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Investigation of Therir1ionic Emission in the Region of Periodic Schottky Deviation
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The existence of deviation from the thermionic Schottky line has been theoretically investigated for
metals. An equation based on a modi6ed model, which contains a classical image force and exchange and
correlation forces, is derived. The theoretical solution indicates that the amplitude is inversely proportional
to the temperature, whereas the phase and the period are found to be independent of the temperature. The
theoretical solution is compared with the experiments in terms of two parameters, the potential-barrier
height and the coefficient of the exchange and correlation forces. These exchange and correlation forces
characterize the form of the surface potential. The agreement in amplitude and phase between theoretical
and experimental results is excellent.

I. INTRODUCTION

'HE periodic deviation from the Schottky line in
thermionic emission was explained by Guth and

Mullin' as resulting from the interference between
electron waves rejected from the barrier maximum and
those rejected from a region of steep potential gradient
near the surface of the metal. Guth and Mullin' derived
a periodic transmission coefficient by using the free-
electron model of a metal and a one-dimensional
classical image potential, and found a good agreement in
period with the experimental results of Siefert and
Phipps. ' ' However, their amplitude and phase of
periodicity did not agree with the experimental results.
The theory was modified in terms of a revised trans-
mission coefficient, defined by Herring and Nichols, by
Juenker, Colladay, and Coomes, ' Juenker, ' and Miller
and Good. 7 Their results gave the correct period for the
deviations and also agreed with the observed variation
of the amplitude with field and temperature. However,
quantitatively, the observed amplitudes and phases of
the deviations did not agree with the theory. A possible
source of the disagreement might have been the validity
of the WEB approximation used in both the original
Guth-Mullin theory and in Juenker et a/. Miller and
Good, however, making use of the more exact WKB-
type approximation in recalculating the periodic devia-
tions, obtained essentially the same results as in Juenker
et al. Since they used the same model as Juenker et al
the agreement removes any uncertainty about the
mathematical approximation.

Cutler and Gibbons' developed a model for the surface
potential barrier based on the quantum-mechanical
calculation made by Bardeen' and the form of the
potential at the surface of a sodiumlike metal and the

E. Guth and C. J. Mullin, Phys. Rev. 59, 575 (1941)~' R. L. E. Seifert and T. E. Phipps, Phys. Rev. 53, 493 (1938).' R. L. E. Seifert and T. E. Phipps, Phys. Rev. 56, 652 (1939).
4C. Herring and M. H. Nichols, Rev. Mod. Phys. 21, 185

(1949)
~ D. %.Juenker, G. S. Colladay, and E. A. Coomes, Phys. Rev.

90, 772 (1953).
e D. W. Juenker, Phys. Rev. 99, 1155 (1955).
7 S. C. Miller and R. H. Good, Jr., Phys. Rev. 92, 1367 (1953).' S. C. Miller and R. H. Good, Jr., Phys. Rev. 91, 174 (1953).' P. H. Cutler and J. J. Gibbons, Phys. Rev. 111,394 (1958)."J.Bardeen, Phys. Rev. 49, 653 (1936).
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analysis of Sachs and Dexter" on the quantum limits
of the image-force theory. Employing this model, the
periodic deviations were recalculated using essentially
the mathematical formalism developed by Juenker' and
his co-workers. Certain computational refinements were
introduced in the averaging of the transmission coeK-
cient. The results were found to be in better agreement
with the experimental data in the phase of periodic
deviations than others. However, the amplitudes and
phases are still not in agreement with the experimental
observations.

A possible origin of this disagreement lies in the use of
the free-electron model by assuming

W, =So+8,
= (tt /2m) (3sr / V) +O

where 8" is the barrier-height difference between the
inside and outside of the metal surface, I.:p is the Fermi
energy, O is a work function, hatt (= It/2sr) is Plank's
constant, m is the mass of the electron, and U is the
atomic volume.

The values of H/' for tungsten, tantalum, and
molybdenum so obtained are almost the same, i.e., it is
about 10 eV. According to the theory, the periodicity
from the Schottky line for these metals should be about
the same. However, there is a considerable difference in
the experimental results.

