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Nonlinear Optical Coefficients and the Raman Scattering Efficiency of LO and TO
Phonons in Acentric Insulating Crystals
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(Received 27 October 1969)

The relations between nonlinear optical coeKcients and Raman scattering efBciencies of LO and TO
phonons in crystals of arbitrary (acentric) structure are derived, under the adiabatic, electrostatic, and
harmonic approximations usual to lattice dynamical theory. Expressions for the total electro-optic coefficients
and the nonlinear optical coeKcients are presented in terms of Raman efliciencies and the optic-mode
frequencies. The use of the macroscopic field in computing the "electro-optic" contribution to LO scattering
e%ciencies is shown to be justi6ed. The practical conditions under which these expressions may be solved are
examined using scattering data for LiNb03, LiTa03, GaAs, BeO, ZnS, ZnO, and CdS. Theory and experiment
are found to be in good agreement. It appears that for many materials nonlinear coefficients and electro-optic
coefBcients may be determined from Raman data with accuracy comparable to direct measurement in the
traditional manner.

INTRODUCTION
' 'T has been known for some time that the difference
-- in Raman scattered intensity between transverse
(TO) and longitudinal (LO) optic-phonon modes in
piezoelectric crystals may be ascribed to an electro-
optic eRect arising from the electric field associated
with the LO phonon. 's Quantitative relations of a
different sort between TO Raman scattering eKciencies
and the lattice contributions to the electro-optic coeK-
cient (r;; s) ' have been demonstrated for the ferro-
electric insulators LiNb03 and LiTa03.4 The various
semiconductors with zinc-blende or wurtzite structure
have particularly simple Raman spectra with only one
optic phonon mode of given symmetry type, and for
several of these materials' ' the LO as well as TO
scattering data have been used to obtain values for the
second-harmonic generation coefficient dj, ;t(SHG) as
well as r;;I,. Burstein et a/. ' have presented a one-mode
crystal analysis of polariton scattering efficiencies and
a generalization thereof to describe polariton intensities
in polyatomic crystals, and Scott and Ushioda" have
applied their results, in a simplified form, to quartz.
These analyses permit the calculation of d(SHG) from
polariton scattering data. In this paper we shall
restrict ourselves to TO and LO phonon scattering;

' H. Poulet, Ann. Phys. (Paris) 10, 908 (1965).
s R. Loudon, Advan. Phys. 13, 423 (1964); also, in Proceedings

of the International Conference On Light Scattercng Spectra in
Solids, Eem York University, 1W8', edited by G. B. Wright
(Springer-Verlag, New York, 1969).

I. P. Kaminow, in Ferroelectricity, edited by E. F. Weller
(Elsevier Publishing Co., Amsterdam, 196/).

4 I. P. Kaminow and W. D. Johnston, Jr., Phys. Rev. 160, 519
(1967); 178, 1528(E) (1969).

~ A. Mooradian and A. L. McWhorter, in Ref. 2.
e W. D. Johnston, Jr., and I. P. Kaminow, Phys. Rev. (to be

published).' C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys.
Rev. 181, 1351 (1969).

8 R.. C. C. Leite, T. C. Damen, and J. F. Scott, in Ref. 2.
o E. Burstein, A. Pinczuk, and S. Iwasa, Phys. Rev. 15'7, 611

(1967); E. Burstein, S. Ushioda, and A. Pinczuk, Solid State
Commun. 5, 40'? (1968); E. Burstein, S. Ushioda, A. Pinczuk,
and J. F. Scott, in Ref. 2."J.F. Scott and S. Ushioda, in LSSS (Ref. 2).

i.e., we shall ignore the small-angle polariton scattering
regime. To the author's knowledge, quantitative
absolute relations between LO and TO phonon Raman
scattering eKciencies and nonlinear optical coefFicients
for crystals of arbitrary symmetry having more than
one simultaneously Raman and infrared (JR)-active
mode of the same symmetry type have not been
demon strated heretofore.

