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Interaction of Elastic Strain with the Structural Transition of Strontium Titanate*
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Second-order displacive transitions of a type often observed in crystals of perovskite structure are ana-
lyzed by means of a phenomenological model employing optical soft-mode and elastic-strain coordinates.
Relations connecting spontaneous distortion, soft-mode vibrational frequencies, and elastic constants of a
tetragonal low-temperature phase are derived. These relations are found to be consistent with existing x-ray,
neutron, EPR, Raman, Brillouin, and ultrasonic data for SrTi03. From these data, it is inferred that prop-
erties of SrTi03 are isotropic to a considerable degree and that, of the small anisotropy which determines the
symmetry of the low-temperature phase, interaction with strain contributes a large portion. Under certain
assumptions, the soft-mode force constant inferred from the data appears to vary fairly smoothly through
the transition temperature. Discontinuities in the speci6c heat and the temperature-derivative of the re-
storing-force coefficient amounting to 1.3% in SrTiOe and about 8% in LaA10e are predicted.

I. INTRODUCTION

HE compound strontium titanate (SrTiOs) ex-
hibits one of the best-behaved and most thor-

oughly investigated displacive phase transitions. It
belongs to a growing list of crystals, including KMnF3,
LaA103, PrA103, and NdA103, which have the following
characteristics in common: At high temperatures the
structure is precisely cubic perovskite. A second-order
phase transition occurs at a critical temperature T„
which varies from one compound to another. At tem-
peratures below T, the structure changes because of
small, cooperative, atomic displacements. These dis-
placements are described by a linear combination of
degenerate optic-mode coordinates and an anisotropic
macroscopic strain. The vibrational wave vector lies at
the point R (the L1117 corner) of the cubic Brillouin
zone, and the modes subtend the three-dimensional
representation I'25. '

With respect to the direction of spontaneous distor-
tion these compounds fall into two classes. The dis-
tortion of SrTi03 is precisely tetragonal for all T&T„"
and that of KMnF3 is tetragonal just below T,.7 On the
other hand, the distortion of the three aluminates cited
has rhombohedral symmetry for T(T,.
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In the case of SrTiO'3, existing experimental data for
the tetragonal phase include the spontaneous optic-
mode displacement, ' spontaneous strain, ' ' soft-mode
frequencies, "'0 plus some information about elastic
coefficients. " ' Considerable, though less complete,
data along these lines are available for the other corn-
pounds mentioned' 4" '7

Thus far, applications of lattice dynamics" to such
nonferroelectric perovskite transitions have employed
optic-mode coordinates only. Here we carry out the
program, touched upon previously, " of incorporating
the effects of strain interactions by adding elastic energy
terms plus a term linear in strain and quadratic in
optical-mode displacement to the model energy. This
phenomenological procedure is time honored in the
fields of ferroelectricity" and ferromagnetism. " The
results of its application to the available data for
SrTi03, as given here, make clear the important role
that strain interaction plays in the transition. The
matter of the proper thermodynamic formulation of the
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soft-mode model, as well as related discontinuities at the
transition temperature are discussed in the Appendix.

Note 43dded i23 proof Our analysis overlaps recent
unpublished work of W. Rehwald.

II. SPONTANEOUS DEFORMATION

In this section we calculate the spontaneous dis-
placement of the soft optic mode and the spontaneous
strain which occur below the transition temperature of
a cubic crystal. We assume the degenerate set of soft
optical-mode coordinates Ql, Q2, Q3 observed in SrTi03
by means of magnetic resonance, '" optical Raman
scattering, ' and neutron scattering' "experiments. The
wave vector for these modes lies at the L111jcorner of
the cubic Brillouin zone. The atomic displacements
represented by one of these modes are illustrated in
Fig. 1, taken from the paper of Unoki and Sakudo, who
discovered the structure of the tetragonal phase. "We
remark in passing that magnetic resonance' and neutron
scattering" experiments show that linear combinations
of the same modes become spontaneously displaced at
the transition in LaA103. Neutron scattering' reveals
the same modes displaced in KMnF3 at the higher of
two transition temperatures.

The transformation properties for Ql, Q2, Qs are easily
visualized in Fig. 1.The Ti atoms may be classified into
two interpenetrating sublattices A and 8, mutually
displaced by any one of the three primitive cubic lattice
vectors, r; (i=1, 2, 3). As illustrated in the figure, a
linear displacement Qs (k = 1, 2 or 3) represents, in first
order, a rotation of the oxygen octahedra surrounding
lattices A and B through angles 4tls and —p's, respec-
tively, both about axes parallel to a cube edge. We
normalize the Q& in such a way that they are numerically
equal to the linear oxygen displacements. Then they are
related to the&& by the equation tang& ——2Q&/u, where u
is the lattice constant. It is evident that Ql, Q2, Qs
transform with respect to point group operations like
the components of an axial vector. The translation r;
for any i reverses the sign of Qs for all k.

