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Lattice-Dynamics Approach to the Theory of Elastic Dielectrics
with Polarization Gradient
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A continuum theory of elastic dielectrics including polarization gradient is obtained as the long-wave
approximation of a theory of lattice dynamics for the shell model of cubic ionic crystals. The additional
energy associated with the formation and relaxation of a free surface is obtained by considering the unbal-
anced charges and dipole moments on the surface. The material coeKcients of the continuum theory are
related to the lattice properties, and their numerical values are calculated for NaI, NaCl, KI, and KCl.
The surface energy density of a free half-space predicted by the continuum theory is compared with experi-
mental results as well as other theoretical results based on discrete models.

1. INTRODUCTION
' "N the recent continuum theories of elastic dielectrics
~ - the electromechanical interaction has been studied
by Toupin' and Eringen' by considering the stored
energy density to be a function of both strain and
polarization. Mindlin' presents a linear theory which
includes the polarization gradient in the energy density
as well as the strain and polarization, and predicts
surface effects due to deformation and polarization. He
also indicates the relation between polarization gradient
and the shell-shell and core-shell interactions of lattice
theories of crystals.

The purpose of this investigation is (1) to obtain a
continuum theory of elastic dielectrics of centrosym-
metric cubic crystals by means of the long-wave
approximation of the theory of lattice dynamics of
crystals using the shell model introduced by Dick and
Overhauser', (2) to obtain the material coefficients of
the continuum theory in terms of the lattice properties
and calculate their numerical values.

In this formulation, a theory of lattice dynamics for
ionic crystals similar to the one derived by Woods,
Cochran, and Brockhouse, ' which employs the one-ion-
polarizable model, is used to obtain the potential energy
of alkali halides. The energy due to the short-range
forces is obtained by extending Kellermann's method'
to include the interactions of the shells of both the first
and second nearest neighbors as well as the interaction
of a core with its own shell.

For lattices of Rnite extent the energy associated
with the formation and relaxation of a surface is added
to the potential energy described in the preceding
paragraph. The surface energy is calculated for a half
space using the methods described by Tosi~ and Benson
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and Yun, ' and the results of the boundary-value
problem given in Sec. 11.

For the resulting continuum theory, the values of the
material coefficients are calculated for NaI, NaCl, KI,
and KC1. The surface energy density predicted by this
continuum theory is compared with the results obtained
by Benson' and Shuttleworth" based on discrete
models, and other experimental data. ~

2. SHELL MODEL

In this section a theory of lattice dynamics for ionic
crystals similar to the one derived by Woods, Cochran,
and Brockhouse' is presented systematically in order to
obtain from it a continuum theory of dielectrics with
polarization gradient by means of the long-wave
approximation, and to calculate the numerical values
of the material constants involved. In this theory, the
polarizable ion is represented by the "shell model. "4
In the shell model the outermost electron shell is con-
sidered to be a rigid spherical "shell, "which can move
with respect to the Inassive ionic "core,"which consists
of the nucleus and the inner electron shells.

The notation followed is similar to the one used by
Born and Huang. ' For a composite lattice consisting
of S different atoms, their positions are given by

X(l; k) = X(l)+ X(k), (2.1)

where / indicates the cell origin and X(k) is the position
vector from this cell origin to each different atom within
the cell, thus k takes on the value 1 through E, with
X(k=1)=0. The vector joining two lattice points is
given by

Xg—P; u, h') = X(l; I )—X(P; k')
= —X(/' —i; h', k) . (2.2)

The components of the vectors X with respect to the
rectangular Cartesian coordinate system are indicated
by Greek indices I . The summation convention is
used only with respect to the Greek indices, while
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(Oxford University Press, Oxford, 1954).
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~here
+EI,W (l; k) W (l; k) ), (2.5)

r,= i
x'(l; k) —x'(P. k')

i.,= ~»(/;k) —xo(/', k') ~,

r, = i
x'(l; k) —x'(l', k') i,

r,=
(
x'(l; k) —x'(l'; k') ),

(2.6)

where the prime over the summation sign indicates that
the summation is to be suppressed for (l;k)= (l', k').
And C~, C8, Cy, Cp represent the interaction energies
between the various elements of the different ions, and
Ea is the spring constant characterizing the interaction
between the core and the shell of the same ion. This
spring constant is related to the polarizability o.A,

, as
follows:

Eg = F'I.'q'/nA, oo, (2.7)

oo is the perrnittivity of vacuum with 1/4m oo

= 9)& 10' newton m'/C'.

summation over the Latin indices is indicated by the
symbol g.

The charge of the 4th atom is given by

Zap= (Xn+ I'~)g, (2.3)

where XI,q and Vaq indicate the charges of the core and
shell of the 0th atom, respectively, and q denotes the
charge of an electron, q= 1.6)&10 "C. For a dielectric
medium Pq ZI, ——0.

For the shell model the positions of both the core and
the shell, before deformation are given by X(l; k). Their
positions after deformation are, respectively,

x'(l; k) = X(l; k)+ U(l; k),
x'(l k) = X(l; k)+ U(l; k)+W(l; k), (2.4)

where U is the displacement of the core and W the
displacement of the shell with respect to the core (see
Fig. 1).

According to the shell model, the potential energy
consists of the following interaction energies between
diferent ions: core-core, shell-shell, core-shell, shell-core,
and the interaction energy of the core with its own
shell. Under the two-body-interaction approximation,
the potential C which is invariant under rigid-body
translation and rotation can be written as

4'=-', P' {~'//(ri)+@r(ro)+4'~ (ro)+~'s(«)

FIG. 1. Displacements of the core and the shell of a typical ion.

