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Critical Temperatures of Ising Lattice Films
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Ising lattices consisting of n=2, 3, 4, and 5 interacting plane square lattice layers are studied by high-
temperature series expansions. Specifically, seven to nine terms of the zero-Geld susceptibility expansion
have been obtained for (a) free-surface boundary conditions (in which each surface spin interacts with
only five nearest neighbors); and (b) periodic boundary conditions (in which all spins interact equivalently
with six nearest neighbors). Estimates of the critical temperatures T, (n) obtained by ratio and Pade approxi-
mant techniques are presented. These results are consistent with the conjectures that T,(~)—T, (n)
varies with thickness n, as m " with X= 1 in case (a) and X= 1/v, ~1.56 in case (b); but other, somewhat

larger, values of ) are not excluded.

I. INTRODUCTION

HE properties of the Ising model have been
investigated extensively for many two- and three-

dimensional (and even higher-dimensional) lattices. ' '
In addition, Kramers and Wannier, ' Onsager, 4 and
Fisher and Ferdinand4 have considered one case of
what might loosely be called "intermediate" dimen-

sionality, namely, the AX ~ square-lattice torus (or
cylinder). In this case for 6nite ti there is no true phase
transition but the height and location of the maximum
of the specific-heat peak were studied. In this paper we

present some results for the analogous situation
intermediate between the in6nite two-dimensional
square lattice and the infinite three-dimensional
simple cubic lattice, namely, an eX ~ P ~ simple cubic
lattice "61m" formed by stacking e layers of the plane
square lattice. (A section of such a lattice for ted=3 is
shown in Fig. 1.)

The two-layer film (ri= 2) has, in fact, been considered

previously by Sallentine. ' We have confirmed his
numerical calculations and, in addition, obtained high-

temperature expansions for the zero-field susceptibility
for three- and four-layer lattices. A true phase transition
occurs now for each value of e. Our ultimate aim has
been not only to determine the critical temperatures
2'.(e) for the individual values of tt, but also to estimate,
as far as possible, the form of the dependence of T,(e)
on the number of layers for large e. Knowledge of this
dependence would be valuable in interpreting experi-
ments on a variety of real films. The present work

represents a first step in this program.
In the simple two-layer case (n=2), all sites are

equivalent (having a coordination number of 5) which

I C. Domb, Advan. Phys. 9, 149 (1960).
2 M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967).' H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941);

60, 263 (1941).
4 L. Onsager, Phys. Rev. 65, 117 (1944). Onsager confirmed the

earlier. conjecture of Kramers and Wannier (Ref. 3) that the
height of the maximum in the specific heat is proportional to inn.
See also A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832
(1.969), who consider a general m&(n torus and establish analytic-
ally the displacement of the position of the maximum from the
limiting T,.' L. E. Hallentine, Physica 30, 1231 (1964).

greatly simplifies the work of deriving the series
coefficients. But this simplification is evidently lost for
e&3 when the surface spins still have coordination 5,
while the nonequivalent interior sites have coordination
number 6. On the other hand, we may alternatively
impose periodhc or cyclic boundary conditions in the
vertical direction by merely assuming that a spin on
the top layer interacts via a direct nearest-neighbor
bond with the corresponding spin on the bottom layer.
In this case all sites are again equivalent (and no
identifiable surface layers exist). This cyclic model is
clearly analogous to the m&(~ torus or cylinder con-
sidered in Refs. 3 and 4. Although it does not corre-
spond closely to any physically realizable geometry, it
is theoretically interesting in assessing the significance
of surface effects as distinct from "6nite-thickness"
sects. We have therefore calculated series for cyclic
multilayer lattices with e= 2, 3, 4, and 5 layers.

The layout of the paper is as follows. The derivation
of the series expansion coefficients is outlined in Sec. II.
The series are analyzed by ratio and Pade approximant
techniques in Sec. III to obtain estimates of the critical
temperatures T,(e). The form of the variation of T.
with the number of layers m is discussed in Sec. IV,
where plans for future work are mentioned.