I
( 0I
I

() ~--&(~-
Ox Sr

~ Ti ~'~ C
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We adopt the abbreviated notation for the com-
ponents of elastic strain: e,—=B24~/Bx; (i=1, 2, 3); and
e4=—(B242/Bxs)+ (Bus/Bxs), etc. We assume a configura-
tional internal energy per unit volume of the form

P= 1Jt (Q12+Q22+Q32)+A (Q12+Q22+Q32)2

+A „(Q12Q22+Q22Q32+Q32Q12)

Bl(slgl +82Q2 +83Q3 )
B2Lsl(Q2 +Q3 )+s2(gl +Q3 ) +s3(gl +Q2 )j

—B (s Q Q +s Q Ql+s Qlg )
+2Cll (el +~2 +s3 )

+Cll'(ele2+eses+esel)+2'C44'(e4'+es'+es'), (1)

which is seen to be consistent with crystal symmetry.
Equation (1) is an extension of the soft-mode energy
employed by Cochran and others"" to include the
coupling to the elastic field. The terms with coefficients
E and A ()0) represent the isotropic part of the
anharmonic optic-mode potential, the term with coeK-
cient A„ the anisotropic part. One can see that Eq. (1)
is the simplest expansion, consistent with the crystal
symmetry, which gives rise to a transition that couples
to strain.

The fact that three independent coefficients B~, B~, 8&
are required to represent the elastic interaction follows,
according to group theory, from the fact that the sets
(Qsgl} and (e;;} subtend the same three irreducible
representations A, E, T (in abbreviated notation) of the
cubic group. In the cases of SrTi03 ' ' and KMnF3, the
transition from the cubic phase is accompanied by
changes in thermal coefficients of the lattice parameters
without an appreciable change in the thermal-expan-
sion coeKcient. It is reasonable, therefore, to simplify
Eq. (1) by eliminating the coupling to volume strain.
This is done by letting

B,= —B2=+-,'Bl—,

in which case the coupling terms in Eq. (1) vanish for
8y =&= 83+0 and 84 =85 =86 =0.

Equilibrium states of the crystal in the absence of
external constraints are obtained by minimizing Eq. (1)
with respect to all Q; and es. Above the transition
temperature T„we have E&0, and then the cubic
phase is given by Q, =O (all i) and e&

——0 (all k), as-
suming that appropriate inequalities are satisfied by the
remaining coefficients. Below the transition tempera-
ture, we have %&0, and the cubic phase cannot be
stable. The range of possibilities is conveniently visu-
alized by minimizing U first with respect to all eI„while
keeping all Q& arbitrary. Setting BU'/Be, =0, we find

s =B C '(3Q' —g') (i=1 2, 3)

e4 ——B,C,—'Q2Q3, etc.,

(3)

(4)

FIG. 1. Based on Unoki and Sakudo. (a) A (001) section of the
Srri03 lattice illustrating the displacement of oxygen ions de-
scribed by the soft-mode coordinate Q3 which is proportional to
tan&3. (b) A three-dimensional projection, illustrating the property
Ts

where elastic constants have group-representational
"H. Unoki and T. Sakudo, J. Phys. . Soc. Japan p3, 546 (1967). subscripts: C,=—Cll' —C12', and C4=—C44'. Upon substi-
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tution of Eqs. (3) and (4), Eq. (1) becomes

U(Q) —= U(Q, e(Q) )=2KQ'+A'Q'

(gi Q2 +Q2 g +Q3 gi ) (5)

III. OPTIC FREQUENCIES

The natura, l angular frequencies co; of optic-mode
vibration are given by the equations

where
A' =A —38.'/C„

A ~' =A „+98,'/C, BP/—2Cg.

(6)

(7)

O'U
M(o 5;;= (i, j=1,2, 3),

~Q'~0~
(17)

ground-state energy

U ~ = —E'/16A',

and spontaneous strain

(9)

These corrections to A and A„are analogous to the
magneto-elastic correction ("AE effect") to cubic
anisotropy of a ferrornagnet. "

We emphasize that the function Vis meaningful only
for finding the equilibrium configuration, but has no
dynamical significance, since the strain cannot follow
the rapid optical vibrations. By inspection of Eq. (5), it
is evident that elastic coupling does not change the tran-
sition temperature T„which is still governed by the
condition K(T,)=0. The equilibrium displacements,
however, are affected because of the corrections (6) and
(7) to the potential coeflicients. For a constant Q, the
expression Qi'g~'+Q2'Q3'+Q32gi2 has minima at the
points Q=(+Q, O, 0), (0, +Q, O), and (0, 0, &Q), and
maxima at Q= (&Q, &Q, &Q) with all sign combi-
nations. Therefore, only tetragonal and trigonal (rhom-
bohedral) symmetries, respectively, are compatible with
this model, depending on the sign of A„'.