The "electro-optic" contribution to Raman scatter-
ing efficiencies is actually related quantitatively to
d(SHG) rather than the electro-optic coefficient r.
Aside from this confusion, a numerical factor-of-2
error has been made almost universally when the
identification has been made, otherwise correctly, with
d rather than r. A matter of more fundamental import
is the confusion which has persisted in the literature
regarding the matter of whether the macroscopic or
local electric field should be used in computing the
electro-optic contribution to LO scattering. Except for
the early work of Poulet with local fields' the macro-
scopic field has been used in practice, but often with a
disclaimer'' indicating that this is an approximation
expected to be valid for semiconductors with non-
localized electrons. We do not consider the use of the
macroscopic field to introduce any approximation
whatsoever into the treatment of insulating and semi-
insulating crystals to be presented here. These matters
are discussed further in the Appendix, where the
nomenclature of previous authors is correlated as
well.

It is the purpose of this paper to present a complete
description of the relations between r;;I„df,;;, and the
LO and TO Raman scattering efficiencies, valid for
acentric, insulating crystals of arbitrary symmetry.
[For brevity we shall call d(SHG) simply d in this
paper. 7 The practical value of the relations derived
lies in that accurate values of ~r~ and ~d~, and the
sign of d/r, may be determined from Raman scattering
data. Only the refractive index at the wavelength of
the source used to excite the Raman spectrum, and the
limiting dielectric constant e„at a frequency well above
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lattice, but well below electronic, resonances need be
known in addition to the Raman data.

The optical and electrical requirements on a material
for quantitative Raman data acquisition are often much
less stringent than those for direct measurement of
electro-optic or second-harmonic generation (SHG)
coeKcients. The method we describe thus may be an
attractive alternative to direct measurement of such
coeKcients, particularly for new nonlinear materials,
available samples of which are often unsatisfactory
in size or quality for any but the crudest direct measure-
ments of d and r. Practical examples indicate that, with
reasonable care in taking the Raman data, the accuracy
with which components of r and d may be determined
can be comparable to or better than direct measurement,
i.e., of the order of 10—

20%%uo on an absolute basis. We
remark that, theoretically at least, the Raman measure-
ment scheme is very similar to direct measurement
of r or d, the difference being that the therma/ motion
of the atoms in the crystal, and the electric fields
associated therewith, provide the "drive" for the
"modulation" of Raman scattered light, rather than the
external rf or optical fields used in direct measurement.

I. THEORY

n direction of the atoms of type k. N is a 3XX31V
matrix whose elements E,p(kk') are the force constants
between atoms of type k and k' encountered by displace-
ments in the n and P directions, divided by Lp(k) p(k )j'~',
and z~ is the transpose of an effective charge parameter
matrix, dimensioned 3N)&3.

We now recall that the field associated with a phonon
of wave vector q is given by"

r)I'~/r)W; =Z;~. (1 4)

Z ' is related to the dielectric response function by"

The eigenvalues of (1.1) with 8=0 (denoted by co;)
thus correspond to the squared frequencies of normal
modes for which g; P;/q;=0, where c[; is the wave
vector and P; the polarization of the ith mode. Thus,
these eigenvalues correspond to either tramswerse (q;J P,)
or infrared ieacti-ve (P;—=0) modes The .eigenwectors of
(1.1) with E=O we shall call the normal transverse
mode coordinates 8';, and we define an effective
transverse charge-parameter matrix Z; by

We shall ignore phonon damping, polariton, and
plasmon effects. The harmonic, electrostatic, and
adiabatic approximations are assumed to be valid. The
validity of these assumptions will be discussed in a
practical context in the next section. In the meanwhile,
we remind the reader that the harmonic approximation
may not be valid near phase transitions. The electro-
static approximation requires that the phonons in-
volved have wavelengths in the crystal short compared
to electromagnetic radiation of the same frequency,
which effectively eliminates polaritons' from considera-
tion. We further assume that the density of free
carriers is low enough that plasmon effects' may be
ignored.

We first recall certain results from the theory of
lattice dynamics, appropriate for a crystal of arbitrary
symmetry with N atoms per unit cell. The equations
of motion for the long-wavelength lattice vibrations,
in matrix notation, are" "

w+Nw= zE,

P=z~w+gE, (1.2)

where the three-dimensional vectors P and E are the
polarization and macroscopic 6eld, aery. =c„—1, and

m (k) = Pp(k)g'I'I (k), for a= 1—3 and k= 1-X.