From the energy-band structure of tungsten and
rhenium, lV is assumed to be the summation of the
work function and the difference between the Fermi
energy and the bottom of conduction band, i.e., 8',=0
+ (Eo—E,). From Mattheiss's calculations, "" the
values of H/" for tungsten and rhenium found by this
way are 6.1 and 7.4 eV, respectively.

In the present analysis (1) a modified model of
potential barrier has been developed by considering not
only classical image force and the external force but also
the exchange and correlation forces; and (2) the values
of S' for tungsten and rhenium obtained from the

"R. G. Sachs and D. L. Dexter, J. Appl. Phys. 21, 1304
(1950)."L.F. Mattheiss, Phys. Rev. 139, A1893 (1965)."L.F. Mattheiss, Phys. Rev. 151, 450 (1966).

3614



EM ISS ION IN REGION OF PERIOD I C SCHOTTKY DEVIATION 3615

energy-band structure have been utilized in the equation
derived based on the modified potential model.

It is found that the periodicity deviation from the
Schottky line obtained from the above analysis is in
very good agreement with the experimental results both
in the amplitude and in the phase.

Since the band structures for molybdenum and
tantalum have not been disclosed, the values of t/V for
them are found by matching the theoretical periodic
deviation from the Schottky line with experimental re-
sults. The values of 8' for tantaliurn and molybdenum
are found to be 5.23 and 5.44 eV, respectively. Since the
work function 0=4.19 eV for tantalum and 0=4.3 eV
for molybdenum, it is clear that the Fermi level is 1.04
eV above the bottom of the conduction band for
tantalum and 1.14 eV for molybdenum. A calculation
has been made to show that these values are unique.

y(x)
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0
4
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X

FIG. 1. Model of the surface potential barrier for a metal without
an external applied Geld.

II. ANALYTICAL MODEL FOR SURFACE
POTENTIAL BARRIER

When an electron is a great distance from the surface
of a metal, the dominant long-range force exerted on it is
due to the induced mirror-image charge on the metal.
However, within a distance of a few angstroms from the
surface, the short-range potential fields that the electron
encounters can no longer be represented by the classical
image force. Bardeen" has made the most rigorous
quantum treatment, and the qualitative features of his
results have general application. By including exchange
and correlation effects, Bardeen" found a one-dimen-
sional effective potential asymptotic to the image po-
tential at great distance outside the surface and ap-
proaching a constant value inside the metal. Herring
and Nichols4 have discussed the general behavior of an
effective one-dimensional potential based on general
quantum-mechanical considerations and the results of
Bardeen's Har tree-Fock calculation" of the charge
density in the double layer at the surface of a mono-
valent metal as follows (Fig. 1): (1) The barrier at the
surface is due largely to the exchange and correlation
forces, rath'er than to ordinary electrostatic forces.
(2) The potential difference V' between a point outside
the surface and a point in the interior can be described as

V'= Fermi energy + work function —(exchange
and correlation energies in the interior).

(3) The exchange and correlation potentials decrease
as the distance increases (outside the surface) and ap-
proach the classical image potential at a large distance
from the surface.

Sachs and Dexter" treated an approximate quantum-
mechanical correction to the classical image-force inter-
action energy. They obtained a correction term AE
which gives the order-of-magnitude deviation from the
classical image formula due to purely quantum-me-
chanical effects in the metal. This first-order correction

of the interaction energy is inversely proportional to x',
where x is the distance of the electron from the metal
surface.

ln order to have a finite value for U(x) at x=0, a
modified model developed by Seitz' is used. For sim-

plicity, an atomic unit is introduced. Thus, the potential
barrier model can be written as follows:

V(x) =0 for x&0,

V(x) = V'—
2(x+1/2W, ) (x+1/2W, ) '

for x)0. (2)
2 (co+1/2W, ) '

III. DERIVATION OF TRANSMISSION
COEFFICIENT

With the potential barrier chosen in Sec. II, the
Schrodinger equations are

d'4'r
+War =0

dx2
for x&0, (3)

14 F. Seitz, 3fodern Theory of Solids (McGraw-Hill, New York,
1940).

The second term of Eq. (2) represents the classical
image-force energy; the third term represents the ex-
change and correlation energies; the last term is the
external applied energy. 1/t/ is the summation of Fermi
energy Er and work function 8. @0+1/2W, is the posi-
tion of the maximum of the potential barrier. b is the
coefficient of the exchange and correlation energies,
depending on the properties of the metal. For V(0) =0,
we obtain t/"0= W —4bS" '.