C'= C'o+ C'x+ 4'o. (2.8)

In Eq. (2.8) C'o is a constant and C& vanishes since
the stable equilibrium configuration corresponds to a
state of minimum energy and C2 involves quadratic
terms in U(l; k) and W(l; k). Noting that

=4'& p(l —l', k,k'),
Bx' (l; k) Bx'p(/', k') u=w=o

=Q'C"' p(l —l'; k,k'),
Bx' (/;k)Bx/p(/';k') U=w o

where the second partial derivative

8'/Bx' (l k)Bx& (l'k')

for U=W=0 can be dered by the operator as

L p(l —l';k, k')
d2

=X (l—l'; k,k')Xp(l —l'; k,k')
r dr

(2.9)

+fr'B.p X.(l P;—k,k')X—p(l —l'; k,k')$ — (2.10)
r3dr

r=r IU=w=o (i=1, , 2, 3)4. (2.11)

By considering Eqs. (2.9) and (2.10), it can be seen that
C'&'

~ are symmetric with respect to the Greek indices.
The harmonic approximation of (2.5) is then

Expansion of Eq. (2.6) in a Taylor series about its
stable equilibrium configuration and the application of
the harmonic approximation yields

c =C,——', Q' {/C" p(l —l', k, k') —5~g 5(p Q' C" p(l —l";k,k")jU (l;k)Up(l', k')
)//a//

+II" p(l P;k,k') ——81,g 8(p Q' C" p(l —/";k, k")$U (l;k)Wp(l', k')

+[4" p(l —l', k,k') —8 g 8i( Q' C'" p(l —/";k, k")]W (l;k)Up(l';k')
$//a//

+LC" p(l —l', k,k') —bag 8(p Q' 4"' p(l —l";k,k")jW (/;k)Wp(P;k')+Q-, 'EoW (l;k)W (/;k)}, (2.12)
$//Q// /a

where bI, I, is the Kronecker delta.
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The kinetic energy, in view of the Born-Oppenheimer approximation, can be written as

T=Q -', nzkU (l;k)U (l;k), (2.13)

where a dot indicates differentiation with respect to time. By letting L= T—4, and applying Hamiltonian s
principle, the equations of Inotion become

mgU (l; k) =Q' ([4" p(l —l';k, k') —8 8(( Q' C" p(l —l";k,k")]Up(l'; k')

+[4" p(l —P;k,k') —8pl, hip Q' 4» p(l —l";k,k")]Wp(l';k')}, (2.14)

O=g' &[e .p(l 1';k—,k') S„.—~«. P' e"„p(i—l";k,k")]Up(1';k')

+[4".p(l —l', k, k') —hi, g 5t p Q' 4 22 p(l —l";k,k")]Wp(l'; k') } KgW. (—l; k) .

3. LATTICE WAVES

The equations of motion obtained above, Eqs. (2.14), comprise an infinite system of simultaneous linear differ-
ential equations. Due to the periodicity of the lattice, a reduction can be achieved by utilizing periodic plane-wave
solutions of the form

U (l;k)= U (k) expi[y X(l;k) cut], W—(l;k)=l'V (k) expi[y X(l;k) —~t], (3.1)

where y is a wave-number vector. Substitution of the above wave solutions into Eqs. (2.14) reduces the infinite
number of diff erential equations to a 3 && 2 )&E system of linear algebraic equations:

—mA(v'U (k) =Q (lV p(y; k, k') Up(k')+T, p(y; k,k')}Wp(k'),

0 =Q ( T' p(y; k,k') Up (k')+5,p(y; k, k') Wp (k') }—Kg W (k), (3 2)

where

tY p(y;k, k') =p' (C'" p(l —l'; k,k') expi[ yX(l——l'; k,k')] —0 Q C" p(l —p;k, k")} (3 3)

and T p, T' p, and S p are de6ned in the same form as 1V p in Eq. (3.3) except 4"
p is replaced by @» p, @2'

p,
and C 22

p, respectively.
Similarly, substitution of the wave solutions, Eqs. (3.1), into the potential- and kinetic-energy expressions

Eqs. (2.5) and (2 ~ 13), respectively, yields

f=C' —C'o= —:E ([&-p(y; k,k') U-(k) Up(k')+T. p(y; k,k') U.(k)Wp(k')+T'. p(y; k, k') W.(k) Up(k )

+&.p(y; k,k')W. (k)Wp(k') —K,W.(k)W.(k)](expi[y. X(l.k) ~t])2} (3 4)

T= —2''Q (mI U (k)U (k)(expi[y X(l;k) —a&t])'}. (3.5)

In the above expressions the squared exponentials must be taken as the square of the real part of the exponential
This form of the potential-energy change, Eq. (3.4), is particularly useful for the long-wave approximation
obtaining the continuum equations.

The potential-energy density for the continuum can be obtained from Eq. (3.4) by the long wave
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approximation as can be written as

@B+@C (3 7)

where 8 and C are from the names of Born and Coulomb
and denote the short- and long-range interactions,
respectively. Consequently the coefficients defined by
Eqs. (3.3) can also be written as the sum of their short-
and long-range parts, as

X p
——Xs.p+Xc.p, T p=Ts p+To p, etc. (3.8)

lim —Q (Ã p(y; k, k') U„(k) Up(k')
P 2p kk'

+T p(y; k, k') U (k)Wp(k')

+T.p'(y; k, k') W (k) Up(k')

+LS.p(y; k, k') —
Sing 8„pEp)W (k)Wp(k'))

X(expiLy X(k')])', (3.6)

where e,= ai && a2 a~ is the volume of the unit cell.
The potential energy can be written as the sum of

two parts, one due to short-range forces and the other
due to long-range forces:

g
2

1 Pl
lkl'k' 4g qp

XkXk Xk I k I'kXk I k~k

(X — + + + —. (4.1)
fg r2 r3

gf
2

4'~" p(l —l', k, k') = I. p(l —l', k, k') —.
4Xep r

(4.3)

One sees from Eqs. (2.5), with the definition,

Eq. (3.7), that the four terms in Eq. (4.1) correspond,
respectively, to C ~, C z, C &, and C z. The harmonic
approximation of Eq. (4.1) has the same form as

Eq. (2.12) with the coeKcients C'&'
p replaced by cC"

p

using Eqs. (2.9) and (2.10) as

o4" p(l —/';k, k') =Co p(l —P;k,k')Zi, z„.,

cCi2 p(l —l';k, k') =Co p(/ —l', k,k')Zi, Yi.. .
cc, p2i(l l .k k) C,a p(/ —/';k, k')Y~z

(4.2)

oC" p(/ —l'k k')=C~ p(l /';k, k')Y—gYi.. .

