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tortion of the lattice by the magnetic ion if this dis-
tortion leaves the symmetry unchanged.

Ke also note that these relations are also correct in
the "overlap" approximation for the covalency, be-
cause as long as only Coulombian energy is considered,
the Laplace equation becomes then V'V=4~p, p being
the spherical charge density, and only the radial part
of the expansion (1) is modified. "Obviously, if exchange
forces are included, our description is not valid.

"This point was called to our attention by Dr. D. K. Ray.

In addition to the reduction of the number of param-
eters, this work establishes formulas $(13) and (15)j
which, once the standard combinations I'(/, I', tt,P) and
T(I",b,P) are known, gives, for any environment, the
values of the parameters with a minimum amount of
calculation.

ACKNOWLEDGMENT

It is a pleasure for the authors to thank Dr. D. K.
Ray for reading the manuscript.

PHYSICAL REVIEW B VOLUME 1, NUM B ER 9 1 MAY 1970

Angle Dependence of Paramagnetic-Resonance Line Intensities
of Trivalent Cr" in Mg0$

D. H. DICKEY* AND JOHN E. DRUMHELLER

Department of Physics, 3fontana State University, Boseman, Montana 59715
(Received 14 November 1969)

Three methods have been used to predict paramagnetic-resonance line intensities in the spectrum of tri-
valent Cr" in sites of tetragonal symmetry in MgO. The methods are: numerical diagonalization of the
Hamiltonian matrix, perturbation theory, and a technique involving the magnetic field induced at the
nucleus by the electron spin. Experimentally observed line intensities are compared with the calculated in-
tensities. The induced-field method is found to adequately describe the spectrum and to agree very closely
with results from numerical diagonalization of the Hamiltonian. Some small discrepancies in line positions
are observed which imply an inaccuracy in the usual axial-6eld spin Hamiltonian.

I. INTRODUCTION

~ 'HE angular dependence of transition probabilities
in electron paramagnetic resonance (EPR) be-

comes complicated when the applied magnetic field
and crystalline electric field compete as a quantization
axis in the presence of a hyperfine interaction. Addi-
tional transitions are observable because the states
may be mixed by matrix elements of the hyperfine
interaction and crystal field operators. The magnetic
dipole selection rule (AM= &1) is valid if applied to
the base states iMB,Mr)= ~M,nt), but breaks down
completely at some orientations if applied to the mixed
states. This results in the appearance of so-called
forbidden hyperfine lines in the EPR spectrum. For
the case of small crystalline field splittings, adequate
explanations of the existence of these forbidden tran-
sitions using perturbation techniques have been given
by previous authors, ' particularly for the ions of
manganese and vanadium.

For the cases where the crystalline field splitting is
comparable to or larger than the Zeeman splitting, the
angle-dependent spectrum is very complicated and only
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direct diagonalization of the full Hamiltonian is ade-
quate. For the intermediate cases Bir' and Bir and
Sochava4 have developed a technique which we call the
induced-held method, which relies on the calculation
of the magnetic field induced at the nucleus by the
electron spin. In the induced-field method, either per-
turbation theory or diagonalization techniques may be
employed but in either case only on the electronic
portion of the Hamiltonian. The present work was done
at X-band frequencies, for which the Zeeman splitting
is about twice that of the crystal field. It successfully
uses the induced-field method to explain the angular
dependence of the Cr" spectra in the tetragonal sites
of magnesium oxide. It is the first report of chromium-
forbidden hyperfine transitions.

The EPR spectrum of trivalent chromium is readily
observed in ionic crystals and has been extensively
studied, particularly as a dilute impurity in aluminum
oxide' ' and magnesium oxide. ' ' The latter crystal is
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cubic, so unless the chromium ion is associated with a
lattice defect, its ground state is degenerate and the
resonance spectrum is an uninteresting single line.
Trivalent chromium in MgQ often occurs, though, in
association with a next-nearest-neighbor cation va-
cancy. ~ The resulting tetragonal distortion produces a
ground-state splitting and a more complicated spec-
trum. ' For the isotope Cr" (I=zs), the spectrum is
further complicated by the hyperfine interaction. "

The ground state of trivalent Cr" in MgO consists
of 16 levels, so that a total of 120 transitions can occur
within the ground state, ignoring selection rules.
Twenty-four of these are NMR transitions. Ke have
observed most of the transitions but have concen-
trated on those 16 characterized by M,m =+zi, m ~——„
m' (m and m'=as, -'„——',,

——,'). There is some lack of
agreement between observed and calculated line posi-
tions and intensities, and this is attributed to the omis-
sion of some unknown term in the spin Hamiltonian.

