tion. Indeed, these computations have even led to an
understanding of the structure of the most involved of
all the many-body phenomena, i.e., the cooperative
phase transition. '

The state of the knowledge of the time-dependent
paramagnetic correlation functions is, however, an
entirely different story. Except for a few exceptions
(to be enumerated below), no reliable solutions of the
dynamical correlations can be obtained even in the
limit of extremely high temperatures.

Since the writing of the classic work of Kubo and
Tomita, ' several recent calculations have pioneered the
study of the time dependence of the spin-correlation
functions. The first of these calculations' considers a
finite sample (1V 10') of classical spins coupled by
isotropic nearest-neighbor (nn) Heisenberg exchange at
infinite temperature and numerically charts their de-

velopment in time on an electronic computer. The re-
sults then are interpreted in the thermodynamic limit,
i.e., X—+~. Because no essential theoretical approxi-
mations are introduced into these calculations (except
for those related to numerical computations), for the
present purposes, we shall regard these results as being
"exact."
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The second set of calculations' deal with a small
linear array of quantum spins of magnitude s (we shall
use Dirac's units where t'I = 1) which are coupled by iso-
tropic nn Heisenberg interactions. Here, the time de-
pendence is painstakingly evaluated by determining the
relevant eigenfunctions and eigenvalues of small clusters,
i.e., N =6, . . . , 10, of spins, using this information in the
infinite-temperature density matrix and finally by carry-
ing out plausible extrapolation of these results to the
thermodynamic limit E —+~. Again, for the present
purposes, we shall refer to those results as being exact.

The third set of such exact calculations (which are
probably the earliest ones carried out') also deal with a
finite assembly of classical Heisenberg spins whose be-
havior is numerically charted out. ' However, in this
paper, unlike Ref. 3, the initial conditions are chosen
for various ranges of temperature by the Monte Carlo
technique in such a way that self-consistency between
the static and the time-dependent results is achieved
for the temperature in question.

In addition to the aforementioned computer experi-
ment results for classical spins and Carboni and
Richards's infinite-temperature calculation for a linear
chain of 5=—', quantum spins, there also exists an im-
portant model calculation which gives considerable in-
sight into the time dependence of the spin-correlation
functions. The appropriate model is called an XI'
model. ' In this model, no exchange coupling exists be-
tween, say, the s components of the spins while the x
and the y components are assumed to be bilinearly
coupled among themselves by pairwise exchange po-
tentials. It turns out that, for the particular case of
S=-,'in one dimension, the mathematics relating to
such a system of x-x and y-y coupled spins is exactly

F. Carboni and P. M. Richards, J.Appl. Phys. 39, 967 (1968);
Phys. Rev. 1'7'7, 889 (1969).' M. Blume (private communication).' G. H. Vineyard, R. E. Watson, and M. Blume, J. Appl. Phys.
39, 969 (1968).

'R. E. Watson, M. Blume, and G. H. Vineyard, Phys. Rev.
181, 811 (1969).

E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N. Y.) 16,
407 {1961);S. Katsura, Phys. Rev. 12'7, 1508 (1962); S. Katsura
and S. Inawashiro, J. Math. Phys. 5, 1091 (1964); M, Suzpk&,
J. Phys. Soc. Japan 21, 2140 (1966).
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reducible to that of a system of noninteracting fermions,
as long as the range of the exchange interaction is re-
stricted to the nn distance. In this manner, the dynamics
of such an XY model has been exactly solved. ' "

In spite of the fact that the aforementioned exact
calculations are undeniably valuable (i.e., in providing
insights into the structure of the time-dependent prop-
erties of exchange-coupled spin system), their applica, -

bility is somewhat limited. For quantum spins, the
Carboni-Richards4 calculation as well as the XI'-model
results' " are restricted to the case of one-dimensional

spin-~ systems with only nn interactions. Similarly, the
computer experiment calculations are feasible only for
classical spins.

In our previous work. ,
" we noted that a fairly

adequate description of the time dependence in iso-

tropic Heisenberg spin systems of arbitrary spin S and
nn exchange interaction could be given via a pheno-
menological approximation for the frequency —wave-

vector-dependent diffusivity. Bennett and Martin'2

first suggested that a possible sufhcient approximation
for the generalized diffusivity could be a two-parameter
Gaussian. The spectral function, so constructed, then
has a Lorentzian behavior in the limit of small fre-

quencies and wave vectors (such a Lorentzian behavior
is suggested by the phenomenological concept of local
magnetization density), and also has finite frequency
moments. This two-parameter approximation made use
of the knowledge of the first three nontrivial frequency
moments of the spectral function for the relevant spin-
correlation function. LFor iostropic paramagnets, in the
absence of applied field, there is only one such spin-
correlation function: (5,'(t)Sb*(t')).) The results of our

phenomenological theory made reasonable contact with

the known results of the appropriate limiting cases, i.e.,
Carboni and Richards's exact calculation for one-

dimensional array of S=~ spins as well as the exact
classical spin results of Ref. 3 for which we took the
limit S~~.

In our opinion, the usefulness of such a phenomeno-

logical theory lies in its great simplicity as well as its
ability to give meaningful, if approximate, results for
those intermediate cases for which the exact calcula-

tions are far too cumbersome to perform.

Continuing this general program, in the present paper,
we study the time dependence of enisotropic Heisen-

berg spin systems where the Hamiltonian is of the form

K= —g [Ip(gP)S;S

+I+(gP)(5.*5.*+S."5 "))

We assume that the exchange integrals Ip(gp) and

Th. Niemeijer, Physica 30, 377 (1967);39, 313 (1968).
'0$. Katsura, T. Horiguchi, and M. $uzuki, Physica (to be

published)."R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev. 1/8,
800 {1969);182, 604 {1969).

"H. $. Bennett and P. C. Martin, Phys. Rev. 138, A608 (1965).

I+(gp) depend only upon the spatial separation of the
positions labeled g and p, and that

I (gg) =I+(gg) =0. (1.2)

As before, we again consider the system to be at an
elevated temperature. However, unlike in Ref. 11, the
range of the exchange interactions is now allowed to
extend beyond the ne distance. Moreover, the integrals
Io and I+ are now, in general, allowed to be different.
In the limit when I+ is vanishing, such a system reduces
to a nondynamical Ising model, whereas the opposite
limiting case of ID=0 corresponds to the XI' model.

For the exactly soluble XF model' " (a one-dimen-
sional system of 5= ~~spins with only nn I+ exchange),
the results of our approximate theory are subjected
to a searching scrutiny. We calculate the time depen-
dence of the self-correlation (Sp*(t)Sp*(0)) and the nn
correlation (Sp'(t)5~'(0)). We examine the structure of
the frequency Fourier transform (Sp (t)Sp (0))„and we
compute the frequency —wave-dependent longitudinal
spectral function, F'*(K,cu), for various values of K.
These results are then compared with the exact ones
computed from the appropriate expressions given in
Refs. 9 and 10. The qualitative agreement of our ap-
proximate results with the exact ones is good. More-
over, the quantitative agreement is also, in general,
satisfactory. However, we do And that within our
phenomenological theory, the very sharp features of
the exact results are often approximated with con-
siderable rounding off at the edges.