4. LONG-RANGE INTERACTIONS For periodic waves Eq. (3.1), by considering Eqs. (3.3)
For the shell model, Fig. 1, the long-range part of and (3.4), the harmonic approximation of Eq. (4.1) can

the potential energy is due to the Coulombic forces and be written as

Cc=@c,+pc, —-', p (LZ„Z„,C*.p(y; k,k') —S„„.p Z„Z„"C.,(O; k,k")]U.(k) U, (k')
Lkk' kl I

+[ZgYi, C* p(y;k, k') —8gk Q Zi, Yi C p(0;k, k")]U (k)Wp(k')

+/Ygzi, C* p(y;k, k') —
Sing Q Ygzg C p(0;k,k")]W (k)Up(k')

+)Y,Y,.C*.p(y; k,k') —S„.p Y,Y.-C„p(0;k,k")]W.(k) W, (k'))((ex@it y X(l;k) —~/])2), (44)
kf I

where, according to (3.3),

C' 0=4' )U-w=o,

U. (l; k)
tk BU (l; k) U=w=o (4.5)

+ — — W„(l; k)
BW (/& k) U=w=o-

C*,(y k k')=P'C .,(l—l';k, k')

)&expiL —y X(l—l'; k,k')], (4.6)

C.,(0; k,k') =P' C ~.p(/ —l'; k, k') .

In Eqs. (4.5) and (4.6) the prime on g suspends the
summation for (l;*,k) = (l'; k').

It should be noted that C p(0; k, k') is not obtained
from C* p(y; k,k') as y-+ 0, but comes from the
coefficients of the products of displacements under the
first summation sign of Eq. (2.12) with cC"

p repjacing
C"~ap-

The coefficients C~
p and the form of C~ obtained

here are the same as those obtained by Ewald' in
studying the electrostatic field due to a dipole distribu-
tion in an infinite medium. Numerical values of C p are
given by KeHermann' for NaC1.

The potential C~, given in Eq. (4.4), is due to the
interaction of the electrostatic forces acting between all
the elements of the particles. As the purpose of this
investigation is to study the relation between the
lattice theory and the corresponding continuum theory
of dielectrics, it is necessary to identify those parts of C ~

which correspond to the Maxwell and Lorentz fi.elds,
respectively, in the long-wave approximation.
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The Maxwell electrostatic field is governed by the
following field equations:

Consequently, the energy per unit cell, due to the
Maxwell self-field, is given by

V E=— , ~XE=o.

In order to make use of the above field equations the
dipole moment due to lattice deformations is averaged
over a unit cell; thus the polarization is defined as

(4.8)

9 3' 3'e
o 2 — [Z&z&'U (k) Uo(k )

i~a n.oo~y('

+Zi Yi.U (k)Wp(k')+Zi YI,W (k) Up(k')

+Yo Yo W (k)Wp(k')]

&&(expi[y. X(l; k) —cot])'. (4 13)

For periodic lattice waves of the form

with
gP=—

Comparing Eqs. (4.4) and (4.13) it is seen that

)
g'y yp/v, oo~ y~

' is included in C p(y; k,k').
In order to separate the part of the potential energy

due to the Maxwell self-field it is convenient to write

Q [ZiU(k)+Ytw(k)] expi[y X(k)] (4.10) C*~p, following Ewald& as

3' O'P PP
jv =— (4.12)

and similarly assuming a periodic electric field

E(l) = E expi[y X(l) —o~t]. (4.11)

Substitution of Eqs. (4.9) and (4.11) into (4.7) yields

v
C* p(y;k, k') =C p(y;k, k') — —.(4.14)

In the long-wave limit, y—& 0, the first term of Eq. (4.14)
is regular and is equal to C p(0; k,k') given in Eq. (4.6);
the second part is not regular and corresponds to the
Maxwell field. Substitution of Eq. (4.14) into (4.4)
yields

e o=a oo+C ~i——', P [Z&Z&.C,(y; k,k') —S&&. P Z&Z&"C,(O; k,k")]U (k) Ut (k')
Lkk'

+[Z„Y„,C.,(y; k, k') g,„,P Z, Y,—-C.,(0; k,k")]U.(k) Wp(k')
kI I

+[Y,z„,c.,(y; k, k') —g„„,P Y„Z, .C.&(0;k,k")]W.(k) U, (k')

+[Y,Y„.C.,(y; k,k') g„.P Y' Y "—C.&(0; k,k")]W.(k) W, (k')

9'3 3'~
[Zk Uli(k')+Yi, W~(k')][ZiU (k)+Y~W„(k)] (expi[y. X(l; k) orat])' (4.1—5).

& &olyl

Comparing the last term of the above expression with Eq. (4.13) it is seen that this is the part of the potential
energy due to the Maxwell self-field.