Also, p& is the density of atoms of type k and the I (k)
are the Cartesian-coordinate displacements along the

W. Cochran and R. A. Cowley, J. Phys. Chem, Solids 23, 47
(1962).

~ R. A. Cow1ey, Proc. Roy. Soc. (London) A268, 109 (1962).
R. A. Cowley, Proc. Roy. Soc. (London) A268, 121 (1962).

(1.5)

3—cv'W+(u. 'W = —4' Q Z P i=1—3N

I' = Q Z; W;—Q (e„P 6&)P& (1.—7).
'4 A. S. Barker, Jr., Phys. Rev. 145, 391 (1966).

The IR-active normal modes are purely transverse
or purely longitudinal only for phonon propagation
along principal axes of the dielectric tensor. Accordingly
the W; for modes with I;&0 are the normal-mode co-
ordinates only for modes with g along these directions.
The propagation direction is of course immaterial for
the modes with I;—=0, which include the three acoustic-
(ot;2=0) mode solutions to (1.1).

For convenience, we shall group the transverse
normal-mode coordinates lV; separately as Z; =0 or
not. If the crystal symmetry is orthorhombic or higher,
the principal axes correspond to crystallographic axes
and the modes with Z; NO may be grouped by axis (n),
since only one of the three Z, components is &0 for
each i; i.e., Z; splits from a 3NX3 to three N&1
matrices.

We need now consider the solutions to (1.1) when
q.P=qP and the right-hand side of (1.1) is —4wZP,
to obtain the eigenfrequencies and normal coordinates
for the longitudinal vibrations. These are conveniently
expressed by writing (1.1) and (1.2) in terms of W:
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I' ~ may be eliminated from (1.6) and (1.7) to yield

—pi'W+KW= 0,
where

(1 8)

3 3

E,,=pi,'8;,+47r P Q Z, Z,~(z„') ~,

i, j=1—3X. (1.9)

Note that (1.8) is thus not diagonal. We introduce new

coordinates W' such that UW'=W, U '=U, and
U~KU=w; 9;;; i.e., U is a unitary matrix which
diagonalizes K. The co are the longitudinal mode
eigenfrequencies, and U is a matrix whose columns are
the normalized principal vectors of K. Then (1.8)
becomes

(1.10)

frequency mo and polarization along j, for a collection
solid angle dQ and length of medium /, and n~ is the
Bose factor for the frequency pi~. Finally de;,/dW~ is
the to/al derivative of the macroscopic optical polariza-
bility 0,;; with respect to normal-mode coordinate 8"~
(or W'~ for LO modes).

The polarizability may be regarded as a function of
W (or W') and E, the macroscopic field; or of w and
8, the local "Geld" at each ion (8 is a 3X3X-dimen-
sional matrix), which determine the microscopic
polarizability. The macroscopic quantities are of course
given by a sum of microscopic contributions over a
unit cell. %e shall use the macroscopic parameters
since r;;I, and dA;; are defined for macroscopic fields
and polarizations.

From (1.3), (1.11), and (1.13), we obtain, for TO
modes,

Thus W' is the longitudinal normal-mode coordinate
vector, and (1.7) becomes

3N 3

Pe= Q Q Z, 'vW, '(p —i)ve
i=1 y=l

and for LO modes,

dna

dI/I/'~ BR'~
(1.16)

he
Z'= ZV.

We will require the relations

aI' /BW,'= Q Z e(e„') ~

P=l

(1.12)

(1,13)

Bo.ij.

d H/'~ Bt V'~

Bn;j BE&

v BE& Bt/t/"~

Bo;i,. Bo.;j.
U„+Q Q (—4n.Zi, '~)

v BR'7 v BE& p

ilW;/BW; = (Ur),;= U;;. (1.14)

S(ij,k) h(pip pii, )'(n"+—1) du," '

ldQ 2orl, c
(1.15)

d8'~

where i, j= 1—3 and k= 1—3Ã. A similar equation holds

for LO modes, with u'~, e'~, and tV'~ replacing co~, n~,

hand TV~. 5 is the ratio of scattered optical power with
polarization along i to incident optical power with