In Sec. II, we first briefly outline the mathematical
formalism of the dynamical spectral functions. Then we
give the final results of the wave-vector-dependent fre-
quency moments (cu")K, n =0, 1, 2, for the longitudinal
and the transverse spectral functions valid for all spins
S, arbitrary range of exchange interaction, and arbi-
trary dimensionality.

In Sec. III, an outline of the generalized diffusivity
formulation is given, and the phenomenological ap-
proximation to be used is introduced.

Sections IV, V, and VI contain discussion of the
frequency —wave-vector-dependent correlation functions
for one-, two-, and three-dimensional systems,
respectively.

The salient results of the paper are briefly recapitu-
lated in the concluding Sec. VII.

II. SPECTRAL FUNCTIONS

Unlike in Ref. 11, where in the paramagnetic regime
we had only one type of spin-correlation function, in
the present case there are a minimum of two different
space-time —dependent spin-correlation functions

(LS (~) 5 (~')) )—=F-(g—p, ~ —&'), (21)
where n=x, y, s. Because of assumed cylindrical sym-
metry, the correlations for n=x and n=y are identical.
For convenience, we shall call these correlations the
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transverse correlations. The correlation with n=s will,
in general, be diGerent from the transverse correlation
and for convenience it will be called the longitudinal
correlation function.

The dependence of these correlations upon the vector
spatial separation (g —p) and the time difference (t—t')
is dictated by the appropriate translational invariance of
the system Hamiltonian 3'.. This fact is most conven-
iently incorporated by using a Fourier representation

The frequency moments of the spectral function
F (K,cu) are determined by time-independent statis-
tical averages. To see how this comes about, let us find
time derivatives of F (g p, —t —t'), proceed to the
limit t= t', and sum over various position vectors in the
following fashion:

F f d B7',—
F (g—p, t —t')

(((—u& dt l dt

Fo.a(g P t tI) P e~x (g—P)

g K
F~~(K (o)(u" d(u=((0") ~~ (2.7)

F~~(K,~)e '~(' '&d~. (2.2)

The sum is over a total of S allowed K vectors which
fall within the first Brillouin zone. When E is macro-
scopically large, i.e., $&)1, the sum can as usual be
replaced by an appropriate integral.

In Eq. (2.1), the pointed brackets designate a statis-
tical average over a canonical ensemble, the notation
LA,B]+stands for AB+BA, and the time dependence of
the spin operators is in the Heisenberg representation
with respect to the Hamiltonian given in Eq. (1.1).

It is convenient to record the relevant symmetry
properties of the spectral function F (K,&u). From the
definition of F (g p, t t') giv—en in—Eq. (2.1), we have

F-(g p, t t') =F—"(p—g, t' t) . ——

Therefore, using Eq. (2.2), we get

F-(K,(o) =F-(—K, —
&u) .

(2.3)

(2.4a)

C (g—p, t —t') =(S, (t)S„(t')). (2 5)

The relevant connection is established via the well-
known machinery of the fluctuation-dissapation theo-
rem. For present purposes, it suffices to give the relation-
ship

c (g —p, t —t')=

where

d'~ ~
—ice(t—t')

X(S,.(t)S..(t'))-, (26 )

1 F (K,(o)
(S, (t)S„(t')).= —Q *" ""

N K 1+e e"
(2.6b)

Because the system under consideration is invariant
with respect to spatial inversions Lsee Eqs. (1.1) and
(1.2)], therefore, we also have

F (—K, (d) =F—(+K, —&a) . (2.4b)

The spectral function is, therefore, even both in the
inverse lattice vector E and in the frequency co.

The anticommutator correlation function F (g p, —
t —t') is closely related to the statistical correlation func-
tion C (g—p, t —t'),

Here, the sum is over all the position vectors (g —p),
including the origin. The variables e and t are positive
integers or zero with the condition that m~& r.

In the limit of infinite temperature, Eq. (2.6b)
becomes

( d I'( d)s F

x I
i

i

—i—
i

4 (g —p t —t')
dti

(2.gb)

where e~&r and both e and r can take on positive in-
tegral values, including zero.

Because of the evenness of the spectral function
F (K,co) in ~, all odd frequency moments, i.e. ,
(co'"+')K, are identically vanishing. In the literature, "
the first three even moments (~'")I, n, =0, 1, and 2,
have been calculated for the special case of isotropic
exchange interactions in the limit of infinite tempera-
tures. (After the present paper was completed, we came
across a recent calculation of Huber and Semura, '4

who have given (&u'")x, for n =0, 1, 2 at infinite tem-
peratures, for the special case of one-dimensional S=

&

spins with nn anisotropic exchange interactions. )
The procedure for computation of the moments

(~'")I" for n&~1 is to make use of either of the two
expressions (2.7) or (2.8b). The time derivatives are
found as usual by making a repeated application of the
quantum-mechanical rule

d
i—S,.(t)=LS, (t) 3'-] . (2 9)

The resultant time-independent statistical averages, of
the form (A,B„),are computed by employing the well-

» M. F. Collins and W. Marshall, Proc. Phys. Soc. (London) 92,
390 (1967); W. Marshall, in Critical Phenomena, edited by M. S.
Green and J. V. Sengers (National Bureau of Standards, Wash-
ington, D. C., 1966), Vol. 273.

'4 D. L. Huber and J. S. Semura, Phys. Rev. 182, 602 (1969).

»' (S. (t)S. (t'))-= 2 '*""F-(K, ) (2.&a)
2Ã K

Therefore, an alternative way of calculating the mo-
ments for infinite temperature is

lim (a)")x~~——2 P e—'" «—»
P~o (g-p)
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known high-temperature expansion procedure

Tr(e—eoeA, B,)
ARB, =—

Tr (e N—c)

Tr[(1—PBC+P'3C'/2! —. .) (A pB„)]
(2.10)

Tr (1—PK+P'3C'/2! — )

Because of the fact that in the present paper we are
interested only in the dominant P dependence, the terms
proportional to higher powers of P are ignored.

The zeroth moment follows easily from Eq. (2.8b),

Tr(S 5 )
(~P)„-=2 P e—'K «—R) =2X, (2.11)

(g—u& Tr(1)

X=R~S(5+1) . (2.12)

Thus, at infinite temperatures, the zeroth moment has
no K dependence and is the same for all lattice
structures.

The computation of the moments (co'")K is similarly
simple for m=1. For @=2, the details are tedious, al-

though still quite straightforward. In the following, we
shall only record the 6nal results. These results are
valid for general spin and lattice dimensionality, ar-
bitrary range of the exchange interaction I(gp), and
infinite temperatures.