5. SHORT-RANGE INTERACTIONS

By following the definition given in Eq. (3.7), invoking the harmonic approximation as in Eqs. (2.8) to (2.12),
and substituting the waveforms given in Eq. (3.1), the part of the potential energy corresponding to short-range

interactionsis obtainedbyreplacing E p,
I'

p, T' p, andS pbyE~ p, T~ p, P~ p, andS~ p. Thelatter are defined

in accordance with (3.3) by replacing C by Cs.
By using the definitions

8'& p(y; k,k') =Q' ~C '& p(/ —l';'k, k') expi[ —y X(l—l'; k,k')],
(5.1)
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the potential energy due the short-range interactions, similar to Eq. (4.4), can be written as

C =C 0+4 &
——', P {[8".p(y;k, k') —8» P 8".p(0;k,k"))U.(k)Up(k')

ZI a'

+[8".p(y; k,k') —
8kA, P 8".p(0; k,k"))U„(k)Wp(k')

+[8"„p(y;k,k') —8» Q 8" p(0; k,k"))W (k) Up(k')

+[+"p(y; k, k') —8„„.(K„& p+g 8".(0; k,k")))W (k)W (k')) (exp/[y X(./; k) —/))'. (5.2)

From Eq. (5.2), it is seen that the self-energy is included
in the part of the potential energy due to the short-r ange
interactions.

6. SURFACE ENERGY

The energy expression given in Eq. (3.4) and the more
detailed expressions for the long- and short-range
interaction energies given in Eqs. (4.15) and (5.2)
apply for the case of an infinite lattice, since the
summation over 1 is carried over the whole space. For a
lattice of finite extent, the total potential energy is
obtained by taking the summation on t over the finite
lattice and adding to this, the change in the potential
energy of the ions due to the presence of a boundary.
This additional energy can be considered to be made up
of two parts': the work. required to remove the part of
the lattice on one side of the interface, while the rest of
the lattice is held in its original equilibrium configura-
tion, and the relaxation energy of the remaining part
of the lattice due to the deformation and polarization
of the lattice in going to a new equilibrium position.

I,et the position of a lattice point on the surface be
denoted by X(L;E), where L„E denote points on the
free surface.

qZg Xp(/ L; k,E)—
q[ZIc Up(L; K)+Y&Wp(L; K))

~x~t 4~«
~
X(/ —L; k,K)

~

'

Let 4(L/; Ek) be the potential energy of interaction
of a lattice point on the free surface X(L;E) with an
arbitrary point X(/; k), and let C'(L/; Ek) be the
potential energy of interaction of a lattice point on the
free surface with a point in the part of the body lying
on one side of the free surface. Therefore, the part of
the surface energy associated with the removal of part
of the lattice, under the assumption that the ions remain
immobile and unpolarized, is

P [C (L/; Kk) —4"(L/; Kk)). (6.1)

This quantity is a constant for a given lattice and a
given surface orientation.

The deformation and polarization of the lattice
caused by the unbalanced forces due to the removal of
the part of the lattice on the exterior side of the free
surface contribute to the relaxation energy. Since the
deformation is confined to a small vicinity of the free
surface, only the particles on the first layer are con-
sidered to have dipole moments as well as charges,
whereas the particles inside are assumed to have point
charges only. Thus the relaxation energy can be
written as'

[ZrcU (L)E)+YIcW (L;K))[Zrc U (L';K')+Yrc W (L';E'))
+2

LIBEL' EC' 4~..
~
X(L—I.', E,K) )3

q' X (L L'; K,K')Xp(L —L—'; E,K')—3-----4~«) X(L L', E,E')
)
&—

)& [Zrc U (L;K)+Yrc W (L; K))[Zrc, Up(L', E')+ Yrc, Wp(L'; K')), (6.2)

where q[ZIcU(L; E)+YrcW(L; E)) is the dipole moment of a point on the free surface. The first sum in this
expression is the energy associated with interaction of the dipoles on the surface with the point charges inside
while the second sum corresponds to the interaction of the dipoles on the surface with the other dipoles on the
free surface. As can be seen, the term under the second summation sign in Eq. (6.2) is nonlinear in U,W . Ne-
glecting this part, Eq. (6.2) becomes

q'Zs Xp(/ —L; k,K)
[ZrcUp(L; E)+Yacc—Wp(L; K)).

~x~~ 4~«[X(/ —L, ;k,K) )3
(6 3)

Introducing periodic waves, similar to those in Eq. (3.1), into Eq. (6.3), and combining them with Eq. (6.1),
the additional potential energy for the 6nite lattice due to the presence of a surface is given as
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where

f =P {T(L;K)+Bp(L; IC)q[Zz Up(K)+Y&Wp(IC)] expi[y X(I)—art]),

qZp Xp(l; k) X—p(L;K)
T(L;K) =Q [4 (Ll; Kk) —4'(Ll; Kk)], Bp(L; K) =Q

4 o i X(l;k) —X(L;K)i'

(6.4)

(6.5)

The change in the total potential energy for a finite lattice is given by adding Eqs. (6.4), (4.15), and (5.2). Thus
for P=P~+Pc+$8, one has

P= ——,
' Q {[8"p(y;k, k') —bi, i. QB" p(0;k, k")+ZiZi, .C p(y;k, k') —bi, i QZiZk C p(0;k, k")]U„(k)Up(k')

sIsp gg/I Ipl /

+[8".p(y; k, k') —4i, Q 8".p(0; k,k")+Z„Y„.C p(y; k, k') —6„„,g Z„Y„.C.p(0; k,k")]U.(k)Wp(k')
g/ I Ipl I

+[8"p(y;k, k') —8&i, Q 8" p(0;k, k")+Y&Z&.C„p(y;k,k') —8&i Q YiZI,"C p(0;k, k")]W (k)Up(k')
$/I Pl/

+[8"p(y; k, k') —bi, i, {K&5„p+P8".p(0; k,k")it+Yi, Yi, C.p(y; k, k')

—6i,i Q Yi Yi"C p(0; k,k")]W (k)Wp(k'))(exp''[y X(l; k) (ot]) ——Q v, (E P +2epZ E )

)((expi[y X(l; k) —cot])'+P {T(L;K)+Bp(L; K)q[ZxUp(K)+YzWp(K)] expi[y X(L. ; K) —(ut]) . (6.6)
IK

ia&la' lk

+Bp(I.; 2)q[Z2Up(2)+ Y~Wp(2)] expi[y X(I.; 2) —cot]). (7.3)