Upon minimizing U with respect to Q, , we find the
following, for X&0:

Tetragonal distortion (A „')0).To be definite, we take
the case Q = (O,O,Q,) with the spontaneous displacement

Q.= (—E/4A')'", (8)

where Q, are principal-axis coordinates of the soft mode
and M is the mass density of oxygen atoms participating
in each mode, M= 2mo/a'. The derivative in Eq. (17) is
evaluated at the equilibrium points determined in Sec.
II.The function U appearing in Eq. (17) must be taken
from Eq. (1) rather than (5) because the frequency of
uniform-strain oscillation vanishes in principle. Since
Raman-scattering experiments involve small but finite
wave vectors, optica, l and acoustic modes do, in fact,
mix. The resulting corrections may be important very
near the transition temperature, but we leave them out
of consideration.

Cubic phase. In the cubic phase, all e, vanish and

Q) i —~2 —Q) 3 —E/M (cubic) . (18)

~3(T=T, 6) 38—.' '~' /2A=2'I' 1— =~, (21)
AC.(u,(T=T,+6)

Tetragonal phase. In the tetragonal phase LEqs.
(8—12)$ we let Q, =Q;, and one finds

cubi'=a)P= E(A +98—,'C, ')/2M(A 38.'C. ')—
E(A '+ '—BPC ')/2MA'-, (19)

(u3'= —2EM '$1—38 '/AC j '= —2EM 'A/A', (20)

where A' and A„' are given in Eqs. (6) and (7). If we
make the special simplifying assumption that E is
linear in temperature, then by combining (18) and (20),
we find the relation

and
(ei.,e2„eg,)= (—1, —1, 2)B.Q.'/C.

e4, ——e5,——e6, ——0.
The change of crystal-axis ratio defined by

(r,=—c/a —1=e3.—ei.

(10a)

(10b)
which reduces to 2'l" in the limit of vanishing elastic
coupling (8,= 0), in agreement with Thomas and
Miiller. " Equation (21) may be expressed in terms of
measurable quantities by eliminating 8, and A through
Eqs. (6), (8), and (12) to find

is given by
0.,=38,Q.2/C. . (12)

cuP(T= T, 6) =2m&'(T= T—,+6)
+80. (Cii' —Ci2')(3MQ, ) . (22)

Rhombohedral distortion, . To be definite, we take
Q =3—"'Q, (1,1,1) with

Q = 5—-'E/(A'+3A-')]'", (13)
U"= —E'(16(A'+ ,'A ')j ', - (14)

ey =eg =e3 =0,
e4, = e5, e6. B~QP /3——C, = cosa, —— (16)

where e is the angle included by the rhombohedral
crystal axes. The rhombohedral case, which occurs in
certain rare-earth alumiriates' will not be considered
further in this work.

We remark that the relationships (21) and (22) are apt
to be of limited usefulness because, as we show in Sec. V,
it is not clear that E(T) varies smoothly through the
point T= T,.

Since the quantity A, appearing in Eq. (19), is not
independently determinable, ~&,(T= T, 6) cannot be-
generally related on a similar basis. However, the optic-
mode anisotropy A „may be expressed in the form

A = (M(u, '/2Q, ') —a,'Q, '(Cii' —Cig'), (23)

which permits its determination from measurable
quantities.
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IV. ELASTICITY

Suppose a given strain e is imposed at a low frequency
on the crystal. The optic coordinates Q will be displaced
to nearly static-equilibrium values under the action of
the optic-elastic interaction, thereby affecting the ap-
parent elasticity. The resulting adiabatic elastic coeffi-
cients may be written in the form

B2U
C;;=

Be,Be;
&(e) —=~EQ(e) ej (24)

where U is the energy function (1), and Q(e) satisfies
the equation set

BU
—LQ,ej =0, (4 =1,2, 3)

I

(25)

for arbitrary e. In contrast to U(Q), the function U(e)
does have dynamical significance because Q follows e
quasistatically at acoustic frequencies. By carrying out
the differentiations in Eq. (24), and combining with Eq.
(25) and its first partial derivative with respect to e;, we

find
B'U B'U

Cg=Cg' —Q —Ri, i
ii ae~aQi cjQiae;

(26)

where C;,' are the "bare" cubic elastic constants ap-
pearing in Eq. (1) and where the matrix R& & satisfies the
equation

B2U
~I Z =~1m.

~Q&~Q
(27)

If vibrational principal-axis coordinates Qi are used,
Eqs. (26) and (27) reduce, in view of Eq. (17), to

B'U B'U
C;;=C; —M 'Q —cop

'
& Be;cjgi BQicje,

(28)

Cubic phase. Substituting Eq. (1) into Eq. (25) one
finds a solution Q=O valid for all e. Thus, at any
temperature and with any applied strain, the state
Q = 0 (cubic phase) is in equilibrium, though not always
stable. In this case, Eq. (24), when applied to Eq. (1),
reduces to

D=48,2Q, '/Mco32, E=Bt2Q,2/Moiim.
'

(30)

as it must by definition of C;
Tetragona/ phase. Applying Eq. (28) to the six inde-

pendent elastic constants of the tetragonal phase which
may be stable for E&0 as described in the preceding
sections, we find

~11 Cl 1 D
y C33 Cl 1 4D

y C12 C12
(29)

Cia =Ci2 +2D, C44= C44' E, C66 =C44', —
where

At this point we remark that we may regard M and
the cubic C's as independently known. We have, there-
fore, Ave fundamental parameters E, A, A „,B„B&and
six rneasurables Q„o.„oui, a», D (—=C»' —C», say),
E (=—C~4' —C44). Thus, experiment permits the complete
determination of the parameters. In particular, elimi-
nating 8, through Eq. (12), we find the elastic change

D=4o. '(C ' —C ')'/9Q '3Ao32 (31)

expressed in terms of independently measurable
parameters.