II. CALCULATION OF SERIES

The Hamiltonian of the Ising model with nearest-
neighbor interactions in an external magnetic field H is

X=—J g s,sg mII+ s, , —
i

where s;=~1 is the spin variable associated with ith
lattice site, (i = 1,2,3,. . .Ã) and the first sum runs over
all nearest-neighbor pairs of lattice sites (i,j). For a

FIG. 1.A section of the three-
layer simple cubic lattice with
free surfaces.
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ferromagg. et, the coupling parameters or exchange
constant J is positive; lastly, m denotes the magnetic
moment per spin. The isothermal susceptibility,
X=8M/BH, may be expanded at high temperatures in
zero field in powers of

in the form
v = tanh(J/k T),

(kT/m')xo(v) =1+ P u„v",

where a„ is twice the term linear in X, the total number
of lattice sites, in the number of ways of embedding all
possible magnetic graphs of r lines on the lattice in
question. "' A magnetic graph is one which contains
two, and only two, odd vertices, i.e., vertices at which
an odd number of lines meet. The embeddings we
consider are weak, ~ in the sense that two vertices of a
graph G embedded on adjacent lattice sites need not
be joined by a line of the graph. The number of (weak)
embeddings per lattice site is the (weak) "lattice
constant'" ' r and is denoted (G).

For rl,= 2, it is convenient to distinguish

v= tanh(J/kT),

for the inlayer or horizontal x bonds, from

v'= tanh(J'/kT),

In the case m=3, the cyclic lattice with periodic
boundary conditions is close-packed in the sense that
polygons of odd length, including triangles, occur on
the lattice. Consequently, a number of additional
lattice constants have to be evaluated in each order. In
fact, 84 graphs now contribute up to eighth order which
is as far as the calculations have so far been extended.
Since all lattice sites are still equivalent, however, the
calculation of these lattice constants follows standard
procedures. The calculations for the four- and five-layer
cyclic lattices are simpler because of the absence of
triangles even though odd polygons of length 5, 7, 9, . . .
can occur on the five-layer cyclic lattice. For this
reason we have been able to extend the calculations up
to ninth order on these lattices without excessive effort.

For the three- and four-layer lattices with free
surfaces, the evaluation of the lattice constants is
appreciably more arduous because of the nonequiv-
alence of surface and interior sites, which prevents the
straightforward application of the usual techniques.
For these lattices we have decomposed each lattice
constant into contributions from embeddings which
span one, two, three, and four layers. If (G)" denotes
the lattice constant for a connected graph G on the
cyclic lattice of n layers and (G) &" denotes the contribu-
tions to (G)" from embeddings which span exactly /

layers, we clearly have

for the between-layer or vertical s bonds. The main
feature in the calculation of the lattice constants is
then a subdivision into contributions from embeddings
involving zero, one, two, . . . , s bonds, the remaining
bonds being x bonds. As a trivial example, we see that
the lattice constant (—) for a single line can be written

When m=2, we see, recalling the previous discussion,
that (G)P is just the lattice constant for embeddings
involving no s bonds while (G) 22 is the sum over those
embeddings involving one, two, . . . s bonds. It is also
clear that

where the first figure, 2, refers to the embeddings with
no s bonds, while the second figure, —'„ is the number of
embeddings (per site) with one s bond. By calculating
the more elaborate constants similarly, one generates
a double-power series for Xo in the two variables n and e'.
We have determined the lattice constants for the 50
magnetic graphs containing nine lines or less that can
be embedded in the two-layer lattice thus obtaining all
terms in the expansion of X, of the form v"n" for r+s
&9. On setting ~=~', we obtain the series for the
standard two-layer lattice discussed by Ballentine. '
Our coefficients agree exactly with those he found which
provides a welcome check. On the other hand, by setting
J'= 2J and reexpanding e' in terms of v, we obtain the
correct expansion for the two-layer cyclic lattice since,
in eGect, this lattice is simply the ordinary free-surface
lattice with an extra vertical bond between each site
in the top layer and its neighbor in the bottom layer.

' T. Oguchi, J. Phys. Soc. Japan 6, 31 (1951).' M. F. Sykes, J. Essam, B. R. Heap, and B. Hiley, J. Math.
Phys. 7, 1557 (1966).

for all n. More generally, if we consider the (n+1—/)

vertical translations of an embedding which spans
exactly / layers, we easily see that

(G)g"=n '(n+1 —/)l(G) g'.