7. ALKALl HALIDES The potential energy for alkali halides is obtained
from Eq. (5.3), by specializing it for a diatomic lattice

the previous section is applied to alkali ha]ides, that is and letting 0= 1 denote the positive ion, 0= 2 the nega-

diatomic lattices, and expressions for the material tive ion, and setting Y'i ——0 and W(1)=0, for the

coef6cients are obtained by using the one-ion-polarizable
model, ' considering the short-range interactions of the As in Dick and Overhauser, assuming that the short

irst- and second-nearest neighbors as wel]. as the inter- range forces between the ions act only through their

action of the core with its own shell, which is an exten- shells, one has, similar to Eq. (2.5),
sion of Kellermann's work' where only the nearest-
neighbor interactions are considered, and invoking the & ~ ( ')+~ '
long-wave approximation. The numerical values of the
material coefficients for NaC1, NaI, KC1, and KI, are Considering Eqs. (2.9) and (5.1), one can define
calculated in Sec. 10.

Since the polarizability of the negative ion of an 8 p(y;k, k')—=8" p(y;k, k')=8"„p(y;k,k)
alkali halide is usually an order of magnitude greater —8» p(y k k&) = 8» p(y k k') (7 2)
than the polarizability of the positive ion, it is reason-
able to neglect the polarizability of the positive ion. Under the above specifications, by performing the
This simplified model is called the one-ion-polarizable summations over k, k', the energy expression Eq. (6.6)
model. ' assumes the following form:

P= —
~ Q [{(B~p(y;1,1)—8 p(0; 1,1)—8 p(0; 1,2)+Z,Z,[C p(y;1, 1)—C p(0; 1,1)+C p(0;1,2)])U (1)Up(1)

+(8-p(y; »2)+ZiZ C-p(y;1,2))U-(1) Up(2)

+(8 p(y; 1,2)+Zi Y2C p(y; 1,2))U (1)Wp(2)}(expi[y X(l;1)—~t])'

+{(8-p(y;2, 1)+Z Z C-p(y; 2,1))U-(2) Up(1)

+(8 p(y;2, 2) Bp(0;2,2) Bp(0; 2,1)—+Z2Z2[C, p(—y; 2,2) —C p(0;2,2)+C p(0;2, 1)])U (2) Up(2)

+(B.p(y; 2,2) —B.p(0; 2,2) —B.p(0; 2,1)+Z,Y,[C.p(y; 2,2) —C.p(0; 2,2)])U.(2)Wp(2)

+(8 p(y;2, 1)+YgZiC p(y;2, 1))W (2)Up(1)

+(B.p(y;2, 2) —B.p(0;2,2) —8 p(0;2, 1)+Y2Z2[C p(y 2,2) —C p(0''2, 2)+C.p(0;2, 1)))W (2)Up(2)

+( K24p+8 p(y;2, 2) B~p(—0;2)2) Bp(0;2,1)+—YgY2[C p(y—;2)2)—C p(0) 2)2)))W (2)Wp(2))

X(expi[y X(l; 2) —&ut])'j —g v, (E P +2&+ E )(expi[y X(l) —~t])'
l

+Q {T(L;1)+T(L;2)+Bp(L;1)qZiUp(1)expi[y X(L;1)—~t]
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For cubic symmetry,
8 e(y; 1,1)=B.e(y; 2,2), 8 e(y; 1,2) =8 e(y; 2, 1),
C e(y;1,1)=C ~(y;2,2), C e(y;1,2)=C e(y;2, 1),

T(L; 1)= T(L; 2) = T(L), Be(L; 1)= Bp(L; 2) =8p(L) .
(7 4)

The relation 8 e(y; 1,1)=8 e(y;2, 2) is essentially an assumption which states the equality of the repulsion
forces between the second neighbors, positive-positive, and negative-negative ions. The other equalities are seen
to be exact by considering their definitions. Furthermore, for the short-range interactions being confined to the
first and second neighbors, by performing the summations according to Eqs. (2.9), (5.1), and (7.2):

8 ~ .(y; 1,1)= (A,+8,)[cos(y +ye)rp+cos(y —ye)rp+cos(y +y,)rp+cos(y y7)rpj
+28p[cos(ye+y, )rp+ cos(ye —y, )rp],

8 (y; 1,2) = 2[A i cosy rp+Bi(cosyerp+cosyvrp) j,
8- (y; 1,1)= (A —8,)[cos(y-+y )ro —cos(y- —y )r j, &P
8.,(y; 1,2) =0, n~P

(7.5)

where the primes above the Greek subscripts suspend the summation over the repeated indices, n,p,7 represent the
three orthogonal directions of the cubic lattice, ro is the distance between the nearest neighbors and A1, 81, A 2, 82
are related to the derivatives of the short-range interaction potential between the erst and second neighbors:

d'Css(l l'; 1,2)—
A1=

dC'ss(l —l'; 1,2)
8

U=W=0

U=W=O

d'C ss(l —l'; 1,1)
A2=—

dC'ss(l —l'; 1,1)
~2

U=W=O

U=W=O

8. LONG-WAVE APPROXIMATION

Going to the long-wave limit, in order to obtain the
corresponding continuum theory, one has to define a
potential-energy density as an average energy repr e-
sentative of the medium. For this purpose consider that
the medium is divided into cubic cells with sides 2ro and
centered around a particle. One can thus find the total
energy of the medium as the sum of the energies of these
cubical elements. One sees that the ions on the faces
of the cube belong to two cubes, those on the edges
belong to four cubes and -those at the corners belong
to eight cubes. Thus the energy of a cubical element can
be found by weighting by 1, —'„~~, ~ the energies of the
ions at the center, on the faces, on the edges and at the
corners. This method has actually been used by Evjen
to evaluate the Madelung constant for a distribution
of charged particles. ~

The expansion of the functions of y about y= 0 are
taken only up to the terms which retain W and the frst
gradients of U, W.