We note that o „Q,', oii2, and ooP, when expressed in
terms of fundamental parameters LEqs. (8), (12), (19),
and (20)j, are simply proportional to K. Thus, accord-
ing to Eqs. (30) and (31),D and E do not depend on K
and the elasticity has step-discontinuities at the transi-
tion temperature.

V. APPLICATION TO STRONTIUM TITANATE

Some experimental information about all of the
measurables Q„o„&oi,&o3, C,, derived above is available
for the tetragonal phase of SrTi03 which exists at
temperatures below 108'K. First of all, the structural
parameter describing the spontaneous deformation from
cubic symmetry has been determined at 78'K by
neutron diffraction, ' yielding a spontaneous oxygen
displacement of the form described in Fig. 1, given by
Q, = (0.0060&0.0015))&2a=0.047&0.012 A. (Here a is
the lattice parameter. ) At other temperatures one may
assume, with Unoki and Sakudo, '2 that Q, is propor-
tional to the angle p of rotation of the tetragonal com-

ponent of the crystal field of the Fe'+-Uom- complex. ' "
The spontaneous tetragonal strain 0., has been mea-

sured by neutron backscattering in the temperature
range 77—150'K.' It has the value o.,= (4.0&0.5) &&10 '
(error assigned by ourselves on the basis of the published
data) at 78'K and varies linearly with temperature to
zero at the transition temperature of 108'K, as shown in

Fig. 2.
To obtain values of o., (and of Q, in a different way) at

other temperatures we argue as follows: We assume that
only E of the free-energy parameters LEq. (1)j varies
with temperature. Since our relations in Sec. I show that
Q,2, o„and or32 are each simply proportional to

~
E~ in

the tetragonal phase, we expect these quantities to be
mutually proportional. Moreover, the spontaneous dis-
tortion gives rise to a quadrupolar crystalline electro-
static potential g;, V;,X,X; at impurity sites which
one would calculate, say in the point-charge approxi-
mation, from the spontaneous displacements of ions
from their cubic positions. Since the quantities 1/",;, e,;,
and Q,Q, are all second-rank symmetric tensors, the
leading term in the spontaneous tetragonal component
V, (=—2V33—Vii —U») of U;; is a linear function of o.,
and Q 2.

Accordingly, EPR or optical measurements of co3, V„
or p should serve to extend the temperature range of
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FIG. 2. Lattice parameter changes of
SrTi03 versus temperature, showing te-
tragonal distortion below the transition
temperature. Taken from the work of
Alefeld.
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measured o, and Q, values through simple propor-
tionalities. The validity of these procedures is tested in

Fig. 3, which shows plots of oyss, U„and ff(t', which should
all be in constant proportions, versus temperature in the
tetragonal phase of SrTi03. For ~3 we take the Raman-
effect data of Fleury et a/. ,

' which agree well with
neutron scattering results. ' ' For V, we have three sets

of data: (i) the axial splitting of the Gd'+ EPR spectrum

by Rimai and deMars s' (ii) the axial splitting of R-line

fluorescence of Cr'+ by Stokowski and Schawlow, '4 and

(iii) the rhombic component of the spin Hamiltonian of

the Fe'+- Vol- complex by Kirkpatrick and co-workers"

and Miiller. "The rotation angle P is taken from Mliller

i| poo, Z,

I ~ 4 Iyl2- p Ip 0 0

2
p (Raman Frequency D} (Fleury et al.)

I crystal field (EPR}af Gd (Rima' aad deMars) 'll
f crystal field (optical) of Cr~+(Stokowski)
o crystal field (EPR) of Fe complex (Muller et al) c

2 3+
& (tetragonal rotation angle} of Fe complex

(Muiler et al)

00 IO 20 50 40 50 60 70 80 90
TEMPERATURE ('K)

n t

IO0 I IO I 20

Fxo. 3. Comparison of temperature dependences in the tetragonal phase of SrTi03. Each plot is normalized to the same area under a
least-squares polynomial of third degree.

"L.Rimai and G. A. deMars, Phys. Rev. 127, 702 (1962)."S.E. Stokowski, W. W. Hansen Laboratories of Physics, M. L. Report No. 1640, 1968 (unpublished); S. E. Stokowski and A. L.
Schawlow, Phys. Rev. I'78, 457 (1969)."E.S. kirkpatrick, K. A. Miiller, and R. S. Rubins, Phys. Rev. 133, A86 (1964).