(co') -=16X' P(1—e'" ")I '(R)
R

1~
=o Q(e' " 1')I+—'(R) 4+ Ioo(R)+ 16+—~I+'(R) +P P {4e'*"I+(R+A')I+(R)I+(A)

64X' R 2X XJ R A

XLIo(A) —Io(R)]+2(1—e'I R)I+'(R)Io(A)LIo(A) —Io(R+A)]

(2.13a)

(co'),&'*——SX' Q [I+'(R)+Ip'(R) —2e'" "I+(R)Ip(R)]

+(1—e' ")I~'(R) (5—3e'" ")I+'(A) }; (2.13b)

(2.14a)

11 11 . 3
+3 I,'(R)+ — +8 e' I+(R)I,'(R) —— +8)[I+(R)I,(R)]'

64X' R 5 2X 5 2X 5 4X

2 1 1
+ —

~

—+6 e'K RI~R(R)Ip(R) — +1 I+8(R) +P P jot Io(R)Io(A)]o
5&X 4X R A

—2e'K'"I+(R)Ip(A)Ip(R) I Io(R+A)+2Ip(A)]+e'K'"I+(R+A)I~(A)Ip(A)(3Io(R+A)+2Ip(R)]

+Io'(R) $3I+'(A)+e'K'"I+(A)Iy(R+A)] —2I+(R)Iy(A)I+(R+A)Io(R+A)

+2e'K'"I~'(A)I+(R))Ip(R+A) —3Ip(R)]+-,'LI~(R)I~(A)]' —ec"'"Ip'(R)I+(A)I~(R+A) }. (2.14b)

In the isotropic limit, i.e. , I+(R) =Ip(R), the trans-
verse and the longitudinal moments are the same and
correspond to the calculations of Collins and Marshall. "
Also contained within Eqs. (2.13a) and (2.13b) are the
results of Huber and Semura'4 for the special case of a
linear chain with anisotropic nn exchange and S=~.
To the best of our knowledge, the transverse moments
are entirely new.

Note that in the long-wavelength limit, i.e., K(&1, the
longitudinal moments go to zero. This is not the case
for the transverse moments except in the isotropic
limit.

t —t'). indeed, since

1
F-(g p, t —t') = —E e' "—-"

)P K

n=o

lim cf) (g —p, t —t') = p e'K« —»
/~0 2Ã K

(3.1a)

III. FORMULATION

A few low-order frequency moments of the spectral
function F (K,co) were calculated in Sec. III in the
limit P —+0. These moments by themselves provide
only limited information about the time dependence of
the correlation functions F (g p, t—t') and C' (g —p, —

X E —— ——(3 1b)
n=—0

t compare Eqs. (2.2), (2.6a), and (2.6b)], it follows that
the knowledge of the first few frequency moments only
enables us to determine the short-time (difference) be-
havior of these correlation functions.
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rather meager information available about the system
in the form of (cv'")x, us =0, 1, 2, and which is powerful
enough to provide insights into the appropriate hydro-
dynamics. As demonstrated in Ref. 11, the work of
Martin and co-workers" "provides just such a formula-
tion. In this section, we shall only record the appro-
priate 6nal results of this formulation which are of direct
use in the following sections.

A useful spectral representation for the correlation
functions F (g p, t ——t') and C (g —p, t—t') is in
terms of the frequency —wave-vector dependent dif-
fusivity D (K,cu). Such a diffusivity is, of course, a
function of the fundamental spectral function F (K,&0),
which determines these correlation function through
Eqs. (2.2) and (2.6). The most convenient choice for the
diffusivity is that given by the following definition:

+" (oF (K,a)
dM

FIG. I. Time dependence of the longitudinal self-correlation
function for the restricted XI"model. This model refers to a one-
dimensional array of S=~2 spins coupled via nn exchange only,
i.e., Io(R) =0 for all R and I+(R) =I+ for R =nn separation only.
The solid curve marked 0 shows the results of the present phe-
nomenological approximation, while the short dashed curve
marked N is obtained by numerically computing the exact result
given by Niemeijer Lace Ref. 9, Zq. (23); compare also Ref. 10,
Fig. 1$. The unmarked curve, with long dashes, is obtained by
using the straightforward short time (i.e., the so-called moment)
expansion up to and including the t term.

In practice, the knowledge of the short-time be-
havior of these correlation functions is of rather limited
usefullness. For example, the understanding of the low-

frequency phenomena, such as is recorded by the mag-
netic scattering of slow long-wavelength neutrons, the
various electromagnetic 6eld-resonance experiments
performed in the laboratory, and the various transport
phenomena are dependent upon the knowledge of the
long-time behavior of these correlation functions.

If we think in terms of a particle analogy, the long-
time description of an interacting many-particle system
must take account of a situation which has, in general,
entailed many interparticle collisions. LNote that, in
the spin picture, a possible analog of such a collision is
a mutual exchange of a single "spin Rip." The termi-
nology being used here is such that a spin of magnitude
S can be fhpped a total of (2S+1) times. 7 A well-
known description of the collision-dominated behavior,
which obtains in the limit of long wavelengths or equi-
valently small K vectors, is in terms of hydrodynamics.
In the study of the two-spin correlations C (g—p,
t —t'), the appropriate hydrodynamic description to
look for is that relating to the diffusion of magnetiza-
tion density (5, (f))~;,~„;~;b„„).Therefore, what is
needed here is a formulation which makes use of the

t' 1 +"D (K,co)
=A (K) I

1—— — der —1, (3.2)
Z Q)

where Z is complex, ImZWO, and A (K) is inde-
pendent of Z. Since all the odd moments of the spectral
function F (K,co) are identically vanishing, there-
fore, the diffusivity D" (K,co) is even in co and the
given even dependence of the right-hand side of Eq.
(3.2) upon Z is consistent. Moreover, the spatial inver-
sion symmetry of the system Lsee Eq. (1.1)7 ensures
evenness in the K variable.

Equation (3.2) specifies an exact relationship between
the spectral function F (K,io) and the diffusivity

A

O
N +

CO

NCs
CO

V

~2

I
/ a

N
\

FIG. 2. This figure refers to the nn time-correlation function;
otherwise, the explanation is similar to that given for Fig. 1.

» L. P. Kadanoff and P. C. Martin, Ann. Phys. (N. V.) 24,
419 (1963).
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D (K,40). The essential usefulness of this representa- where

tion lies in the fact that, to an adequate accuracy, the
diffusivity can be approximated by a simple Gaussian
function t

+oo

(flpn) na — Daa(K ~)~2n d~ (3.4)

with m=0 and 1. To derive these results we carry out
small-Z and large-Z expansions, respectively, and com-

pare coeS.cients. We get

Aa (K) =(00')K n (3.5a)

(~') -=(-) -/(-') -, (35b)

(Q2) aa+[(Qo) aa]2 (&4) aa/(~0) aa (3 5C)

Equation (3.5a) specifies A (K) and Eqs. (3.5b) and

(3.5c) determine 6 (K) and F" (K), i.e.,

gaa(K) ~1/2(M2) aa/(~0) aa (3.6a)

(~0) na(~2) an ) l/2

r-(K) = '
i

. (3.6b)
2[(~0) aa(&4) aa ((~2) aa)2])

Using Eqs. (3.2), (3.5a), (3.6a), and (3.6b), we find

the final approximate expression for the spectral func-
tion F (K,40), i.e.,

F (K,/0)

(~')K-~-(K)1'-(K) exp{—[~1'-(K)]'}
(3.7a)

2rX (K,40)

D-(K,40)-a-(K)r""(K) exp{—[I" (K)00]2}. (3.3)

The three parameters A (K), Aaa(K), and Faa(K) are
then exactly fixed by the relationships between the fre-

quency moments (402")K with 22=0, 1, and 2, and
(gpn) na .

aran(Kl ) 2

Xexp{ —[401'-(K)]2} e" dx
~

o )

+(~-(K)1'-(K) exp{—[~1'-(K)]'})' (3 7b)

The expression above automatically conserves the fre-

quency moments (&0")K for /2=0, 1,. . . , 4. Moreover, in

the hydrodynamic limit, it leads to the usual Lorentzian
line shape for F" (K,40).