For long acoustic waves the displacement amplitudes
are taken as

U(1) = U(2) =u, W(2) =w. (8.1)

Considering the definition of the polarization
Eq. (4.10), one has

gP = —[Zine'& x&'i

'Vg

72qW
+(Zpu+ Y,w)e'r "&'&$= — . (8.2)

(C(1;1)+-,' P C(l+~„2)
l (even) my=1

26

+-' P C(l+mp, 1)+-', Q C'(1+m;2)). (8.3)
m3=19

In the above representation C(l; 1) denotes the energy
of the ion at X(l; 1) and C (i+@&i,2), C (l+mp, 2),
C(l+mp, 2) are the energies of the ions that are first,
second, and third neighbors to that at X(l;1). The
summations over m1, m2, ms are to be carried over the
6 Grst, 12 second, and 8 third neighbors. In this
summation, the values of the functions at X(l+m;k)
are to be expressed by the Taylor-series expansions
about the point X(l; 1).

For the summation over L, the values of the functions

In obtaining Eq. (8.2), only the first terms in the ex-
pansions of e'& 'x &~) are retained and the fact that
Zi+Zp= 0 is used.

In the resulting expression for the change in the
potential energy, which can be obtained by using
Eq. (7.4) and by substituting Eqs. (8.1) and (8.2) into
Eq. (7.3), the summation over l, will be evaluated by
considering that the medium is divided into cubes of
sides 2ro. Let the origin of the coordinate system be
X(l;1). Thus the centers of the cubes correspond to
even values of 11, l2, 13 and are all occupied by positive
ions. Consequently, the summation over /' can be written
in the following equivalent form:

g (C (l; 1)+C (l; 2) )
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are similarly represented by their expansions about
X(L; 1).

Sy performing the above described expansions and
summations, one has

l (even)
(4(8 p(y;1, 1)+8 p(y;1,2) Bp—(0;1,1) Bp—(0;1,2)

+Ziol C p(y;1, 1)—C p(y;1,2) —C p(0;1,1)+C p(0;1,2)])(1+0(y'))I Np

+4(B„p(y; 1,1)+8 p(y; 1,2) —8,p(0; 1,1) Bp(0—; 1,2)

—Z, V2LC p(y; 1,1)—C.p(y; 1,2) —C.p(0; 1,1)+C.p(0; 1,2)])(1+0(y'))(2I./F'2')n. Pp

+2( Eo pap—Bp(0—; 2, 1)+8 p(y; 2,2) —8 p(0; 2,2)

+vov2[C p(y;2, 2) —c p(0; 2,2)])(1+2rp b&oyvyo+0(y ))(2Ia'/F'2'q')P Pp}

&((expzLy X(l) —Iot])2—p 2I,(E P +-,'ooE P„)(expi[y X(l) —Iot])2
2 (all)

+2 (2T(L)+Bp(L)l."Pp(1+0(y))+ VZ,«(0(y))] expil:y X(I)—r]}. (8.4)

As a last step towards obtaining the continuum representation of the energy, consider the Taylor-series ex-
pansions of the coefficients B„p(y;k,k') and C p(y;k, k') about y=0.

For the groups of the coefficients 8 p(y; k,k ) of the short-range forces in Eq. (8.4), by considering the expressions
obtained on the basis of first- and second-neighbor interactions, one has

8-p(y; 1,1)+8-p(y; 1,2) —8-p(o; 1,1)—8-p(o; 1,2) = »-spy. y—o+O(y ),
8-p(y; 2,2) —8(0; 2,2) = —8'7-opyvyo+O(3 '),

8 p(0; 2,1)= 8 p,

where, by considering Eq. (7.5), the independent coefficients are

(8.5)

Similarly,

Ba'a'a'a' LA i+ 2(A 2+82) ]ro

8- - p p
= (A2 —82)ro'= Bp - - p

8, ...= (Bi+A2+382)ro',
8 ~ = 2(Ai+28i) .

8' ~ ~ .= 2(A2+82)ro2,
8' .p p (A2 82)ro2=8——'p. ~ —.p. ,

8', ...= (A2+382)ro',

(8.6)

C p(y;1, 1)—C p(y;1,2) —C p(0; 1,1)+C p(0;1,2)= —C~ &pyvy&+O(y ),
C p(y;2, 2) —C p(0;2,2)=0. (8 7)

In the last expression of Eq. (8.7), even though the function is bounded at y= 0, its expansion is not permitted,
since it is not convergent. The numerical values of C~ &p have been calculated by Kellermann' for the Nacl
structure. For the independent coefficients he finds"

C ~ ~ = —1.28I72/42roprp= Cirp',

C p p. =0.35''/42I oprp= Cp p' = Corp',

C~ 2 = 0.64''/42roprp ——Cor p'.
(8 8)

By using the expansions, Eqs. (8.5) and (8.7), in Eq. (8.4), and replacing u upy„y&(expiry X(l) —pit])2 by
u Np „P (expiTy X(L)—oIII]) by P (x) etc. , and replacing the summations over i and L by integrations over
the volume and the bounding surface, one obtains

Byaop+Zi Cyaop &pa~P —Zg Y2CpaSP &a

+a,7+P, II+ a, 7PP, 2+2(+2baP+BaP) PaPP
V &a Y2q 2(2

'V~

+4l (Kpb p+8 p)rp b&2+8 & op] P,&Pp, o ldV — (E P +2ooE E )dV+ (To+b pPpr2 )dA, (8.9)

"Note that Kellermann s de6nition of the coeScients with mixed indices are switched here. The same comment holds for his CIq
and C44.
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TARSI.z I. Lattice parameters and the elastic constants.