"The values actually plotted are based on improved measurements and were kindly provided by K. A. Muller in a private communi-
cation. They are also plotted in a paper on EPR in SrTi03.Ni'+ by J. C. Slonczewski, K. A. Muller, and %.Berlinger, Phys. Rev. (to
be published).
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et al. ,
' whose results agree well with the earlier but less

extensive results of Vnoki and Sakudo. "
In Fig. 3, vertical scale factors were adjusted to give

equal areas under third-degree polynomials fitted by
least squares to each set of data. To the extent that
these plots agree, they indicate the insensitivity to
temperature of the energy parameters other than E. A
recent microscopic theory of the phase transition'~ sup-
ports the proportionality of Q, to ~~ but not to &ui,

although both are inherent to the soft-mode model if
only E varies with temperature. Although we do not
rule out the possibility that a suKciently refined theory
will show deviations from soft-mode model relations,
we accept them provisionally.

The approximate proportionality of co3' to the other
quantities in Fig. 3 is particularly reassuring in the face
of the valid objection that Eq. (17) is not generally
correct, as will be discussed in the Appendix. The im-

portance of this consideration should be rejected by
departures of ~3 from other quantities in Fig. 3, which
are not great except near T= T,.

It has been noted that the special viewpoint, ac-
cording to which rigid Ti06 octahedra rotate to pro-
duce the deformation, ' ' " accounts for roughly three-
fourths of the tetragonal strain, with the remainder
attributable to the tetragonal deformation of the indi-
vidual octahedra. ' Neglecting the latter deformation
would imply the relation O,Q, '=2/a', which, in turn,
would imply a purely geometric origin of the interaction
coefficient B„accroidgnto Eq. (12). In spite of the
merit of this view we will continue to regard 8, simply
as an adjustable parameter.

We can now test the correction to the optic vibration
frequency coa expressed in Eq. (20) by computing the
harmonic force constant E (or E/M) from the available
data by means of the equation

E/M= —-'(u 2+4a '(C ' —C ')(3Q 'M) '

(T&T.) (32)

Consistency of the elementary soft-mode theory re-
quires the computed E to be a smooth function of T
without a break at T= T,. Figures 4(a) and 4(b) show E
computed in the tetragonal phase both without and
with the strain correction. In these computations, the
elastic constants C~~' and C~2' were taken from ultra-
sonic measurements" in the cubic phase, while Q,2 and
0-, were taken proportional to the rhombic crystal field
of the Fe'+ complex (Fig. 3) and normalized to the
direct measurements cited at 78'K. In Fig. 4(a), cog(T)
was taken from the Raman spectrum' in the tetragonal
phase, while in Fig. 4(b), coa(78'K) =35 cm ' was taken
from the same source, but at other temperatures co~(T)
was assumed to vary in proportion to the rhombic

E. Pytte and J. Feder, Phys. Rev. 18'7, 1077 (1969);J. Feder
and E. Pytte (unpublished). See also K. Tani, J. Phys. Soc.
Japan 26, 93 (1969); K. Tani and N. Tsuda, J. Phys. Soc. Japan
26, 113 (1969).

splitting of Fe'+-Vo~- (Fig. 3). The values with the
strain correction are shown as bands corresponding to
the experimental latitudes in the absolute measure-
ments of Q, and 0, In the cubic phase (T)=108'K),
one curve represents the empirical formula

(h~) '=0.0081+4.22/(T —108) meV ',
fitted by Shirane and ramada to their neutron data. '
The other curve is a straight line obtained from the
formula

v„'= 1.125)&10"(T—107.4) Hz' (32')

fitted by Cowley et al. , to their independent neutron
data. "

We see that neither Fig. 4(a) nor Fig. 4(b) supports
the soft-mode model conclusively, though the curves
based on the temperature dependence of the Fe'+-
complex spectrum (which we see in Fig. 3 is highly
consistent with p' and Cr'+ splitting) look better, and
the strain correction is in the right direction. It should
also be noted that Fig. 4(b) is more consistent with the
third-law requirement and that the temperature deriva-
tive of any thermodynamic parameter must vanish at
T=o'K. Nonanalytic behavior of E at T, is fore-
shadowed by the microscopic theory. ' The Appendix
also deals with this point.

VI. ELASTIC CONSTANTS OF
STRONTIUM TITANATE

We discuss now ultrasonic and Brillouin-scattering
measurements of sound velocity in SrTi03. The calcula-
tion of sound velocity requires, in principle, knowledge
of adiabatic elastic coeKcients. We ignore the difference
between adiabatic and isothermal processes because the
results in our Appendix indicate that it is small in
SrTi03.

According to Eqs. (29), we can predict the dis-
continuities in C]g C33 Cgg and C» by evaluating D
from Eq. (31). Substituting the already cited experi-
mental values at 78'K into Eq. (31), we find D= (0.04
&0.02)&&10i2 dyn/cm'. Since the velocities of longi-
tudinal waves propagating along the principal axes are
proportional to C»"' and C»"' we expect, from Eqs.
(29), longitudinal L100)-wave velocity reductions lying
between 0.3% and 0.9%, and between 1.2% and 3.7%,
respectively, as compared to the cubic phase. This
prediction is to be compared with the observation of a
single reduction of about 4%, for this case, reported in
a brief communication on Brillouin scattering. ""A
similar reduction was observed by O' Shea."