Thus for a three-layer lattice, for example, we can use
the two-layer data to obtain (G) &'= (-', ) (G) 22 and, hence,
we need to count only those new embeddings of G that
span all three layers, i.e., to evaluate the constant
(G)38. For any finite graph there is a maximum number
of layers L(G) which can be spanned. A check on the
calculations is thus provided by the tabulated constants
for the simple cubic lattice' (corresponding to n= ~)
since by combining (4) and (6) and letting n —+ ~,
we obtain

Nevertheless, the labor involved, particularly in count-
ing the linear chains manually, is considerable. (In this
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initial study we have not used a computer to assist
directly in the counting task. ) We have thus obtained
the series for the three- and four-layer free-surface
lattices only up to seventh order.

The coefficients for all the series studied are presented
in Table I.

III. ANALYSIS OF SERIES

To estimate the critical temperatures T,(e) from the
series given in Table I, we have utilized the well-known
ratio and Pade approximant techniques. "Figure 2
illustrates the ratio plots for the various free-surface
and cyclic lattices together with the limiting cases n = 1
(plane square) and e= ~ (simple cubic). For both free
and cyclic boundary conditions, the plots for finite
e& 2 exhibit appreciable curvature. This is particularly
noticeable for the cyclic lattices where, in fact, the ratios
p, (e)=a,(e)/a„r(1) depart from the values p„(~)
for the simple cubic lattice, only for r &e. This phenom-
enon represents a change over from characteristically
three-dimensional behavior at low values of r((rr) to
characteristically two-dimensional behavior at high
values of r()e). More speci6cally, the initial terms
will tend to exhibit a slope g=y —1 on the ratio plot
corresponding to an exponent y=y3=1. .25 while the
high-order terms are expected to yield an asymptotic
slope of y =y~

——1.75 typical of the standard two-
dimensional lattices. ' ' Correspondingly, when T exceeds
T, by an appreciable amount, Xo will behave roughly
like (T T,') 7', wh—ere T,'& T„while close to the true
critical point T„ the characteristically two-dimensional
variation as (T T,)» is expec—ted to take over. (This
type of behavior can be seen explicitly in the spherical
model in the corresponding situation intermediate
between three- and four-dimensional lattices; then
»=2 and p4

——1.) For the two-layer lattices where the
series are su% ciently long (about four times the number
of layers) to span the change-over region, the apparent
limiting behavior of the ratio plots provides direct
support for the above surmise. For the lattices with

TABLE II. Critical parameters for the simple cubic
lattices of n layers.

v, = tanh(J/kT, )
Cyclic Free

kT. (N)/qg T.(n)/T, (~)
Cyclic Free Cyclic Free

0.4142136
0.269 &0.001 0.301&0.001
0.240 +0.001 0.267+0.001
0.2305&0.0010 0.252&0.003
0.226 +0.002

0.21815

0.5672963
0.604 0.646
0.681 0.685
0.710 0.706
0.725

0.75172

0.50311
0.804 0.717
0.906 0.810
0.945 0.861
0.964

0

1.0000

5.0-
hh~-h —h»

~$g~S

~O—y~O
-v

~ el+

n=4

n=3

n=s

3.0-
0-0.0«0-0»

more layers, however, the present series are shorter,
both in proportion to e and absolutely. Consequently,
the available ratios do not clearly pass through the
change-over region. Some estimate of the extent of
curvature of the ratio plots must thus be made if the
r= ~ intercepts, and hence the critical temperatures,
are to be determined with reasonable precision. Accord-
ingly, we have examined plots of p„(N) versus 1/(r+e)
with various value of e (in the range 0—2). The variation
of e has no effect on the leading asymptotic behavior
but suitable values of e yield straighter plots at low
values of r.' In estimating the limiting intercept we have
chosen values of e such that the over-all slope of the
plot was close to the expected value g = 1.'/5 —1=0.'H.

The values of e, and the critical temperatures
obtained with this procedure are listed in Table II
with an indication of the range of uncertainty.

TABLE I. Series coefEcients for high-temperature susceptibility
of simple cubic lattices with n layers and cyclic or free-boundary
conditions.

5.0—
B h n=a0 On=5

-g4=4~~~+

& n-"4
h

n=3

n" 2

n=2
n Free Cyclic

n=3
Free Cyclic

n=4
Free Cyclic

n=5
Cyclic

4.0—

1 5 6
2 20 28
3 80 130
4 304 564
5 1 152 2438
6 4 236 10 132
7 15 528 41 794
8 55 924 169 652
9 200 808 682 870

10 712 868a

51.