Figure 2 is the potential-barrier model )expressed as
Eqs. (1) and (2)) that will be used in this investigation. .
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+ ~+ —4r1=0,

d$2 4
(9)

Taylor series about xo and neglecting the higher-order
terms. Equation (4) thus becomes a parabolic-cylinder
equation:

1/4

X $0
k(xp+ 1/2 W,) '

42 = L21(xp+1/2W, )"']1/2p,

P/&TANGS

FIG. 2. Model of the surface potential barrier for a metal with an
external applied field.

d2&II 1
+ W W.+4b—W.'+

dx' 2(x+1/2W, )

p = W W,+4—bW, 2+
x()+1/2W. (xp+1/2 W.) '

Solving the above parabolic-cylinder equation (9) and
requiring the solution to satisfy condition (8), and
comparing the solution to Eq. (6), one obtains the
following relations:

b x
1/rl =0

(x+1/2W, )' 2(xp+1/2W )'

for x)0, (4)

b = g e~«/, «/4(—2')1/—2/l'P+j()/)

b &i3~/8&—3~~/42=

(10)

where 8' is the total energy of the electron.
The solution of Eq. (3) is then

By utilizing b1 and b2 in Eq. (6) and by introducing
the boundary conditions

d]4'1/2[x+(1/2Wx)]+(4 dr
—e]V / [x+(1/2]4're)] f()r X(0 (5) 1/I =1//Zr at @=0, (12)

where the two exponentials represent the incident and
the reflected waves, respectively.

By the WEB approximation, the solution of Eq. (4)
is obtained as

der dflr

dS dx
at x=o, (13)

rbrr b, dr
'" e p(r =4"'—dxI

the transmission coeScient at the external field E can
be obtained from Eqs. (5) and (6):

D(E,p) =1—
I (12/(41 I

'

where

+b, dr "'e
p(

—r '" rb)dfxor 0(x .x, , (4) y/o

1+/r —2e re+ /r
—2rrre+

32 $2 64 dtb'

2 x 1/2W, ) (x+1/2W, )'

(&)
2(xp+1/2W )'

For x)xo, we would like to~~have a transmitted wave
only, i.e.,

The constants b1 and b2 in Eq. (6) are obtained as
follows: Expand the potential function of Eq. (4) as a

where

y/ y/2 1/2

g
—dree(1+g —2rrre) I/2

4@3/2 64dt/2

Xcos 2 p'/'dx —argF(22+i/2)
$0

+tan —'
8@3/2

d@
at x=0, y=y at x=o.

dg

(14)
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Equation (14) can be expanded as Thus

D(E,p) =
1+g 2«

/2

64yp (1+~—2na)2

p 1 ) '/'
. 2

2 g'/2(g, 0)dg= ——8'v2 gp+
i

+
2W.J W '"

1
4~g—b(

gpss

[
+4bw '/' (1S)

2W,j
4yp/2 (1+.8—2«) 8/2

Xcos 2
yl

p'/2dg ar—gI'(2+in)+tan '
gyp/2

@~2 . e—2na n

1+ — cos 4
32 yp (1 +g—2na) 2 64yp

&1/2dg

—2 argg('2+in)+tan ' . (15)
4yp/2

The coefficient of

Hence the transmission coe%cient is simplified as

1 W.'/' (1 4bW—.) e—na

(1 SbW )8/2 (1 y~—2na)8/2
D(E,p) =

1+~—2na

Since (gp+1/2W, )'/'&)b(gp+1/2W ) '", the third term
of Eq. (18) may be neglected compared to the first term.
Also, since the exchange and correlation energies ap-
proach zero at large distances, we have the following
approximate relation:

1 "' 1( e '" "' //3. 587X10')'"
gp

2W. 2& E & Ei/2 )

cos 4 '"dx
i

is already very small when n=0, and goes rapidly to
zero as 0, is increased. Hence, only a very small error is
made by neglecting this term. Since xp is of the order of
10', the term

where

357.i

F 1/4 gr 1/2

Xcos[A —(y+2 ln2) n], (19)

W "' (1—SbW.)
+tan ' — . (20)