In addition, Rupprecht and Winter" have studied the
temperature variation of the compliance coeKcient S~~
(cubic indices) in SrTiO, by observing electromechanical

'8 Professor W. Kaiser indicated in a private communication
that the higher predicted shift falls within his experimental
accuracy.' D. C. O' Shea, thesis, Johns Hopkins University, Baltimore,
Md. , 1968 (unpublished).
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(a) based on experimental temperature dependence of cats, (b) assuming co3s is proportional to rhombic crystal Geld of Fe'+ complex.

resonances in a sample of 1.53-cm length. They found an
increase of 54%%u~ near 80'I, as compared to the cubic
phase, which is far more than the maximum of 4%
increase allowed by the application of the elastic con-
stants in the present theory. Although a bias field of
15.93 kV/cm was present during this measurement, it is
unreasonable to attribute such a large discrepancy to it.

The discrepancy may well be caused by domain-wall
displacements which would naturally have the effect of
increasing the apparent S~~ in a multidomain sample.
Presence of domain walls should not similarly dominate
the Brillouin scattering, because the phonon wavelength
of 0.2 p is far less than the typical domain width of
20—50 p found in some crystal regions. " YVe note in

"E. Sawaguchi, A. Kikuchi, and Y. Kodera, J.Phys. Soc. Japan
18, 459 (1963).

passing that other crystal regions with domain widths of
2—5 p, which is but one order of magnitude greater than
the wavelength, are also observed. '

A further test of the relations (29) is provided by
comparing the Brillouin-effect determination of the
transverse velocities Ui, for propagation along the
pseudocubic L100) axes,""with the ultrasonic observa-
tion of the longitudinal velocity U~ for propagation
along a $111) direction. " These velocities are easily
shown to be

V = (C44/p)'" and V,'= (Css/p)"'
([100) transverse) (33)

V g= (C+SC44+4Css)"'/(3p"')
(L111)longitudinal), (34)



J. C. SLONCZEWSKI AND H. THOMAS

26.4—

25.2—

GHz
be
2%

24.0—

22.8—

2~IS I I
'

I I I I

20 40 60 80 IOO j20
TEMPERATURE K

FIG. 5. Freguency shift due to Brillouin scattering from trans-
verse $100j acoustic phonons in SrTi03, versus temperature.
Based on Zurek.

where C is proportional to the bulk modulus

C—=2Ctt+Css+2Crs+4Cts.

Two expressions for transverse velocity are given for the
two possible domain orientations. According to Eq.
(29), the bulk modulus does not change at the transi-
tion. (This is a consequence of our original assumption
that volume strain does not interact with the soft
modes. ) The changes in V, and Vt at the transition are,
therefore, simply related because they depend on E, but
not on D. Eliminating E, and combining Eqs. (29), (33),
and (34), we find

VII. ANISOTROPY

The experimental data available to date permit
estimates of the three separate contributions to the
effective anisotropy A„' whose sign determines whether
the low-temperature phase is tetragonal or trigonal.
According to Eq. (7) it is given by

A„'=A„+A,+A(, (37)

where A is the intrinsic anisotropy of the vibrational
potential, A, =98, /C, is the contribution from strains
of E symmetry (tetragonal), and A, = —BP/(2C, ) is the
contribution from strains of T symmetry (trigonal).
From Eq. (12), A, may be written in the form

A,=,'(C —C„)/Q, '. (38)

to V&, as reported in Ref. 13, clearly show one velocity
above T,=I08'K, and two below this temperature.
One of the latter is substantially undisplaced and the
second is displaced downward as predicted.

Subsequent work" on another sample did not detect
the undisplaced velocity V&' because of highly aniso-
tropic distribution of domains, but provided revised
data for the frequency shift proportional to V& shown
in Fig. 5. Quite similar results were obtained by
O' Shea."Figure 6 compares the velocity V& computed
from the results of Zurek, using Eq. (36), with ultrasonic
measurements of Bell and Rupprecht. "A more detailed
analysis of the Brillouin data for SrTi03 will appear in a
forthcoming paper by I.auberau. "ln this computation
we used cubic elastic constants extrapolated downward
to 78'K by means of Bell and Rupprecht's empirical
cubic-phase formulas t Eqs. (4) of Ref. 11j, with the
transition-related (T T,) ' term—s omitted.

Note added in proof. Recent Brillouin scattering
results for C;, PD. C. O' Shea, Bull. Am. Phys. Soc.
15, 383 (1970)]support our predictions in considerable
detail.