Also, jt can be shown" that the 3$&3E matrix U
consists of two or more matrices (depending on crystal
symmetry) along the diagonal and zeros elsewhere, as
follows: triclinic, (3E—3)X (3$—3) and 3X3; mono-

clinic, (X—1)X(X—1), (2E—2)X(2X—2) and 3X3;
orthorhombic and higher, three (Ã—1)X(X—1) and

3&3. Thus, infrared-inactive modes do not "mix" to
give the LO mode eigenvectors, and the various TO
modes for which a given particular polarization "axis"
may be identified mix only with each other to give the
LO normal-mode coordinates appropriate to that
particular axis.

@le may now proceed to the relation of Raman
scattering efficiency to nonhnear optical coefficients.
The TO Stokes scattering efficiency within the
medium is

(1.18)~go~/«fl =~~(n;,~)',
15 For the notation used and symmetry properties of r and d,

see G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597
(1968), Appendix 2.

where c„'is the inverse to the dielectric tensor e„.%e
now note that Bn;;/BE~= 4di„; (SHG),"where di„,(SHG)
is the second-harmonic generation coefficient.

It is worth emphasizing that (1.17) is properly
expressed as written in terms of macroscopic quantities,
regardless of the ionic or covalent, insulating or semi-
conducting, nature of the material. By analogy with the
analysis made by Cowley, ""an equivalent equation
may be written in terms of microscopic (i.e., local)
differential polarizabilities, microscopic coordinates, and
the local field; and identification made with the desired
macroscopic quantities p, dn/dW, and d. Cowley shows
that arbitrarily high multipole orders may be included
in the microscopic treatment. It is easy to show (by
an extension of Sec. 6 of Ref. 13) that Z and K, if
determined from (1.5) and (1.9) and the empirical
mode frequencies, are the effective charge and force
parameters including the contribution from at/ local
polarization effects of whatever multipole order so that
no additional "local-field" correction is needed.

Denoting cIn;;/BW~ by n;;i„and the term in curly
brackets in (1.15) by o.i, (or o.i,'), we have, from (1.15)—
(1.17),
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3N

Sg„ /idQ=o„'tL Q u;;„U„
n=l

—Q 16 ir(e„')» Q Z ~V„d„,]' (.1.19)

Finally, as shown in Ref. 3, the lattice contribution
8r from the eth optic mode to the electro-optic coefFi-

cient, is given for crystals of orthorhombic or higher
symmetry by

s" e~'
8r;;z

=n,, i,ZP/a&i, ' (no sum convention) (1.21)
so that

S~~Ãg 8N

;;,„(Z„"/ „')+4d,;, (1.22)

where m; and e; are refractive indices. More generally,
for monoclinic or triclinic crystals,

P r,;,i,e"=—4ir P(s—')'&
ij

Xt:E ';,.Z,"/, '+4d. ,v],
v

(1.23)

where e is the dielectric tensor at the optical carrier
frequency.

II. APPLICATION TO LiNbO3 AND LiTa03

The only materials with more than one simultane-
ously Raman and IR-active mode of given synnnetry
type for which quantitative Raman eKciencies have
been published, are the isomorphic ferroelectrics LiNb03
and LiTa03. Both these materials are of practical
importance for nonlinear-optical-device applications,
and values for the electro-optic and SHG coefficients
have been determined by several workers. Below the
Curie temperatures (1480 and 910'K, respectively) the
crystals have the symmetry of point group 3m and space
group E3c. There are two formula units per unit cell,
alloming, as has been shown elsewhere, " nine long-
wavelength optic modes of the doubly degenerate
symmetry type E, four of type A& and five of type A2,
as mell as the acoustic modes, one of type E and one

"A. S. Barker, Jr., and R, I,opdon, Phys. Rev. 158, 433
(&967).