The adequacy of the phenomenological construct for
the spectral line shape of F (K,00) given in Eqs. (3.7a)
and (3.7b) has previously been demonstrated" for the
isotropic Heisenberg paramagnet with only the nn
interaction [compare also the following paper]. The
present paper is concerned with investigation of the
effects of exchange anisotropy as well as those oc-
casioned by increasing the range of the exchange
interactions.

IV. RESULTS IN ONE DIMENSION

The expressions for the frequency moments given in

Eqs. (2.13) and (2.14) are valid for arbitrary range of
the exchange integrals Ip(R) and I+(R), as well as for
arbitrary lattice dimensionality. To study the case of a
linear chain with nn and next-nearest-neighbor (nnn)
exchange interactions only, it is greatly convenient
6rst to recast these equations into the following par-
ticularized form:

(402)Kzz —2[4XIp(1)] [(1 Cl)G +(1—C2)T ] (4.1a)

(404)K*z/256X'Ip (1)=2(C2—Ci)G'T+(1 —To)+2(Cl —1)G'Tp+(C2 —1)T '+0[(Ci—1)G'+(C2—1)(T To)']
+2[(1—Cl)G'+ (1—C2) T '](1+Tp') —(8/5) [(1—Ci)G'+ (1—C2) T„']
+5(G'+T ')'+3(ClG2+C2TP')' 8(ClG'+C2T„')(G—'+T ')+(10X) '

&& [(Ci—1)(G'+-', G')+ (C2—1)(T~'+0T 2T0')] (4.1b)

(40')K*z=2[4XIp(1)]'[—ClG —C2T+Tp+-,'(G'+T '+1+Tp')] (4.2a)

(404)K.**/256X'Io'(1) = (1/20)(X '+6)(—1—Tp'+4ClG'+4C2T~'To)
+(1/20)(X '+16)(CiG+C2T4. T02 —-'G' —'T 'T ') —p(X '+4)(G'+T 4)

+2(1+Tp')'+ '(G'+T ')'+3(CiG+C2—T+To)' —4(Ci+C2T4.Tp)(1+To')
+3(G +T4 )(1+Tp ) G(CiG+C2T4. Tp)(G +T+ )+GTy[Ci( G +2+Ty+Tp)

+C2(G—22GT~) —GT0 —2G]+GT0[Ci(G' —2)+C2(G+2T0)] C2T~T0. (4.2b)—
Here, for convenience we have introduced the abbrevia- and

tion such that Ip(R) and I+(R) denote the corresponding

exchange integrals between the rth nn. Moreover,

|y=cosE, C2=cos2E. (4.3b)

G=—I (1)/I (1), T+=I+(2)/Io(1)

To+Io(2)/Io(1),

The units have been chosen so that the nn separation is
unity. Moreover, for convenience, exchange interactions
between third and further neighbors have been assumed

(4.3a) to be vanishing.
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Fro. 5. Dependence of the
frequency Fourier transform of
the longitudinal self-correla-
tion function for a one-dimen-
sional generalized XI" model.
Here, the size of the second-
neighbor exchange relative to
the nn exchange is denoted by

II=I+ (2)/I+ (1)
and

X=S(S+1)/3.
The dashed curves are for spin

and the solid curves for
spill

ilarly, as we shall see later in this section, the qualitative
long-time behavior of the correlation functions is also
correctly predicted by the present phenomenological
theory. Moreover, in the intermediate-time regime, the
results of the~present theory are vaguely of the correct
order of magnitude, whereas the moment expansion
cannot make any such claims.

Let us next examine the hydrodynamic structure of
the more general XI' model. Since the restricted XY
model referred to earlier can be reduced to a (hypo-
thetical) system of noninteracting Fermi particles, and
since noninteracting particles systems do not undergo
collisions in the normal sense, it follows that the re-
stricted XF model does not possess any hydrodynamics
as such. "For this reason, we write the corresponding

"Compare with K. Kawasaki, Ann. Phys. (N. Y.) 3'I, 142
(1966).

results for the low-frequency limit of the function
D"(E,a&). )Note that because Ie(R) =0, for an Xl'
model, therefore, some slight care must be exercised in
converting the. given frequency moments, i.e., as dis-
played in Eqs. (4.1a) and (4.1b), to an appropriate
form valid for Is(1) —+ O.j Making use of Eqs. (3.3),
(3.6a), and (3.6b), we get the desired expression for nn
exchange but arbitrary spin

wX 1/2

D"(E,rd) =4I+(1)(1—Ct) &&i

k7/5 —1/10X—Ci

~ ~

M

Xexp — — — i. (4.4)
16I '(1)X(7/5 —1/10X—C )I

For S=si, 7/5 —1/10X=1. Therefore, except in the
limit of the restricted XY model, the diQusivity is
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FrG. 6. As in Fig. 5, the
dependence of the frequency
Fourier transform for the
longitudinal self-correlation
upon the magnitude of the
spin and the second-neighbor
exchange is shown for a
generalized XI model. These
results, however, refer to a
two-dimensional square lattice.

~@I

1

X,

AP

.QP

C3
V)
V
+

— x(4x) '

I+

clearly seen to be hydrodynamic because for small E it
shows a quadratic dependence upon E. For the re-
stricted XI' model, the diffusivity has a nonhydro-
dynamic linear dependence upon E as E«1. This
point will be elaborated further in the following.

To get a feel for the line shape of F**(Eao) for small

co, let us use the expression for the diffusivity given in
Eq. (4.4) in Eqs. (3.7a) and (3.7b). The appropriate
result is of the form

For the restricted XI' model, the variables a and c

are, however, easily seen to be K-dependent and, in the
limit E((1, we have

(4 6)

where a' and c' are independent of E and ~. Therefore,

F"(K,(g)
(~/&+) &&1,K&&1 b~2+cit4

(4.5)

P"'(K,~)) (nestor atea xz&
— (4.7)

&all+«1'K«1 b&2+ c ~2

where a, b, and c are independent of ag and K (except for
the case of the restricted XF model discussed below).
Therefore, the frequency-dependent longitudinal-cor-
relation functions are strongly divergent in the limit
or —+ 0.