V&
—rL(3C c+6C c+4C c)p

—1+8V 2]l/2 (36) From cited experimental values at 78'K, we estimate

The Brillouin data for the frequency shift proportional A, = (0.5—0.2) && M(v P/Q. s, (39)
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where the range given corresponds to experimental
errors in o, and Q, . From Eq. (23), the intrinsic contri-
bution may be written

A „=MtoP/2QBs —A, = (0.0—0.3)XMtvP/Q, ' (40)

the last equality following from Eq. (39), with the range
again corresponding to errors. From Eqs. (29) and (30)
the T-strain contribution is

A, = —yS, /Q. ) ~ZC„~/2C„= —0.15m, /Q, , (41)

I I I I I I I I
' 0 20 40 60 80 IOO I20 I40 I60

TEMPERATURE ( K)

Fzo. 6. Velocity of longitudinal wave propagating along L111$
axis versus temperature. The measured curve is ultrasonic data of
Bell and Rupprecht. Computed curve is based on Eq. (36) and
Brillouin data of Zurek (Fig. 5).

where
~
AC44~/2C44 is taken directly from the relative

frequency step in Fig. 5.
The values for A„, A„and A, given above are con-

sistent with tetragonal distortion to the extent that the
total A '=0.353IIa&p/Q s is positive. It is interesting to

» A. Lauberau (unpublished).
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note that A. is at least one-half of A„' and that the
present data do not exclude the possibility that the
intrinsic anisotropy A„has a negligible bearing on the
symmetry of the low-temperature state.

VIII. SUMMARY

The following conclusions are drawn from our analysis
of the interaction of strain with soft optical corner
modes of the type observed in SrTi03'.

(i) The transition temperature, its order, and the
permitted symmetries (tetragonal and rhombohedral)
of the lower syrrnnetry phase remain unchanged.

(ii) The strain interaction contributes to the energy
difference between the rhombohedral and tetragonal
states. In the case of SrTi03, the strain contribution
accounts for at least one-half of the total difference.

(iii) A premise of the elementary soft-mode model is
that the restoring-force constant K(T) varies smoothly
through T= T,. This premise is fairly consistent with
experiment if the square of the higher Raman frequency
m3 is taken proportional to the tetragonal crystal field
for temperatures just below T,. The consistency is
weaker if the experimental values of +3 are used at all
temperatures.

(iv) We might reasonably interpret conclusion (iii) as
supporting the applicability of the Landau theory to
SrTi03, but not the extension of it required to derive
soft-mode frequencies at temperatures removed from
T,. The Landau theory is founded on qgasistatic
thermodynamic variables (Q and e, in our case) and its
validity rests on the analyticity of the configurational
energy U. But vibrations of soft modes involve time-
dependent forces which might not be well represented
by BU/BQ; (see Appendix). Indeed, the observables of
a recent microscopic theory do not all vary with T in the
simple proportions of the soft-mode model. '~

(v) Our Eqs. (29) and (31) express four of the six
tetragonal-phase elastic coefficients in terms of other
measurables without adjustable parameters, providing
consistency checks. The scant elastic data presently
available for SrTi03 are consistent with our calcula-
tions, but additional measurements are needed.

(vi) If one ignores the elastic anomalies close to T.
arising from fluctuations, the elastic coeKcients exhibit
step discontinuities at T, between essentially tempera-
ture-independent values, as borne out by ultrasonic and
Brillouin-scattering data for SrTi03.

(vii) We remark that SrTiO, is a fairly isotropic
material, both elastically and with respect to the soft-
mode potential. The relation C» ——C»+ 2C44 satisiied by
an isotropic medium is in error only by 7% in, the cubic
phase. The energy difference 3A„'Q,', between rhombo-
hedral and tetragonal states is about 20% of the
isotropic anharmonic energy A'Q, 4. Thus we may de-
scribe the configurational free energy as isotropic and
not involving strain in erst order. Only in second order
do the anisotropic sof t-mode potential and elastic
interactions take part in comparable proportions. In

this respect SrTi03 is quite different from the ferro-
electric BaTi03, in which the anisotropic part of the
ferroelectric mode potential is as great as the isotropic
part. '0

(viii) Discontinuities in specific heat and the quantity
dK/dT at the transition point are predicted, as shown in
the Appendix.

APPENDIX

We discuss here questions of thermodynamics and
discontinuities related to displacive transitions.

The dynamic properties of a system are more directly
related to the internal energy of the system than to its
free energy. For this reason, we have formulated the
theory so that it applies to a closed system, and the
appropriate thermodynamic potential is the internal
energy W' expressed as a function of entropy 5 and those
coordinates X& to be studied explicitly:

W= W(S,X). (A1)

Stable equilibrium configurations are characterized
by having minimum energy compared to neighbor
configurations with the same entropy. Thus, for every
value of the entropy, the equilibrium values XI,'&(S) of
the coordinates X& are found by minimizing W(S,X)
with respect to the X&. At equilibrium, the energy
becomes a function of the entropy alone,

W ~(S)=W(S X ~(S))
and the temperature is defined by

(A2)

dS BS
(A3)

where the last equality follows from the minimum
property of W(S,X).