234
102 ~@

433)
1 822'-,

7 478-',

30 569

6
30

148
706

3 322
15 364
70 222

317 574

25
114$
506

2 234
9 660

41 648

6
30

150
724

3 490
16 490
77 826

362 356
1 684 966

6
30

150
726

3 508
16 690
79 234

373 106
1 751 810

3.0—

2.0
0

I

0.1
t

0.2

~o000 0

t

0.5
l

0.4 0.5

' From Ballentine (Ref. 5).

G. A. Baker, Advan. Theoret. Phys. 1, 1 (1965).

Fro. 2. Ratios p, =a„(N)/a„q(e) of successive coeKcients of
the susceptibility expansions versus 1/r for (A) the free surface
and (B) the cyclic n-layer lattices. (The simple cubic lattice
corresponds to n= . )
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Owing to the relative shortness of most of our series,
the precision is much less than obtained for the standard
two- and three-dimensional lattices. ' ' Just as in these
cases, the error estimates have rot been obtained by
rigorous mathematical arguments. Rather, the range of
values obtained for a particular model from the various
extrapolation techniques described are carefully exam-
ined and an estimate, albeit partly subjective, of the
probable range of uncertainty is made. We plan to
obtain longer series which will yield increased precision
and, in addition, enable us to study lattices with more
layers.

Pade approximant analyses of the series yielded
results similar to those found from the ratio plots. In
particular, the location of the poles of direct Pade
approximants to the function LXs(s)) 41r, which is
expected to have a simple pole at v„were quite con-
sistent with the estimates in Table II. Thus, by way of
example, a diagonal or near diagonal sequence of Pade
estimates of v, for the m=4 periodic lattice is: 0.2392,
0.2335, 0.2314, 0.2304, 0.2303, and 0.2305. These
compare with the corresponding linear extrapolants of
the ratios p„(4) with e=+2, viz, 0.2232, 0.2288, 0.2263,
0.2290, 0.2283, and 0.2306. As seen in Table II, our
estimate of the critical parameter for this lattice is
e,=0.2305~0.0010.

IV. DEPENDENCE~sOF CRITICAL TEMPERATURE
ON NUMBER OF LAYERS

The solid curve labeled (a) in Fig. 3 shows the varia-
tion of n, (n) = tanhL J/kT, (n)) versus 1/n for the
lattices with free surfaces. Figure 4(a) is the same plot
for the cyclic lattices. In both cases there are clear
departures from linearity with e ', but these are most
pronounced for the cyclic lattices where s, (n) ap-
proaches the three-dimensional value n, (~) rather

0.40—

V, {n)

0.55—

0.40—

0.55—

V (n)

0.30—

0.25—

0.20—
I

0.25
I

0.50
(n-h)

I

0.75 I.O

Fxo. 4. Plots of the critical constants of the e-layer cyclic
lattices versus (n —h) "with (a) X=1, h—=0, (b) X= 2, h=0, and
(c) X=1/vs —1.56, h=0.75.

rapidly. For Iurge e, it is natural to expect a power law
of the form

If we attempt to determine the constants X and co by
a direct 6t to the simple two-parameter formula

(9)

which implies (8), we find that surprisingly good fits can
be obtained for both free-surface and cyclic lattices
with P =1.27~0.05 and X=2.00~0.08, respectively,
and A 0.196 (in both cases). These fits are shown by
the dashed lines labeled (b) in Figs. 3 and 4, respectively.
The uncertainties of the fits are principally determined

by the lack of precision in the values of T, (n).
However, we are not aware of any other arguments

that would support the validity of the fitted values of
X. On the contrary, Fisher and Ferdinand' have argued
that for lattices with free surfaces one should rather
expect X=1 (as n~ ~). This follows simply from a
mean field argument. Thus if q is the coordination
number of the lattice, mean Geld theory predicts

kT, =qJ.