4 (1—4bW )"'
e =exp( —2r[21(gp+1/2W, )81'/'p}

4y8/2

(1—SbW, )1gl 1/2

(1—4bW )"' (16)

and for a small value of n

may be neglected except for very small e, i.e., lV= V . lt
follows from Eq. (7) that one obtains

Now, we shall sum D(E, p) over all electron energies
and thus obtain the energy-independent transmission
coefficient D (E) which is a function only of the tempera-
ture, the barrier height, the field, and the coefficient of
exchange and correlation energies. Since we are inter-
ested only in electrons for which 8' V", where

1

Xp+ 1/2W, )
the Maxwellian energy distribution may be used. Thus

argI'(2+ in) —(y+ 2 ln2) n, (17)

where & is Euler's constant and is equal to 0.5772. Also,

$1/2(g p)dg $1/2(g 0)dg+ f(p)

Let

D(E) = D(E)p)e '/" dp. -
kT p

(I+g—2na) —8/2~ (1 21g
—2na) Q ( 1)ng 2nna-

n=O

Performing the integration of the left-hand member
numerically, one sees that even for the largest e values
which need be considered (because of the factor e we
need consider only very small p values),

f(p)(( $'/2(g 0)dg

Thus

D(E)= Z (—1)"
p n-o

Xexp{[—2882r( —2,(gp+1/2W, )')'/2+1/kTfc}dp

W.'/' (1—SbW.)
e—na(1 2g 2«) g '/"r—-—

2kT (1 4bW )"' 8—

Furthermore, f(p) goes rapidly to zero as p ~ 0. Conse-
quently, for the small p values, f(p) may be neglected.

XP (—1)"e '" cos(A —(y+2 ln2)n)dp. (21)
n=o
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FIG. 3. Thermionic periodic Schottky deviation F2T as a function of 8'" for tungsten. The dots are the experimental data.

The integration of this expression can be rapidly
carried through and leads to a complicated expression.
Since for T 1500'K, 1/kT is negligible compared to
(xo+1/2W, )o)', to a close aPProximation

W."' (1—SbW, )
D(E) =1-

2kT (1—4bW )"'

)&[m'+(p+2 ln2) ] ')'(o(xo+1/2W, ) ) 'I

y+2 ln2
&(cos A —tan ' . (22)

The deviations from the Schottky line are then

A logic=logsoD(E) —log)oD(0) =Fo',

W,"' (1—SbW )
Il o' — —— [n'+(y+2 ln2)'] "'

4.6kT (1—4bW.)"'
&((-,'(xo+1/2W, )') ')' cos(A —0.56), (23)

where 0.56 in cos(A —0.56) results from

tan '[(y+2 ln2)/m)=0. 56.

The current caused by the electrons tunneling through
the top of the potential barrier at the metal surface also
contributes to the periodic deviation from the Schottky
line, increasing the amplitude of deviation. The fields in
this region are presumed to be such that the electrons
penetrate only the topmost part of the barrier of Fig. 2,

i.e., V"—8& W& U". Proceeding as before, we find

exp[ —2s n'(U" —W)j
D'(E, W) =

1+exp[—2~n'(U" —W)j
(1—SbW, ) exp[ 2mn'(—U" W)g—

1gl 1/2

(1—4bW, )'I' {1+exp[—2mn'(U" —W) j)'I'

Xcos(N), (24)
where

I=A+ (y+2 ln2)n'(U" —W),
n'= [-', (xo+1/2W, )'j)lo

The energy-independent transmission coefficient re-
sulting from this tunneling term is

1
D'(E) = D'(E o') e

—"'~ado'
kT p

where ~'= Vo' —8'. Let

(1+e—2ncccc ) 8/2 (1 —le Rnn c ) p ( 1)ne onncc c—
n=O

Substituting Eq. (24) into Eq. (25) and then integrating,
we have

W "' (1—SbW.)
D'(E) = — — [4~'+(~+.2 ln2) oj—))o

2kT (1—4bW )')'

y+2 ln2
X(-,'(c +I)2nc )') "'ccc(A jtcc ~ . (26)

2T
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FxG. 4. Thermionic periodic Schottky deviation P2T as a function of B"' for rhenium. The dots are the experimental data.