II. CALCULATION OF LINE INTENSITIES

Relative line intensities in an EPR spectrum may
be found from the matrix elements of the microwave
field operator:

The wave functions used to calculate these matrix
elements are the eigenfunctions of the spin Hamiltonian
of the paramagnetic ion. For a chromium ion in a
crystal field of tetragonal symmetry, the appropriate
spin Hamiltonian is

5('.=PH g S+DLSg' —-'sS']+S A I—PsH gz I) (2)

where the primed coordinate refers to the crystal field
direction. The nuclear quadrupole interaction is omitted
since there is no experimental evidence that it is strong
enough to be observable. In a very intense magnetic
field the 16 basis vectors ~S,M,I,nz) = ~M, m) are eigen-
functions of the Hamiltonian. For usual laboratory
fields, the second and third terms of Eq. (2) are not
negligible and the correct wave functions may be com-
plicated mixtures of the basis vectors.

The three methods used to calculate the wave func-
tions and subsequent line intensities are each discussed
below.

A. Direct Diagonalization

A numerical diagonalization of the Hamiltonian
matrix, using a digital computer, is the most straight-
forward and accurate method of obtaining the necessary
wave functions. In addition, the eigenvalues obtained
with this method can be used to determine exact line
positions. Comparing the computed line positions with

' P. Auzins and J. E. Wertz, J. Chem. Phys. 43, 1229 (1965).' W. I,ow, Phys. Rev. 105, 801 (1957).

TABLE I. Summary of Hamiltonian parameters.

Parameter

grr

ill (= age)

Temperature
('K)

300
77

300
300

77
300

77
300
300

77
300

4.2

1.97882+0.0001
1.97854&0.00005
1.9782
1.98200+0.001
1.98171+0.00005

—887.1+0.1 G—879.76&0.04—887.0
17.84&0.1 G
17.73&0.02
17.85
0.4751+0.0005

Reference

This work
8
7

This work
8

This work
8
7

This work
8
7

12

those observed then becomes a test of the accuracy and
validity of the spin Hamiltonian.

Values for g&l, g&, D, and 2 were determined from
measurements of line positions with the magnetic field
parallel and perpendicular to the crystal axis. In these
orientations the Cr" Hamiltonian matrix factors, so
that all the parameters in the Hamiltonian can be
determined before starting the computer diagonal-
ization. "The parameters we obtain are shown in Table
I along with the results of other workers. "Experimental
accuracy was not sufficient to permit the detection of
any slight anisotropy in the hyperfine interaction.

Resonance line positions are not usually found using
a numerical diagonalization because the resonance field
itself must be known before the matrix can be diago-
nalized. We use an iterative process though, which
begins by diagonalizing the Hamiltonian with an
assumed value for II. The microwave photon energy is
then compared to the difference in energy between the
appropriate pair of eigenvalues. The excess photon
energy (measured in G) is added to the assumed value
of II and the matrix is rediagonalized. The iteration is
continued until energy is conserved. Convergence is

rapid, so only a few iterations are required to define a
line position with the necessary accuracy, but the
process must be repeated for each orientation and each
transition.

The line intensity in each case is calculated from Eq.
(1) using the eigenvectors stored in the computer after
the final diagonalization. Relative line intensities were
obtained in this way for the 16 lines in theM =+a ~—

z

group for 0=30' and 0=45'. Some of these results are
plotted in Figs. 1 and 2 for comparison with the results
of the other methods.

B. Induced-Field Method of Bir

With the assumption that the wave functions in Eq.
(1) are separable into electronic and nuclear parts, the

"The smali isotope e8ect (see Ref. 8) was ignored, and the
Hamiltonian for Cr" was assumed to be identical with that for
Cr" except for addition of the hyperhne interaction. Spectra of
both isotopes were observable in the crystal."G. A. Woonton and G. L. Dyer, Can. J. Phys. 45, 2265 (1967).
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TABLE II. Rotation operators for the four-

dimensional vector space.