0.50—

0.25

k~ g k
r a ~ n~ 4

For an e-layer simple cubic lattice with free surfaces
the mean coordination number is reduced from g

= 6 to

g= 6n —2/n,

and so the mean field prediction becomes

0.20—
e„=3 S. (12)

I

0.25
I

0.5

{n-h)

I.
0.75 I.O Similarly, the Bethe approximation for a uniform

lattice gives

Fro. 3. Plots of the critical constants v, =tanh(J/kT, ) of the
e-layer free-surface lattices versus (n —h) " with (a) ) =1, h=—0,
(b) X=1.27, h=0, and (c) X=1, h=0.60.

9 M. E. Fisher and A. E. Ferdinand, Phys. Rev. Letters 19,
169 (1967).
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which on using (11) q leads to the relative shift

p„=Lcp+ (ci/e)+. . .]/n, (free surface) (14)

with co——0.4132 in place of co——~~. Higher-order terms
like those in (14) must be expected generally. They
may be allowed for simple and conveniently by fitting
to the modified expression

i, (n) —i,(~ ) =A/(e h—)", (15)

which is asymptotically equivalent to (14). Such a fit
with the exponent fixed at A=1 is shown in Fig. 3,
curve (c): The parameter values are k=0.60 and
A =0.116~0.001. Evidently, the fit is quite satisfactory
and certainly no worse than the ad hoc fit (8). The
value of A corresponds to a constant c~~0.55, which
compares reasonably with the Bethe prediction of 0.41.

In the case of the cyclic lattices the coordination
number q remains unchanged (at q=6) and the mean
field and Bethe approximations, both of which take no
account of closed polygons on the lattice, predict eo
charsgt, in T,. To the extent that T.(n) approaches
T,(~) much more rapidly for the cyclic lattices than
for those with free surfaces this prediction is, roughly,
confirmed. Indeed the fit (b) in Fig. 4, corresponding
to X=2, is consistent with (14) if cp

——0 but ci&0. On
the other hand, some general heuristic arguments'
suggest that when e is large the deviations from the
infinite simple cubic lattice susceptibility should first
become significant at temperatures so close to T,(~)
that the range of correlation in the infinite lattice,
$(T)~a(BT/T. ) "', is of the same order as na, the
circumference of the finitely-layered lattice (a being
the lattice spacing). One imagines the mode of propaga-
tion of the correlations must change when significant
correlation occurs around the lattice. If the deviation
T,(~)—T, ( )wNere of the same order as this effect, one
would expect, X= 1/i p, that is

=cp/n'~ "p (cyclic lattices) . (16)

To test this hypothesis (while allowing for the higher-
order corrections which must still be expected), we
have fitted the cyclic critical points to (16) with
X=1.56 1/vp. iP As shown by the line (c) in Fig. 4,

'0 M. K. Fisher and R. J. Surford, Phys. Rev. 156, 583 (1967);
M. A. Moore, D. Jasnow, and M. Wortis, Phys. Rev. Letters 22,
940 (1969).

the 6t is very reasonable for e)3 with h =0.75 but is less
satisfactory for v=1 and 2; but this may not be very
surprising since the underlying picture losses credibility
for such thin lattices.

In summary then, the conjectures (a) gree surface]
X=1, and (b) Lcyclic] X=1/ip, based on the various
heuristic theoretical arguments, are quite consistent
with the estimated critical points and yield reasonable
two-parameter fits for e&2. However, the shortness
of the present series limits both the precision of the
estimated critical temperatures and the number of
layers that can be studied. As a consequence, the
theoretical conjectures must not be regarded as un-
ambiguously confirmed; in particular, the larger values
(a) X~1.27 and (b) X~2.0 provide ad hoc, but equally
satisfactory, fits to the available results. To resolve
this question, longer series are clearly essential. We are
undertaking the calculation of further terms by using
the computer-based methods of enumerating lattice
configurations developed by Sykes, Martin, and their
co-workers. Just how many terms can be obtained is of
course uncertain at this stage. We feel that at least
eleven- or twelve-term series for lattices with up to
seven or eight layers will be necessary to enable more
definite conclusions to be drawn regarding the form of
the dependence of the critical temperatures on the
number of layers. )We do not, however, anticipate that
the present estimates will be invalidated and these
already confirm a number of significant features of the
Fisher-Ferdinand conjectures. 7 We also hope to extend
the work to the Heisenberg and related models which
have a bearing on experiments on superRuidity in
helium films, as well as to magnetic materials.
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