For the case discussed in the present paper, the set of
explicit coordinates consists of the three optic-mode
coordinates QI, (= 1, 2, 3) and the six strain components
e; (i= 1, . . . , 6). We consider an internal energy

W(S,Q, e) = U(S,Q,e)+W, (S), (A4)

where the first term has the form of Eq. (1) with
coefficients depending on the entropy, and the last term
is the contribution from all "internal" degrees of
freedom. Since the temperature at equilibrium is a more
accessible parameter than the entropy of the system,
one may solve Eq. (A3) for S(T) and substitute into U
to express the coefficients in U as functions of T. Thus,
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we obtain a justification of the procedure follomed in the
text for the static properties. It has to be noted, how-
ever, that a smooth dependence of the coefficients on
entropy mill yield a discontinuity of their derivatives
with respect to T.

To estimate the amount of the discontinuity for the
coeKcient E, me consider the thermodynamic relation

dS c

dT T
(A5)

where c is the specific heat at equilibrium.
This permits us to write

dK dE c

dT dS T

If dK/dS is continuous in S at the critical entropy S„
then discontinuities of c and dK/dT are m'utually pro-
portional. Therefore, we define the relative discontinuity

c —c+ lK) (dK dK~
(A7)

dT dT + dT

where the subscripts+ and —refer to limits taken above
and below T„respectively.

We derive an expression for 6 by a method similar to
that of Landau and Lipshitz. " Combining Eqs. (A3)
and (A5) we find the general relation

(A8)

Substituting this expression into Eq. (A7), we obtain to
first order

(A9)

We now assume that the nonconfigurational part Wp(S)
of the energy is smooth at S„and that all coefficients
except E can be considered constant. The configuration
energy U'&(S) is given by Eq. (9) below S.and vanishes
above S,. Application of the condition K(S,) =0 thus
leads to

dE
g =cp (8A'T) .

ds
(A10)

in terms of measurable quantities.

"L. D. Landau and E. M. Lifshitz, Statisticat I'hysics (Per-
gamon, London, 1958), p. 434.

The parameters E and A' are eliminated through Eqs.
(8) and (18) to give, with the help of Eq. (A5), the final
expression

MTc d o)i d s

(A11)

To evaluate 6 in SrTi03, we take for c the value
11.4 cal/deg mol at 105'K from data of Todd and
Lorenson"; for fd(~P)//dT)+ we take (2~)' times the
coefficient of the experimental relation (32'); and we
estimate Ld(Q, ')/dT) = —Q,s(78'K)/(105 —78), where

Q, (78'K)=0.047&0.012 A, from neutron diffraction. '
The resulting discontinuity 6= 1.3)& 10 ' is too small to
materially affect our discussion of K (T) in Sec. V. It is
large enough to be observed in specific-heat measure-
ments as precise as those of Todd and Lorenson, "whose
data scatter by little more than one part in 10'. How-
ever, the existence of the transition was not known at
the time and our analysis of their tabulated data does
not reveal a discontinuity. It mould be worthwhile to
repeat the experiment at more closely spaced tempera-
tures to settle this question conclusively.

One can verify that Eq. (A11) is valid for trigonal as
well as tetragonal distortions. Thus, we can estimate 6
for the trigonal compound LaA103. We estimate c from
the equipartition theorem; we take T,=800'K and
(d(co;s)/dT)+ from the Raman data of Scott4 by
applying the factor —', to his data at T(T, Li.e. , neg-
lecting the elastic coupling correction in Eq. (21)); we
take Ld(Q, ')/dT) from the data of Miiller et cl.' The
result is 6=8 jc, considerably larger than in SrTiOp,
which might make LaAlO3 a better substance to
measure.

The smallness of 5 in SrTi03 indicates that the
distinction between free energy and internal energy is
in this case not very important. A more difficult question
concerns the propriety of calculating optic-mode fre-
quencies from any thermodynamic potential. The equa-
tions of motion (17) would be justified if the internal
equilibrium with respect to all other degrees of freedom
were not upset by the motion of the Q;, i.e., if the
"isolated response, " in the sense of Wilcox, '4 of the
system equals its "adiabatic response. "This condition
is satisfied either if the statistical distribution over the
internal degrees of freedom remains canonical for an
isolated change of the Q;, or if it relaxes towards a
canonical distribution with a relaxation time shorter
than the reciprocal soft-mode frequencies.

For T sufficiently close to O'K, the statistical dis-
tribution is canonical because only the ground state is
populated. For T sufficiently close to T„ the relaxation-
time condition should be satisfied because the soft-mode
frequencies tend to zero. For intermediate T, however,
the soft-mode frequency is so large ( 30 cm ') that
modes appreciably occupied for kT(kT, (=73 cm ')
could not conceivably have even higher relaxation
frequencies without being unrealistically overdamped.
Thus, our employment of Eq. (17) remains to be
justified.

3' S. S. Todd and R. E, Lorenson, J. Am. Chem. Soc. V4, 2043
(&952)."R.M. Wilcox, Phys. Rev. 1/4, 624 (1968).