0. 4 ~

R,*,P= 8 (1+p)'
&L-&'= 8 (I —~)'(I+~)

&-:,— =3(I+~)(I—3u)'

Rg )'= —', (1+@,)'(1—p)
R&, P=-', (1—&)3

&~.-~'= 8 (I—s ) (I+3~)'

0. 3

0. 2

0. 1

(diag. )

(pert. )

n Theo.

energy or crystal field potential. In the absence of a
qua, drupole interaction the nuclear-spin functions p ~
are eigenfunctions of the operator Ir, where f is the
direction of the effective magnetic field at the nucleus.

For a given value of M, the p ~'s are orthogonal and
can be related to those of a different value of M with a
rotation operator

0. 0
0 15 30

Orientation - degrees

I

45

FiG. 1. Calculated intensity of the m= ——', —+ —
& forbidden

line as a function of the angle between external field and crystal
axis.

Pm g +mm'(&MM')Qm'

where n~~ is the angle between the quantization axes
for the two sets of nuclear-spin functions and R(u) is

the rotation operator which relates these sets. The
squared scalar product of Eq. (3) now reduces to

1.0

g. )

relative line intensity can be written

I~-,~ - = laP& ~(o~ Isola~& I'l&e-

where
+~. =Art ~,

P~ being the electronic wave function and p ~, the
nuclear wave function. This separation can be made if
one retains the M index on the nuclear functions. That
is, the electronic-spin functions are virtually inde-
pendent of the nuclear state because the hyperfine
energy is so much less than the electronic Zeeman

The general form of the R functions is known, "and for
the four-dimensional vector space appropriate to a
nuclear spin of ~~, they have the specific form shown in

Table II, where p= cosn~~.
The nuclear-spin quantization axes referred to above

are the directions of the magnetic fields seen by the
nucleus. These fields are the vector sum of the external
field and the field induced at the nucleus by the electron
spin. The angles relating these fields are shown in Fig. 3.
The induced field is not in general parallel to the
external field owing to the inQuence of the crystal
potential upon the electronic states. The components
of the induced field and hence its direction can be found

by considering the equivalence between the hyperfine

0. 9 eo.

0. 8

OJ
O

CLl

0. 6

axis

0. 5

0. 4

H Induced field for
(M)

electron state M

H Induced field for
(M')

electron state M'

0 30 15 30 45

FrG. 3. Plan view of the xs plane, showing induced fields and
angles referred to in the text.

Orientation - degrees
'~ I. Gel'fand, R. Minlos, and Z. Shapiro, Representations of the

FIG. 2. Calculated intensity of the m = —$ —+ ——,
' allowed line as a Rotation and I.orents Groups (Macmillan, New York, 1963),Sec. 7,

function of the angle between external field and crystal axis. or see Ref. 3.
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energy and the Zeeman energy of the nucleus in the
induced field,

gNpNH(ind) I=AS I, (6)

so that the components of H(ind) are

H;M(ind)= (A/gNpN)(QM|RI4M), z=*, y, z (7)

The magnitude of the induced field is on the order of
the coeiIicient A/gNPN (about 200 kG), so that the
external field may be neglected in further calculations.
With the given coordinate system, the induced field will
always lie in the xs plane, so that the angle n~~ is
readily found to be:

rzMM =tan 'H, M/H, M tan 'H,—M /H, M . (8)

The following approach may now be used for Gnding
the intensity of a given line: Electron-spin wave func-
tions are found and used to calculate expectation values
for S, and 5, for initial and final states. Equation (7)
is then applied and the angle o.~~ is determined. The
scalar product of nuclear-spin functions is then found
according to Eq. (5) and finally substituted in Eq. (3)
for the intensity. Bir has pointed out that the strong
angular dependence of line intensity is almost com-
pletely attributable to the angular dependence of the
scalar product of nuclear-spin functions. The electronic
transition matrix element of Eq. (3) usually has only a
weak angular dependence.

Two methods were used for finding electronic wave
functions. First-order perturbation theory was used to
generate approximate functions, and these predicted
line intensities that compared within experimental
error to observed intensities. For an accurate com-
parison of this method to that using direct diagonaliza-
tion of the full matrix, wave functions were also ob-
tained from a numerical diagonalization of the 4&(4
electronic Hamiltonian matrix. This approach resulted
in line intensities that agreed within less than 1/o with
those obtained from the full matrix, at the test angles
of 30' and 45'. The line intensities obtained with both
methods are plotted in Figs. 1 and 2.