fo
10 scm

~ b

10 '4 cm'
Caa CI2

1012 dyn/cm"
C44 E2

10' dyn/cm
A2 &a

IO' dyn/cm

NaI

XaCl

KI

KC1

3.23

2.81

3.53

3.14

7.10

3.66

7.10

3.66

0.359'
0.359
0.486
0.486
0.270
0.270
0.400
0.400

0.075d
0.071
0.127
0.129
0.043
0.053
0.062
0.083

0.077~
0.072
0.128
0.129
0.042
0.052
0.062
0.083

12.5

24.3

12.5

24.3

21.01
20.35
27.14
27.10
17.32
16.24
20.23
22.09

—0.10
a ~ ~

—0.07
4 ~ ~

+0.11
~ 4 ~

+0.14
~ ~ ~

—1.37—2.06—3.03—3.03—2.82—1.58—4.40—2.18

—0.23
~ ~ ~

0.00
~ 4 ~

+0.44
~ ~ ~

+0.79

a Reference 9, p. 26.
b C. Kittel, Introduction to Solid State Physics (John Wiley Bz Sons, Inc. , New York, 1956), p. 165.
e C. Kittel, Introduction to Solid State Physics (John Wiley Q Sons, Inc. , New York, 1956), p. 93.
d NaI values from Table III, p. 988, Ref. 5.

For cubic symmetry, the second- and fourth-rank
tensprs are pf the fp]].pwjng form

second of Eqs. (8.13) for the surface (1,0,0) as

b'= —0.282(q/42rppro) . (10.1)
Ap ——Abp,

A yatp (A 11 A 12 2A44)byatp+ A 128aybps

+A44(& p&,s+& 4&p,)
+A22(b pb„s Rsvp, )—, (9.7)

where 8 p is the Kronecker delta and b~ &p is unity when
all indices are alike and zero otherwise.

Using the symmetry conditions (9.7), the energy
density of deformation and polarization 8' becomes

W=b'P, +21aP„P-
+ ', [(b11 b12 -2b44)&—,aspP—a,Pp 4

+b12Pa, aP p,p+sb44(Pa, p+Pp, ,) (Pa,p+Pp, a)

+sbss(P-, p Pp, -)(P-,p
—Pp, -)j—

+2L(C11 C12 2C44)8y spSaySpat+C12S Spapa

+2C44SaPSaP$+Dd11 d12 2d44) 87at—PPa, —~SP4

+d12P, Spp+d44(P, p+Pp, )S pj. (9.8)

The surface energy of the system is dered as the
total energy the system has in the absence of all external
forces and 6elds. By applying the chain rule, the
divergence theorem, and using the equilibrium equa-
tions and the boundary conditions, one obtains

HdV+ TpdA = (Tp+ ', b' pPprt )dA. (-9.9)

Thus the surface energy density (energy per unit area)
is dined as

S= Tp+-'2Lbo pPprt jp (9.10)

where To and b'
p depend on the orientation of the

boundary surface.

10. NUMERICAL VALUES OF
MATERIAL COEFFICIENTS

The numerical value of the surface parameter b' p,
which is b 8 p in this case, is obtained by evaluating the

"W. P. Mason, Crystat Physics ojJrttoroott'om P'rocossos (Aca-
demic Press Inc. , New York, 1966),

The value of the other surface parameter To in
Eq. (8.10) is taken from Benson, ' who has evaluated
the sum given in Eq. (6.5) for both the (1,0,0) and
(1,1,0) surfaces.

The rest of the material coe%cients are obtained by
considering Eqs. (8.6) through (8.7) and (8.13) with
Eqs. (9.7):

a=2(E2+2(A1+281))re(a'2q) ',
b11

——LE2+2(A 1+281)+2(As+82)jro'(&sq) ',
b12 (A2 82)ro (I 2q)

b44= —',LE2+2(A1+281)j2(As+82)Pro (Vsq)

b = ,'PE+2(A +28-)+48 3 o'(Y ) ',
c11——LA 1+2(As+82)+Csjro ', (10.2)

c12 (A 2 82+C2)rp

c44 ——2(81+A2+82+C2+Cp)»0 ',
d11 LA 1+2(A2+82) +112C1)rp (I 2q)

d12 LA 2 82 +11 2C2/rp (I 2q)

d44 ———2,$81+2(A 2+82) +11'2(C2+ Cp) &ro (I'sq)

where A1, A2, 8&, 82 can be evaluated by using the
minimum property of the potential energy at equi-
librium and matching the experimental values of the
elastic constants c11, c12, c44 with their corresponding
theoretical expressions. The Cauchy conditions still
hold for the shell model due to the central nature of the
interaction. The other fundamental coefficient E2 is
related to the polarizability n2 of the negative ion
through Eq. (2.7). The experimental values used in
these computations as well as the calculated values of
Eg, A1, Ag, 81, 82 for NaI, NaC1, KI, and KC1 are
given in Table I. Of the two sets of values for A1, A~,

B~, 8~, the upper row corresponds to the values ob-
tained by matching c», c», and c44, whereas those of
the lower row are computed by restricting the short-
range interactions to the 6rst neighbors only, i.e., for
A2=82 ——0, and matching c11. In both cases the mini-
mum property of the energy is used. The other con-
stants appearing in the equations for the material
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TABLE II. Material coeflicients.

a (10") —b' (10')
dyn cm'/C' dyn cm/C

bII b44
104 dyn cm4/C' 10' dyn cm/C

~44

NaCl

KI

KCl

1.76

2.43

1.26

1.44

1.15

1.29

0.712

0.688

1.110

1.200

—2X10 '

—31X10 '

—32X10 ~

0.356

0.344

0.555

0.600

0.356

0.344

0.555

0.600

3.81

4.67

3.42

3.92

—1.51—1.50
—1.80—1.80
—1.42—1.47
—1,55—1.60

—2.10—2.09
—2.44—2.44
—1.93—1.95

20 12—2.18

coefficients are

7'p ———7, Zr ——+1, q=1.6X10 "C,
1/4prep —9)(10rP dyn cmP/CP.