+The periodic deviation is then equal to

J 2"=logqoD'(E) —logD'(0)
W "' (1—8bW, )

[4n'+(y+2 1n2)'$ "'
4.6kT (1—4bW )'~'

X(-', (xo+1/2W )') "' cos(A+0.302), (27)

where 0.302 in cos(A+0.302) results from

tan '[(y+2 ln2))27rg =0.302.
Adding Eqs. (23) and (27), we have the total periodic

deviation from the Schottky line:

&2 =~2'+&2"
0.0122X10 'W "' (1—8bW, )

g3/4
b T (1—4bW. )"'

X[cos(A —0.56)+0.5623 cos(A+0.302)]. (28)

IV. RESULTS AND DISCUSSION

The theoretical periodic Schottky deviation has been
established in Kq. (28) of Sec. III. The calculations

Fzo. 5. Thermionic peri-
odic Schot tky deviation F2T
as a function of A"' for
molybdenum. The dots are
the experimental data.
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FIG. 6. Thermionic periodic Schottky
deviation F2T as a function of E'12 for
tantalum. The dots are the experimental
data.

100
I

200

E 4 IN (V/cm)5

300 400

0.3-

Q
'D
I-

CL

X

5.5 eV

6. 1 eV

70 eV

= 3/64Wa

= 1/16Wa

= 5/64Wa

0.3-

D
DI-

L.
X

Wa=6eV

W = 5.44 eV

=5eV

b = 3/64Wa

b = 1/16Wa

b = 9/128Wa

0.2- 0.2-

3 4
pHASE pHASE

FIG. 7. Amplitude and phase values of Eq. (28) for tungsten with pro. 9. Amplitude and phase values of Eq. (28) for molybdenum
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FIG. 8. Amplitude and phase values of Eq. (28) for rhenium with
different values of W and b.
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FIG. 10. Amplitude and phase values of Eq. (28) for tantalum
with different values of W and b.
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Fro. 11.Thermionic periodic Schottky deviation F&T of Eq. (28) versus F."for tungsten with different
amplitude and phase values, The dots are the experimental data.

based on this equation for tungsten, rhenium, molyb-
denum, and tantalum will now be discussed and com-
pared with the experimental data.

(1) Tursgsfee The exp.erimental data for periodic
Schottky deviation for tungsten have been reported by
Siefert and Phipps. "The band-structure calculations

have been reported by Mattheiss. "Among the various
bands that intersect the Fermi surface, the minimum
occurs at 0.73 Ry while the Fermi level is at 0.85 Ry.
This difference (0.12 Ry) when added to the work
function for tungsten which is 4.5 eV= 0.23 Ry, gives us
0.45 Ry for 8,. With this value of 8", substituted into

AfAplitude = 0.
Phase =3.285

Ampli tude=0
Phase =2.95

4 Ampiitude=0.
hase=2. 5

100 200 300
E~ 1N 6/cm)~

400

FIG. 12. Thermionic periodic Schottky deviation Ii 2T of Eq. (28) versus 8"' for rhenium with different
amplitude and phase values. The dots are the experimental data.
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6-

4

2 FiG. 13.Thermionic peri-
odic Schottky deviation F&T
of Eq. (28) versus L"' for
molybdenum with diferent
amplitude and phase values.
The dots are the experi-
mental data.
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Eq. (28) at 7= 1600'K, we obtain the curves for three
different exchange and correlation coeScients in Fig. 3.
The experimental curve is also plotted in the same
figure. A good agreement between theory and experi-
ment can be seen in Fig. 3 when the exchange and
correlation coeKcient is chosen to be 3/64W, .

(Z) Rheeilm As.imilar procedure is applied to
rhenium. The energy-band structure has been calcu-
lated by Matteiss. "The Fermi energy lies at 0.825 Ry.
The lowest value of the highest conduction-b&d mini-

mum occurs at 0.64 Ry. Using a value of 4.9 eV=0.355
Ry for the work function, the surface barrier potential
8', is 0.54 Ry. This value of 5', substituted into Eq.
(28) gives the calculated curves for three diferent
exchange and correlation coefBcients at T=1880'K. in
Fig. 4. These curves are compared with the experi-
mental curve of D'Haenens and Coomes, "and a good
agreement is noticeable in Fig. 4 when the exchange and
correlation coeKcient is 9/128W, .