The divergence of the frequency Fourier transforms of

the longitudinal correlation is, therefore, somewhat

weaker for the restricted XV model. Indeed, we may
expect the divergence to be logarithmic according to
the following simple argument. Insert Eq. (4.7) into

Eq. (2.6b) and replace the sum by an integral. We
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FIG. 7. Plot of frequency Fourier
transforms of the transverse self-
correlation function for the XF model
with nn exchange and spins of magni-
tude S=q (dashed curves) and S= ~
(full curves). From a mutual com-
comparison of the S=~& and S= ~
curves, the validity of a law of cor-
responding states can be established,
except in one dimension in the
small frequency regime, i.e.,

(cg/I+) (4X/9) '"(0.5.

I

~/I, a(CX }

get

p —&p

dE cosLE(g —p)]F**(E,o)) . (4.8)

Note that the dominant contribution to the integral
comes from small-E values. For these small-E values,
the cosine may be replaced by unity. Therefore, the
correlation (S,*(t)S„'(0))„has a positive logarithmic
divergence at the origin co=0.

The logarithmic frequency dependence for small co

suggests the following simple time-dependent behavior
in the limit of long times:

lim P(S,*(&)S„'(0))]&Rgstp)pter x+) ~ & '. (4.9)

Such a slow time decay is in accord with the exact
solution.

As mentioned earlier for the generalized XI' model,
where either the range of the exchange interaction is
longer than nn distance, or where S)~„no exact solu-
tions are available. Since one of the major advantages
of the present phenomenological theory is that it allows

us to discuss the properties of these more general situa-
tions as easily as those for which exact ab initio solutions
are available [compare Ref. 11],we have computed the
dynamical structure of the correlation functions for
this case also. The corresponding results for the longi-

tudinal correlations are given in Figs. 3—5.
The exact results, given in Fig. 3, are obtained from

an expression derived by Katsura ef al. )see Ref. 10,
Eq. (31)]. The predictions of our phenomenological

theory, once again, seem to be qualitatively verified.
Indeed, notwithstanding the slight rounding off of the
phenomenological results as compared to the rather
sharp cutoff shown by the exact result, even the
quantitative predictions of our theory are not too
inadequate.

From an examination of the results given in Figs.
3—5, the following general comments can be made:

(1) To a reasonable approximation, a law of cor-
responding states (discussed in Ref. 11) again holds.
This law can be stated as follows: In terms of an ap-
propriate reduced scale, i.e. , when I+(S,*(f)S„'(0))„
X(4X) ')' is plotted against ( /oI))+( 4X)'", the curves
for different spin magnitudes are nearly the same. The
accuracy of this empirical law increases with the in-
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FIG. 8. Plot showing the
effect of anisotropy on fre-
quency Fourier transform of
the longitudinal self-correla-
tion function for a linear chain
with only nn interactions.
Here, G indicates the ratio of
the transverse and the longi-
tudinal exchange integrals, i.e.,
G=I+(1)/Ip(1). The solid and
dashed curves represent the
results for spin —,

' and spin ~,
respectively.
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crease in the dimensionality as well as the range of
interaction.

(2) &n a crude fashion, the general effect of the in-
crease of the effective range of the exchange interaction
is to increase the magnitude of the cutoff frequency.
Moreover, seemingly, the larger the effective range of
the exchange interaction, the better the agreement with
a law of corresponding states. (Compare with Fig. 6
for two dimensions and note that the effects of the in-
crease in dimensionality are qualitatively similar to that
of increase in the range of the exchange interactions. )

In contrast to the longitudinal correlations discussed
above, the dynamical structure of the transverse cor-
relations is quite different. The main reason for this is
that the decay of the transverse correlations with the
passage of time is much faster. This is rejected in the
behavior of the low-frequency Fourier transforms of
these correlations and, accordingly, in the limit of zero
frequency, the transforms remain 6nite. Figure 7 dis-
plays the Fourier transform of the self-correlation
(Spp(t)Sp*(0)) for spin S=—', and S= po. A mutual com-
parison of the corresponding curves for S=~ and S=
demonstrates the approximate validity of the above-
mentioned law of corresponding states for the trans-
verse case also. In one dimension, this empirical law
seems to be very poorly followed for small frequencies,
i.e., (a&/I+) (4X) "'(0.5. As far as the authors are aware,

no exact results corresponding to the restricted XI'
model Lsee the curve for one dimension in Fig. 7j are
available in the literature for the case of transverse

spin correlation.

B. General Anisotropic Case

For a one-dimensional system with anisotropic nn

and nnn exchange, the given form of the frequency
moments, i.e. , Eqs. (4.1)—(4.3), is quite suitable for

carrying out numerical computations as long as Ip(1)
is not vanishing. When Ip(1) is equal to zero, these
expressions must 6rst be multipled through by Ip(1).
In the normal manner, from these moments we deter-
mine the parameters 5" (K) and I'" (X), which be-

cause of the phenomenological approximation discussed

earlier, in turn, specify the spectral function F (E,~)
Lsee Eqs. (3.7a) and (3.7b)).

The spectral function and the various space-time—
dependent correlation functions C (g —p, t —t') that it
determines are, thus, given as function of the ratios G,
T+, and To. The dependence upon the magnitude of the
spin variable S is, of course, always assumed. The two
remaining system variables, i.e., the interspin separa-
tion and an exchange integral, say, Ip(1), do not give

rise to any explicit dependence. Rather they merely
determine the units in which the space and time
separations are measured.
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FrG. 9. EGect of anisotropy
on the time dependence on
the longitudinal self-correla-
tion function for a linear chain
with S= ~ and only nn inter-
actions. This plot is an ap-
propriate Fourier transform of
the corresponding curves in
Fig. 8. For G=0.5, the trans-
verse exchange is only half as
strong as the longitudinal ex-
change. Consequently, the time
decay of the correlation is
quite slow. (For the Ising
model, i.e., G=0, the curve
would be a straight line with-
ordinate = 1.) When 6=2.0,
the relative strength of the
transverse exchange is greater
and the system behaves some-
what similarly to an XF model
(compare Fig. 1).

G=2.

I tX (—S(S+i j )0

I et us 6rst consider the case of nn interactions only.
Here T+=To——0 and the dynamical line shape is a
function only of G. %hen G is large compared to unity,
the system approaches the XY model studied above.
For G ~ 0, the system reduces to a nn Ising model.

In Fig. 8, we have displayed the results for the fre-
quency Fourier transform of the longitudinal self-
correlation function. As G is reduced from the isotropic
limit, i.e., G=1, the frequency spectrum is compressed
towards lower frequencies. Indeed, the curves for G= —,

'
already seem to be anticipating the limiting results for
the Ising model (which may be expected to have a
strong 5 function at the origin). Similarly, the curves
for G=2.0 seem to be anticipating the results for the
XY limit. Note, however, that the curves in Fig. 8
have been plotted on a different frequency scale from
the corresponding results for the XY model given in
Fig. 3. Here, the frequency is being measured in the
units of pp/Ip(i). These units are, of course, not suitable
for the XF model where Ip(R) =0.