C. Perturbation Theory

Following the approach used by Lyons and Kedzie"
for the calculation of energy levels, we have included
all of the diagonal parts of the crystal field potential
and the hyperGne interaction in the unperturbed
Hamiltonian. This approach has the advantage that
since the perturbation has only off-diagonal matrix
elements, the number of third- and fourth-order terms
is greatly reduced. The energy denominators in the
terms that remain are more complicated, but can be
expanded to give the usual series in 1/gPH. The
Appendix contains an outline of the wave-function
calculations, as well as explicit expressions for the

"D.H. Lyons and R. W. Kedzie, Phys. Rev. 145, 148 (1966).

admixture of neighboring hyperfine states for the case
A«D, II.

A disadvantage of the perturbation technique is that
the wave functions one obtains are not normalized.
They can be normalized, but only if all 15 admixtures
are calculated. This problem can be circumvented by
calculating line intensities with the unnormalized wave
functions and then normalizing the intensities. Ideally,
the intensity of all 96 EPR lines should be included in
the normalization, but in practice it is found that, only
four lines need to be considered at one time. For
examPle, the four lines +-,',+as —+ ——,',m (m= s, -'„
—is, —sz) are assumed to have constant total intensity,
and their relative strengths as a function of angle may
be readily found. This is the same kind of normalization
which is implicit in the induced-field method, except
here the variation of Cr" line intensity is ignored.
Intensities obtained from the perturbation method are
plotted in Figs. 1 and 2 for the + z, —

z ~ —z, —si and——lines1 3 1 3
2) 2 2) 2

III. OBSERVED SPECTRA

The experimental results were obtained using a
superheterodyne spectrometer employing balanced
mixer detection and held modulation. The spectrometer
was operated at a frequency of 9.994 6Hz, and the
data were recorded at room temperature.

The crystal we used was doped with enriched Cr",
so that approximately two-thirds of the chromium ions
are Cr" and one-third Cr". (Cr" natural abundance is
9%) There are four times as many Cr" lines, so that
each one is still only about one-half the intensity of the
equivalent Cr" line. The resulting spectrum consists of
groups of four Cr" hyperfine components with the
equivalent Cr" line standing in the center of each group.
As the magnetic Geld is rotated away from a crystal
axis, the four Cr" lines rapidly lose intensity while
forbidden lines appear in the spectrum. Observation of
the spectrum is not possible at many orientations,
owing to the presence of intense lines belonging to the
spectra of other paramagnetic impurities in the crystal.

For the magnetic Geld at an angle of 45' from the
tetragonal axis the M=+-', ~ —-', group of lines is not
obstructed by other lines and appears as shown in Fig.
4(a). At this orientation the ground-state wave func-
tions are mixed so completely that the forbidden lines
have intensity greater than the allowed lines. Line
positions and intensities calculated by diagonalization
of the full matrix are shown for comparison in Fig. 4(b) .
The calculated forbidden doublet splittings at 45' are
all signihcantly less than the line widths, so the line
intensities have been merely added to construct Fig.
4(b). N'ote that the m= &zi ~ ~—', allowed lines nearly
vanish at this orientation.

Measurements of line intensities within the~=+si~ —si grouP for the en= s —+ zs allowed
line and the neighboring as= —

2
—+ —

2 forbidden
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38,20

(0)

5840, 3860, 38,80, 39,00
H . - gauss

doublet have been made at all orientations at which

they could be observed. These results are plotted in

Figs. 5 and 6. The measurements were made relative
to the intensity of the corresponding Cr" line. The
Cr" line intensity was corrected for the presence of the
forbidden doublet which occurs at about the same Geld.
Errors in the experimental measurements occur because
the lines are weak and because of the proximity of
strong extraneous lines nearby.

The Hamiltonian we use does not predict a significant
angular dependence in the forbidden doublet splittings.
We observe, however, that the no=+as ~ +srdoublet
splitting does vary rapidly (from 4 G to zero) between
30' and 45'. The m= ——', ~ ——,

' doublet appears to
have nearly zero splitting at all orientations, and this

Cr52
1. 0

O. g-

-:0
2

e ~

-0
2

2
I

0. 6-
CO

FIG. 4. The M=+-,' -+ —-', spectrum for 8=45'. (a) Observed
first derivative spectrum: The line near 3850 G is a super-
position of an extraneous Cr" line and three Cr'3 lines, and is
therefore more intense than its counterpart near 3870 G. (b) Cal-
culated: The number to the right of each line is the change in
nuclear-spin magnetic quantum number, e.g., the leftmost line
is the Azz=0 (hz=~3 ~ ~3) transition.