(3) Molybdersrsm Since b.and-structure calculations

plitude= 0.2985
ale= 3.1773

plitude= 0.284
ase= 3.2852

plitude=0. 2592
se =3.4794

l-eO

FIG. 14. Thermionic periodic
Schottky deviation F2T of Eq. (28)
versus E"' for tantalum with
diBerent amplitude and phase
values. The dots are the experi-
mental data.

250 350
E~2 IN (~i&~i 2

"I.J. O'Haenens and E. A. Coomes, Phys. Rev. Letters 1'F, 516 (1966).

450.
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TAaLz I. The values of W', b, p, and Fp —F, for tungsten,
rhenium, molybdenum, and tantalum.

this calculation agree closely with experimental data, as
can be seen from Fig. 6.

Re
Mo
Ta

W, (eV)

6.1
7.4
5.44
5.23

3/64W,
9i128+',
1/16W o
1/32W,

4.5
4.9
4.3
4.19

1.6
2.5
1.14
1.04

@ (eV) Ep —E, (eV) BrieQy, the values of t/t/' and b can be determined by
matching the theoretical equation with the experimental
data. The next step is showing that the solution of 8'
and b is unique.

From Eq. (28), we find that

are not available for molybdenum, while an experi-
mental curve is available, "' it was decided to obtain
8', by varying its value and the value of the exchange
and correlation coefficient until the close agreement in
both amplitude and phase was obtained between the
theoretical and experimental curves as shown in Fig. 5.
The value of 8' corresponding to this theoretical curve
is 5.44 eV. Since the work function of molybdenum is
4.3 eV, we can infer that the highest conduction-band
minimum occurs in molybdenum at approximately 1.14
eV below the Fermi level. This value of 8' substituted
into Eq. (28) at T= 1600'K gives the calculated curves
for three different exchange and correlation coefficient
in Fig. 5; the experimental curve is also plotted in the
same figure. A close agreement between theory and
experiment can be seen in Fig. 5 when the exchange and
correlation coef5cient is 1/16W. .

(4) Tantalum. Again there is no band structure of
tantalum available now. The above method in de-
termining the 8', for molybdenum is also applied to
tantalum. W is found to be 5.23 eV, and b= 1/32W .
Since the work function of tantalum is 4.19 eV, we know
that Zp —E,= 1.04 eV. With the value of t/I/' =5.23 eV
substituted into Eq. (28) at T= 1500'K, we obtain the
curves for three different exchange and correlation
coefficients in Fig. 6. The experimental data" "are also
plotted in the same figure. When the exchange and
correlation coeQicient is 1/32W„ the results obtained in

"G. A. Hass and E. A. Coomes, Phys. Rev. 100, 640 (1955),"E. G. Brock, A. L. Houde, and E. A. Coomes, Phys. Rev. 89,
851 (1953)."D. Turnbull and T. E. Phipps, Phys. Rev. 56, 663 (1939).» R. J. Munick, W. B.La Berge, and E. A. Coomes, )Phys. Rev.
80, 887 (1950).

(1—8bW, )
amplitude 2 t/I/' 't"

(1—4bW )"'

phase +4bW 't'
P7 I/2

W "' (1—SbW )—tan —'
4 (1—4bW, )"'

The dependence of the amplitude and phase on the S',
and b, expressed by the above equations, is helpful in
explaining the uniqueness of the solution. Figure 7
shows the relationship between amplitude and phase for
different values of S', and b for tungsten. There is only
one set of amplitude and phase which can match the
experimental results. As can be seen clearly in Fig. 7,
the values of W, and b have to be 6.1 eV and 3/64W„
respectively.

Similar relationships between amplitude and phase
for rhenium, molybdenum and tantalum at different
values of t/t/' and b are plotted in Figs. 8—10.The correct
values of amplitude and phase are indicated by small
dots in the same figures. Table I sunimarizes the results
of 8' and b for these four elements.

The uniqueness of 8" and b can also be proved in a
simple manner. If we plot the periodic Schottky devia-
tion P2T versus the square root of electric field A, we
obtain Figs. 11—14. It is clear that the experimental
results agree closely with the theoretical curves which
are obtained by using the correct values of H/' and b.

The values of b so obtained fell within the range
0(b(1/8W, which was predicted by Cutler and
Gibbons. '