These statements are further illustrated by looking
at the time Fourier transforms as plotted in Fig. 9.
For brevity, we give these results for spin ~ only. The

curve for G= 2 is clearly seen to be assuming the struc-
ture possessed by the XV model. (For example, com-

pare with Fig. 1. The fact that Fig. 1 relates to S=~
a,nd the frequency scale there is in units of I+ does not
affect the qualitative nature of the present argument. $
In contrast, the curve for G=0.5 clearly shows that the
rate of decay with time of the correlation function has
become much slower. In the true Ising limit, such a
decay would completely cease because there the s
component of each individua, l spin is a constant of
motion (except, of course, for the infinitesimally slow

time decay caused by thermal interactions with the
heat bath which bring about thermodynamic equilib-
rium; here, we have neglected these small interactions).

The frequency Fourier transform of the nn longi-
tudinal correlation is shown in Fig. 10. Here again,
the above-mentioned trends are evident. Of course, here,
in order to preserve the sum rule

lim dpi (Sp (/)$ (0)) =X8„,p (4.10)

the spectrum must also dip below the frequency axis.
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FIG. 10. ER'ect of anisotropy
on frequency Fourier transform
of the longitudinal nn cor-
relation, plotted versus the re-
duced frequency, for the linear
chain. The dashed and solid
curves represent the results for
spin —', and spin ~, respectively.
As in Figs. 8 and 9, the ratio
I+(1)/Io(1) is indicated by G
and all further neighbor ex-
change is assumed to be
vanishing.
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Continuing the study of the nn anisotropic exchange
case, we examine next the dynamical structure of the
transverse self-correlation. In Fig. 11, the frequency
Fourier transforms for the transverse self-correlation
are plotted for various values of the anisotropy, i.e.,
G=2, 1, 0.5, and for the case when S=—, and ~. When
G=1, the results are, of course, identical to the cor-
responding results for the longitudinal self-correlation.
For all other values of G, i.e., G~1, the small-frequency
behavior of the transverse correlations differs dramati-
cally from the corresponding longitudinal correlations
in that it shows no divergence as co —+ 0.

Heuristically, this behavior is easy to understand.
The total s component of the spin is always a constant
of motion. Therefore, under normal situations (i.e.,

excluding the anomalous behavior of the restricted XY
model which is strictly nondiffusive), this gives rise to
spin density diffusion, i.e., the local density of the s
component of spins follows a diffusion equation in the
long-wavelength long-time limit. The total x and y
components of spin, on the other hand, are not con-
stants of motion unless G =1.Therefore, the transverse
components of spin density do not obey a diffusion

equation.
It- is instructive to compute the diffusion coeKcient

D" for the s component of the spin density, i.e.,

D**(E(u)D"— lcm
o)~O, K~O g2
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Within the present phenomenological approximation
for nn exchange only, this yields

xX 1/2

Dzz 21 Q2 (4.12)
8/5 —3/20X+G'(2/5 —1/10X)

Let us next investigate the effects of increasing the
range of the exchange interaction beyond the nn
distance. Figures 12 and 13 illustrate some typical
effects associated with such an increase in the range.
These are (i) a gradual increase of the magnitude
cutoff frequency and (ii) an improved agreement
with the law of corresponding states referred to
earlier.

In Fig. 14, we have displayed the time dependence of
the self-correlation function for various (relative) sizes
of the nnn exchange. For simplicity, the exchange has
been assumed to be spatially isotropic. Ke find that
with the increase in the relative magnitude of the nnn

exchange, the initial rate of time decay becomes faster
and consequently the relaxation time of the correlation

function decreases. This is quite in accord with a
heuristic argument whereby the longer the range of
interactions (and/or the larger the effective coordina-
tion number, i.e., the average number of spins which
can be assumed to be interacting strongly with a given
spin), the more accurately the behavior of the system
may be expected to be approximated by nondynamical
average field representations.

In other words, this means that for systems with
many effective neighbors, the various occurrences are
not expected to be too strongly correlated for long time
intervals. It should also be mentioned here that a very
reasonable agreement with the above picture also
emerges when we study the effect of dimensionality
on the structure of the time-dependent correlation )see
Sec. VI and Fig. 23).

V. RESULTS IN TWO DIMENSIONS

The relevant frequency moments, specialized to a
quadratic lattice, with nn and nnn anisotropic exchange

A

O
x 0
v) pg
xo
(/)
"o

FIG. 1j.. EGect of anisotropy of the frequency spectrum of the dynamical transverse self-correlation function for. a linear chain with
only nn interactions and with spins ~ (dashed curves) and ~ (solid curves). Note that when the system is anisotropic, i.e., G/1, the
frequency transform does not diverge at zero.
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interactions, are as follows:

(pp') K**=2$4XIp(1)O'L(2 —Ct)Gs+2(1 —Cs) T+'j, (5.1a)
(~')I*'/256XsIp'(1) =4G'T+(1 —Tp) (2Cs —Ct)+4k(Ct —2)G'Tp+(Cs 1)T+'3+ssL(Ct —2)G'+2(Cs —1)T+'Tps j

+4L(2 —Ct)G'+2 (1—Cs)T+'j(1+Tp') —(8/5) D2 —Ct)G'+2 (1—Cs) T~P+20(G'+ T+') '
+3(Ctg'+2Csj ')' —16(Ctg'+2Csj~') (G'+T+')+(10S) '

XL(Ct—2)(g'+sg')+2(Cs —1)(j+'+kj+'Tp') j; (5 1b)

(pp4)K** ——2(4SIp(1)jsf Ctg —2CsT+—Tp+G'+T+'+Tps+1j, (5.2a)

(tp4)K**/256X'Ip4(1) =—,
' (X '+6)(—1—Tp'+2Ctg'+4Csj~'Tp)

+(1/20) (X '+16)(Ctg+2Csjpj p' —3G' —3T 'Tp') —p(X '+4) (G'+T+')
+10(G'+T s)'+6(1+Tp')' —8(Ctg+2Csj~ Tp)(1+Tps)+3(Ctg+2Csj+Tp)'
+12(gs+T s)(1+Tps) —12(Crg+2Csjyjp)(gs+Tys)
+GT~LCt( —2G'+4+2Tp+2T+)+Ca( —2GT++4G) —4GTp —8Gj

+GjpLCr( 4+2G )—+Cs(4G+2gjp) j 4Csj+T—p. (5.2b)

x 0P

Fro. 12. Effects of the presence of
second nn exchange on the frequency
spectrum of the longitudinal self-correla-
tion for a one-dimensional array of spins
of magnitudes S=& (dashed curve) and
S= ~ (full curve) and a three-dimen-
sional (i.e., self-correlation) array with
S= ~. For simplicity, we have assumed
isotropic exchange with second-neighbor
exchange being one-half as large as the
nn exchange and of opposite sign. With
the increase in the range of the inter-
action, the somewhat improved agree-
ment with a law - of "corresponding
states" (shown here for the one-dimen-
sional lattice) should be noted. In fact,
the S=& curve for the simple cubic
lattice is too close to the S= ~ curve to
be plotted.
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I
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Fro. 13.KBects of the size of the nnn exchange on the frequency spectrum of the longitudinal self-correlation function. For simplicity,
we have assumed isotropic exchange. The relevant spin system is one-dimensional with S=-, (dashed curves) and S= ~ (solid curves).
The ratio of the nnn exchange to Io(1) is denoted as T+ ——To. A comparison of the corresponding curves for S= ~ and S= ~ indicates
the following general trends: (1) The frequency spectrum extends to larger frequencies with the increase in the strength of the nnn
exchange relative to the nn exchange, and i2) the law of corresponding states holds more accurately as the relative strength of the
nnn exchange increases.