0. 4-
CD

0. 2-

1.0-
0. 0

30
I

60 90

0. 8-

'v) 0 6-
CD

CD

0 4-.
CD

Orientation - degrees

FJG. 6. Intensity as a function of orientation for the unresolved
forbidden doublet. Solid line: calculated with

induced-Geld method. Points: observed intensity.

difference in itself is anomalous. The inclusion of a
quadrupole term in the Hamiltonian would introduce
an angular dependence, but should affect both the
above doublets equally. Evidently there is an additional
interaction in eBect here which is not usually
encountered.

0. 2--

0. 0
30

Orientation — degrees

90

FIG. 5. Intensity as a function of orientation for the m= —-', ~
——, allowed line. Solid line: calculated with induced field method.
Points: observed intensity.

IV. CONCLUSION

We have shown that for systems which have rea-
sonably large crystal Geld splittings, a good qualitative
description of the angular dependence of EPR line
intensities can be easily achieved by using the induced-
Geld method of Sir and electronic wave functions
calculated from low-order perturbation theory. The
induced-field method becomes very exact if more
accurate electronic wave functions are used. We have
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carried the perturbation approach of Bleaney and
Rubins to fourth order and, although the series do
converge with such large crystal field splittings, the
results are not exact enough to justify the labor
involved.

The spin Hamiltonian predicts Cr" line positions
remarkably well at all angles, but is in error by several
G on some of the forbidden lines in the Cr" spectrum.
Further investigation of the discrepancies is planned,
with the hope that their empirical description will

suggest a theoretical explanation.
The methods used in this work may be applied to

similar systems such as V" or Fe'~, noting that a
different set of rotation operators is necessary if the
nuclear spin is other than 2.

APPENDIX

and M,m~2. Only five of the eight terms in the large
curly bracket will contribute for neighboring state
admixture, and only two will contribute for second-
neighboring states. If r=p in the last term, a large
contribution (of order AD'/A'H') results, but is can-
celled to within terms of order D'/H' by the third from
last term. Writing the abbreviated wave function

e „=)M,m}+ ~M, ~—1}+P)M,~+1}
+~IM ~—»+8~M, ~+2} (A4)

we find the following expressions for the admixture
coefficients, evaluated for S= 2 and M= ~—,':

3D sin28
n = — LI(I+1)—m(m —1)]'I'

4gpH

If the perturbation Hamiltonian is nondiagonal, the
series expression for the wave function is

H„qHq„H„„Hq„'+.=I }+2lp} +2
&ny q -&ny&nq ~n, '&nq

H„qHqrHrn H„,H, nH„„2
+g

(jV jV„jV jV jV 2jV„

HyqHqnHrn HynHnqHqrHrn

+ny +nq+nr +ny +nq+nr

H„,H, „H„,H, „
+Z -+

I
(A1)

~ E„„E„,E„„E„.

where all sums exclude m, and the energy denominators
are differences in zero-order energies. For instance,
with the Hamiltonian of Eq. (2), the zero-order energy
for the state labeled 3l,m is

E~, =gPHM+AMm+DI'2(cos8)
X $M' ',S(S+1)] g~—P-~Hm, (A—2)

and the perturbation Hamiltonian is

(4—9 sin'8)
H

D2—(—64+79 sin'28 —13 sin48)
8(gPH)'

P= —P(I+1)— ( +1)] /

(I(I+1) m(m—1)]~—12,
3D sin20

P(I+1) nl(m —1)]'I'—
4gPH

XLI(I+1)—(nt —1)(ts —2)]"'
3D sin20 3 tane

X
2gPH 4gPH

3D sin20
P(I+1)—m(~y1)]»2

4gpII

XLI(I+1)—(m+1) (m+2)]'~'

3D sin20 3 tane-
X

2gPH 4gPII

(AS)

K= ~~A (S+I +5 I+)+~DLsin28 (S+2+5 ')
+sin28 (5,5++5,5 +5+5,+SM,)]. (A3)

We wish to calculate the admixture of neighboring
and next-neighboring hyperfine states. That is, if e is
M,m, then we wish to evaluate Eq. (A1) for p =M,m+1

where the upper signs are for M=+~„and the lower
signs for &=——,'.

There is significant admixture of other than neigh-
boring hyperfine states, but they do not contribute
greatly to the intensity of the forbidden hyperfine
transitions.