where
~11 d11

(a+ep ') crrbrr
(11.2)

11. SOME QUANTITATIVE PREDICTIONS

The surface energy density is given by Eq. (9.10).
Part of this energy depends on the value of the polariza-
tion on the surface, which can be obtained as the solu-
tion of a boundary-value problem. In order to evaluate
the surface energy expression (9.10), and the displace-
ment of the half space bounded by the free surface
(1,0,0) of' a centrosynnnetric cubic crystal, Mindlin's
solution' for this problem is used.

bpd11I e
—XI/)l,

crrX(a+ep ')
$0

P — e—XItX

),(a+ep ')

$0

&
—xr/x

(aep+1)

($p) 2

S=Tp-
2X(a+ep ')

TABLE III. Surface energy density for the (1,0,0) surface.

benson'
(erg/cm')

Tp T S

Shuttle- Experi- This
worthb mentalb analysis

(erg/cmr) (erg/cmr) (erg/cmr)
S S T S

Of the material coefficients appearing in the energy
of deformation and polarization, Eq. (9.8), a, b p, d p

(and crp, c44 for the lower row of Table I) are computed
using the quantities given in Table I and Eq. (10.2).
The numerical values of these material coefficients for
NaI, NaC1, KI, and KC1 are given in Table II.

A. Surface Energy

By substituting the values of Tp as given by Benson'
and the coefficients given in Tables I and II into the
last of Eqs. (11.1), the surface energy density is ob-
tained for NaI, NaC1, KI, and KC1. These values are
compared in Table III with the results obtained by
Benson' and Shuttleworth~' based on discrete models
and the experimental data given in Table XXV of
Ref. 7.

B. Disylacement of Free Surface

The displacement of the particles at the free surface
is calculated to be of the order of 1—3/c of the inter-
particle distance. ' Table IV gives the displacement of
the free surface as predicted by the present analysis.

When comparing the results in Table IV, with those
obtained from a discrete Inodel, one should remember
that the continuum analysis does not identify the
particles, but gives an average displacement of the
positive and negative ions.

C. Rate of Decay of Surface Meets

From the solution of the boundary-value problem for
the continuum, Eqs. (11.1) and (11.2), one sees that the
surface effects decay as e x"".From a discrete analysis
for the NaCl-type crystals, Madelung' found that the
displacements decay as an exponential function of the
distance from the free surface of the crystal. Further-
more, the surface effects are found to be confined to the
Erst very few layers of the surface. The parameter rp/X

characterizing the rate of decay is computed to be of the
order of 1.75 (see Table IV). Consequently the effects

TABLE IV. Surface displacement and the decay parameter X.

NaI
NaCl

KI
KCl

170 —52 118
210 —52 158

140 —27 113

175 —34 141 171

0 ~ 0

276
300
~ ~ ~

110
252

—39 131
—59 151
—22 118 NaI

NaCl
KI
KCl

(10 'cm)

0.0670
0.0798
0.0492
0.0373

Q/r p

(%)
2.08
2.84
1.39
1.19

X
(10 ' cm)

1.54
1.30
2.25
2.41

rp/)

2.11
2.13
1.65
1.30

a Ref. 8, Table 8-5, p. 229.
b ReII'. V, Table XXV, p. 102.
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at the second and third layers are approximately 15
and 3%%uo of those at the first layer.

D. Dispersion Relation

Acoustical plane waves in the infinite medium accord-
ing to this continuum theory are found to be dispersive.
The dispersion relation for the longitudinal and
transverse acoustic waves propagating in the (1,0,0)
direction are

( M;
~'= V'yzl 1— ~, j=1,2, 3 (11.3)

1+(V;y& 'I
where i=1 corresponds to the longitudinal waves and
i= 2,3 correspond to the transverse waves, and

6+Eo

Ãg=
cllb11 b11

d44

7

c44(b44+bzz)

cV2 ——F3—— - . (11.4)
b44+bzz

The corresponding group velocities are

One notices that the group velocities are bounded by
v~ and v2, the phase velocities of the longitudinal and
transverse waves of the classical theory of elasticity.

12. CONCLUSIONS

The shell model which allows for a mechanism of
ionic polarization is used in obtaining the total potential

energy of ionic crystals. In this formulation the energy
due to the long-range forces is taken to be electrostatic
in nature, while the energy due to the short-range forces
is obtained by considering the interactions between the
shells of the first and second nearest neighbors and the
interaction of a shell with its own core. A continuum
theory of elastic dielectrics is obtained from the lattice
formulation by the long-wave approximation. In this
continuum theory, the potential-energy density is seen
to be a function of strain, polarization, the polarization
gradient. For the case of centrosymmetric crystals this
theory is the same as the one presented by Mindlin. '
However, this means of formulation allows one to
obtain the values of the material coefIicients using the
properties of the discrete model and the experimentally
obtained values of cyy, c», c44.

As can be seen from Eqs. (10.2) and Table II the new
dielectric coefficients bj~, b44 b77 depend on E&, A&, A2,
8&, 82 whereas the coe%cient b» depends only on A2
and 82 which is due to the short-range interactions
between the second neighbors. Therefore, the numerical
value of b» is many orders of magnitude less than the
numerical values of bye, b44, and b77.

In this paper the surface energy associated with the
creation of a free surface is considered to be made up of
two parts: one is associated with the removal of part of
the material and is a constant for a given surface and
the other is due to the relaxation of the free surface and
is a function of the field variables. The constant part is
present at the initial undeformed, unpolarized state
and the relaxation part is included in the total potential-
energy density and accounts for the presence of surface
effects.

Also, in order to obtain the value of the surface
energy density it is necessary to solve a boundary-value
problem with a free surface, since the definition of the
surface energy density, Eq. (9.10) involves the polariza-
tion on the surface, which is given by the solution of
the specific boundary-value problem.