Here, we have redefined C~ and C2 to be

Ct=cos(Eg)+cos(E„), Cs=cos(E,) cos(E„). (5.3)

This given format of the moments (c0'")I is suitable
for the study of cases where Io(1) is nonvanishing. For
the few particular cases, when Is(1) is vanishing, we
reformulate the moments in terms of another parameter
II=I+(2)P+(1).

A. XYLimit

Analogously to the linear chain, an appropriate XY
limit can also be defined in a two-dimensional system.

However, in contrast to the situation in one dimension,
no exact solutions corresponding to the restricted XI'
model can be obtained in two dimensions. It is interest-
ing, nevertheless, to investigate the dynamical prop-
erties of the two-dimensional model and to compare it
with the corresponding results for a linear chain as well
as those for other less anistropic two-dimensional spin
systems.

The results for the frequency Fourier transform of
the longitudinal self-correlation for spins S=~ and
5= ~ are given in Fig. 3 for the case of nn exchange
only. These results when plotted in the reduced scale
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Fro. 14. Effects of the pre-
sence of longer-range exchange
interactions are demonstrated
upon the time dependence of
the longitudinal self-correla-
tion function. This plot refers
to a linear chain of S= 00

spins with isotropic exchange.
The parameters T+——To refer
to the ratio of the nnn exchange
to the nn exchange. With the
increase in the relative magni-
tude of the nnn exchange, the
rate of initial decay of the self-
correlation is seen to increase
gradually. Otherwise, the quali-
tative aspects of the time de-
pendence remain largely un-
affected.
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seem, to a good approximation, to be spin-independent.
As conjectured earlier, the discrepancy between the
curves for 5= 2 and 5= ~ is smaller in two dimensions
than in one. Moreover, the cutoff frequency is higher
in two dimensions than in one and the cutoff is also
somewhat less sharp.

The effects of the increase in the range of the ex-

change interaction are displayed in Fig. 6. On compari-
son with Fig. 5, which gives the corresponding results
for one dimension, one notes that the qualitative effects
of the increase in the range of the exchange interaction
are similar to those of the increase in dimensionality.

The corresponding results for the transverse correla-
tion are given in Fig. 7. Here again, differences are ob-
served between the results for one and two dimensions.
The zero-frequency transform is smaller in two dimen-
sions and the magnitude of the cutoff frequency is

bigger. Similarly, the comparison of various curves in
Fig. 7 again verifies the general observation that the
law of corresponding states if followed more closely in
two dimensions than in one.

B. General Anisotropic Case

Let us consider next the situation with more general
spin interactions. Again, it is convenient to examine the
case with only the nn exchange first. The results for the
frequency spectrum of the longitudinal self- and nn
correlations are plotted in Figs. 15 and 16. The fre-
quency spectrum of the transverse self-correlation is
depicted in Fig. 17. The structure of the longitudinal

frequency spectrum again possesses many of the feat-
tures observed in the one-dimensional case. These are

(I) the Fourier transforms of all the longitudinal cor-
relations diverge in the limit of zero frequency, (2) with
the increase in the anisotropy, the frequency spectrum
gradually tak. es on the features of the corresponding
XV model, and (3) when the relative magnitude of the
transverse exchange to the longitudinal exchange is
decreased, the power spectrum of the longitudinal cor-
relations narrows toward the origin. In the limit that
this ratio is zero (i.e. , in the nondynamical Ising-model

limit), the corresponding spectrum will be a Dirac 5

function at the origin.
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( ~ p p
a 'g er requencies in two dimensions.

Th pon ing requencye ifferences between the corresp d' f
spectra or one- and two-dimensional cacases are a so
simi ar to those already noted above in the case of the
one- and two-dimensional XV m d 1 F
of the anisotro the s

mo e s. or given value
o t e anisotropy, the spectrum is spread toward some-
what higher frequencies in the case of two dimensions,

quency is weaker for two dimensions than for one.
Lastly, when the curves are plotted in the reduced fre-

quency scale, the relative discrepancy between different
spins is smaller for the two-dimensional lattice than for
the linear c ain.

the transverse correlation function, for two and one
imensions, also possesses analogous features. Except

e ourier transform

zero-frequency transforms are smaller in two dimensions

curacy of the law of corresponding states increases in
two dimensions as compared t d'o one imension.

Finally, in order to examine the effects of th e increase

the fre u
in e range of interaction, we have plotted F' 18e in ig.

requency Fourier transform of the longitudinal
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frequency spectrum {plotted in
the reduced units) of the longi-
tudinal self-correlation func-
tion for a two-dimensional
square net. For simplicity, we
have assumed isotropic ex-
change. The dashed and solid
curves refer to the case of S= &

and S= ~, respectively. The
ratio of the nnn to the nn
exchange is denoted as T+= To.
To get a feel for the effects of
the increase in dimensionality,
compare with Figs. 16 and 17,
which refer to the linear chain,
and with Fig. 26, which re-
fers to the three-dimensional
simple cubic) lattice.
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self-correlation function for a system with isotropic
exchange. These results should be compared with the
corresponding results for the linear chain given in Fig.
13. It is clear that the increase in dimensionality and
the increase in the relative magnitude of the nnn ex-
change a6ect the results in the same general direction,
i.e., they both cause a better 6t of the corresponding
results for di8erent spins (when plotted on a reduced
scale). Moreover, they both cause the frequency spec-

trum to spread out toward higher frequencies and
thereby to increase the magnitude of the cutoff
frequency.

VI. RESULTS IN THREE DIMENSIONS

For simplicity, we consider a simple cubic lattice.
The units of length are chosen such that the cube edge
is of length unity. %ith only nn and nnn exchange inter-
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actions, the various moments are as follows:

(6.1a)(cv')»" ——2(4XIO(1)]'L(3—Ci)G'+2(3 —C2) T~']

((o')"/256X'I 0'(1) =8 C —C' 0'( ) = (,—C,)G Tp(1 —To)+8(Ci—3)G'To+4(C2 —3)T+'(1+2TO')
—,'L(C& —3)G'+2(C2 —3)T~'To']+6L(3—Ci)G'+2(3 —C2)T '](1+2TO')

—(8/5) E(3—Ci)G4+2(3 —Cg) T+']+45(G2+2T 2)'+3(CiG'+2C2T+2)' —24(CiG' 2C2 T+'
X(G'+2T+')+(10&) '{(Ci—3)pg'+-'G']+2(C2 —3)(T+'+gT+'To',' 6.1b

(cv')»**——2L4XIO(1)]'t —CiG —
2C2T+ To+ 2 (G'+ 1)+3(T~'+To')]

((u')»' /256X'Ip'(1) = (3/20) (X '+6) L
—1 2TO'+—-', Cig'+ (8/3)C2T~'To

(1/20)(X '+16)(Cig+2C2T+To' ——',G' —9T~'To'] —-'(X '+4)(g' 2T '
(27/2)(1+2TO')'+(45/2)(G'+2T~')' —12(Cig+2C2T~TO)(1+2T ') 3(C

+.)( + o ) 18(Cig+2C2TpTp)(g'+2T ')+GTpt 4Ci(2 —G +T To

2C2G(2 —T~) —12G(T,+2)]+GTOL4C, (—2+G2)+2C,g(2+T,)7
+4C2T+( T~' Tp—2TO—'+3T—+To'+2T 'To) —24T+'To. (6.2h

Here we have redefined Ci and C2 to be

Ci =cosE,+cosK,+cosE, ,

C2=cosK2, cosKg+cosK~ cosEy+cosEp cosEg.
(6.3)

.I2

A. XYLimit

As before, we shall first examine the XI' limit. With
t e added simplification of nn (transverse) exchange

only, we have plotted the results for the frequency
Fourier transform of the longitudinal self-correlation
ln Fig. 3.

The examination of Fig. 3 reveals some of the same

general features already noted for the corresponding
results in one and the two dimensions. The

'
e increase in

the dimensionality to 3, however, has one important
difference. The zero-frequency Fourier transform of the

now no ongerlongitu inal correlation functions is now 1

divergent.
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FIG. 19. Plot shows the eGects of anisotropy, as well as the
dependence on the magnitude of the spins, of the frequenc
Fourier transform of the longitudinal self-correl t f

a (simp e cubic) lattice with only nn exchange. The
anisotropy parameter as usual denotes the ratio of I+(1) to Io(1).
The solid and dashed curves refer to s in —' an"
respectively.
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of anisotropy and the spin magnitude on theFro. 20. Effect
requency Fourier transforms of the transverse self- l t' f

a three-dimensional sim leio a (s mp e cubic) lattice w th o ly nn e change.
esoidanddashedcurvesrefer toS= ~ andS=~ res e

'
l

imensionaaty are obvious from a comparison with
t e corresponding results for a linear chain (see Fig. 11) and a
two-dimensional square net (Fig. 17).
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FIG. 21. Frequency Fourier transform of the nn longitudinal
correlation function for a three-dimensional (simple cubic)
lattice with only nn exchange. The dashed and solid curves,
respectively, relate to S= 2 and S= ~. To get a feel for the effects
of dimensionality, these curves should be compared with the
corresponding ones for one dimension (Fig. 10) and two dimen-
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FIG. 22. Effect of the increase in the range of the exchange
interactions of the frequency spectrum of the longitudinal self-
correlation function for a three-dimensional (simple cubic)lattice.
For simplicity, we have assumed isotropic exchange. The dashed
curve is for S= ~ and the solid curves for S= 00. The other spin-&
curves are too close to the corresponding spin-~ curves to be
plotted conveniently. The e8ects of dimensionality can be ob-
served by comparison with Fig. 12, for the linear chain, and Fig.
18, for the two-dimensional square net.

B. General Anisotroyic Case

Beginning with the simple case of nn exchange only,
we have plotted the frequency Fourier transform of the
longitudinal correlation function in Fig. 19, the trans-
verse self-correlation function in Fig. 20, and the longi-
tudinal nn correlation in Fig. 21. In the low-frequency
regime, the structure of the results for the longitudinal
case is in marked contrast with the corresponding re-

sults in one and two dimensions. For given anisotropy

G, the spectrum is now finite in the limit of zero fre-

quency (except, of course, for the trivial case G=O when

the system reduces to a nondynamical Ising model for
which the frequency spectrum degenerates into a
Dirac 8 function centered at the origin). In other re-

spects, the results follow the established pattern:
Namely, that, for given value of the anisotropy G, the
frequency spectrum is extended towards higher fre-

quencies as the dimensionality is increased, and for
given dimensionality, the structure gradually ap-
proaches that for the XV limit or the Ising limit ac-
cording to whether the anisotropy G is increased or
decreased from the isotropic value G=1.

To check the above statement regarding the effects
occasioned by the increase in the range of the exchange
interaction, we have plotted the frequency Fourier

xX ) 1/2

Dzs 2G21 . (6.4)
28/5 —3/20X+G'(52/5 —1/10X))

This result should be compared with that obtained by
the use of a truncated integral equation procedure Lfor
this comparison, see Ref. 17, Eq. (8)j.The parameter a
in this equation should be put equal to unity (s= 6 and

y equal to the G of the present paper), i.e.,

Dzz (2~X/3)1/2G2I /(1+G2)1/s (6.5)

rr R. A. Tshir-Kheli, J. Appl. Phys. 40, 1550 (1969).

transform of the longitudinal self-correlation function
in Fig. 22. Again, the trend noted is confirmed.

Similarly, to verify the above mentioned statement
regarding the effects of dimensionality, we have dis-

played the time dependence of the longitudinal self-

correlation function (with only the isotropic nn ex-

change) in Fig. 23. The results are, again, in accord with
the general tenor of the statement given above.

Finally, it is interesting to examine the behavior of
the rate at which the magnetization density di6uses,
i.e., D".Within the framework of the phenomenological
approximation used in the present paper, this yields,
for nn exchange only,
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For simplicity, the exchange is
taken to be isotropic and its range
is limited to the nn distance. The
relaxation time (in which the
correlation falls off to half its
original magnitude) is seen to be a
strong function of the dimen-
sionality: it being shorter the
higher the dimensionality. Other-
wise, the general structure of the
results is seemingly not a strong
function of the dimensionality.
Note that this result agrees with
the heuristic conjecture that to a
rough approximation the eGects
of the increase in dimensionality
are analogous to the results of an
increase in the effective range of
the exchange interactions.

5Dim~ ~ = 2Dim~

I I I

I 2 3

z, tx(—$($.i) j

VII. CONCLUSIONS

In this paper, we have evaluated the zeroth, second,
and fourth frequency moments of the frequency —wave-
dependent spectral functions for anisotropic Heisenberg
spin systems in the limit of elevated temperature. Our
expressions are valid for all spins for arbitrary range
of the exchange interactions and for arbitrary dimen-
sionality.

We then specialized these expression to the case of
one-, two-, and three-dimensional systems and considered
only the nn and nnn exchange. We constructed a
phenomenological representation of the generalized
diffusivity such that the exactly calculated frequency
moments were automatically preserved for all wave
vectors. With this representation, we computed the
frequency- (and sometimes also wave-vector) dependent
Fourier transforms of the longitudinal and transverse
correlations. Ke conducted detailed examination of the

predictions of our approximate theory for the exactly
soluble model, i.e., one-dimensional S=~ XV model
with only nn exchange. We found that our approximate
theory gave qualitatively satisfactory representation of
the space-time —dependent correlations in the system
where exact results are known.

In view of our previous observations" that such a
theory also gives similarly satisfactory representation
of the correlations for some limiting cases of isotropic
Heisenberg systems, ' " we may hope that the present
results are equally meaningful for all the various inter-
mediate cases for which reliable solutions are not
available.
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