A "sum rule" may be derived from (1.19) by dividing
both sides by 0- ' and summing on m. The right-hand
side then is of the forin ~A U~', which equals ~A~'
since U is a unitary matrix. Using (1.18) as well, we
obtain

p(s,;,„~/ ' —s,; ~/
m

= —32ir Q (e„')»Z—t'd, ;;~,;„
tn, y, P

+256vr' P L(e„—')»Z &d, , ;,]'. (1.20)

of type A&. The 6ve A2 modes are silent, and the E
and A~ modes are simultaneously Raman- and IR-
active. The nine E and four A& optic modes may be
considered in separate groups. The Aq modes are
related to the nonlinear coe%cients r33 and r~3, d33
and d3~, and the E modes to r5~ and r22, d~5 and d22

(the usual compressed notation is used; thus re -+ rii,
but d;,i ~ d, i where l ranges from 1 to 6).

The adiabatic approximation and, except for small-
angle (&10') scattering, the electrostatic approxi-
mation are clearly justifiable for both materials. (The
former requires that the optic-phonon frequencies be
much less than frequencies of electronic resonances, and
the latter requires that the wavelengths of the optic
phonons be small compared to electromagnetic wave-
lengths for the same frequencies. ) The harmonic
approximation may be considered valid for a ferro-
electric if the temperature is well removed from the
Curie point and the effects associated with domain
reversibility are relatively unimportant, i.e., the
coercive field should be high and the domains "frozen"
or nearly irreversible. Room-temperature reversal of
the domains in LiTa03 and LiNb03 requires special
techniques and has been reported only recently, "with
coercive field values greater than 10 V/cm, so that,
for our purposes, the reversible, ferroelectric nature of
these materials may be ignored. The temperature
dependence of the Raman spectra" provides the best
indication of the relative importance of anharmonic
effects. (The Raman spectra for an ideal harmonic
crystal would, of course, show only the intensity
variation mith temperature due to the Bose population
factor. ) From the data of Ref. 18, it is estimated that
anharmonic effects should be negligible below about
200'K for LiTa03 and below 400'K for LiNb03. At
room temperature there is some evidence of anharmonic
effects ("softening" of the soft-mode frequency, and
violation of group-theoretical polarization selection
rules) in the Raman spectrum of LiTaoi, but the
departure from ideal is still relatively small and may
be considered as a perturbation to the normal-mode
theory.

We have also ignored phonon damping, which might
not seem justifiable a Priori in terms of the reported
linewidths, ' which are themselves about 30% too
small. " It is possible to include a first-order approxi-
mation of damping without sacri6cing the normal-
mode treatment; the same (nonzero) linewidth may be
assumed for all optic phonons of given symmetry type,
denoted by a common half-width at half-maximum Fo.
Equation (1.8) may then be rewritten

3

(o'W, +(v—,'W;+2i7(g;W; = —4m Q ZpI'~, (2.1)

"S. H. Wemple, M. DiDomenico, and I. Camlibel, Appl. Phys.
Letters 12, 209 (1968); I. Camlibel, J. Appl. Phys. 40, 169I
(1969).

'8 W. D. Johnston, Jr., and I. P. Kaminow, Phys. Rev. 168,
1045 (1968}.
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TABLE I. Oscillator strengths A~;=4n-ZP/~ and

TO mode frequencies co;(cm ').

Lithium niobate

A 1-type modes

From Raman data'
COt., ak;

253 1522
275 1.22
334 0.28
637 2.67

~33 —28 c Q 5a+e„=23.99,

From IR datab
Ak;

248 16.0
274 1.0
307 0.16

~ ~ ~ 2.55
+692 0.13

P d,~+a„=24.31

92
152
238
262
322
368
436
582
630

~11 43 c

E-symmetry-type modes

3.7 ~ ~ ~

21.6 152
1.7 236
5.1 265
1.8 322
1.9 363
0.1 431
3.0 586
0.6 ~ ~ ~

+670
e„+P~ +Q 6~=41.0,

Lithium tantalate

A 1-type modes

~ e ~

22.0
0.8
5.5
2.2
2.3
0.2
3.3

d

0.2
AI~ =41.3

201
253
356
600

25.02
2.60
0.27
3.51

30200
~ ~ ~ ~ I ~

357 0.055
596 2.66
(657 760)' (0.36)

e"=43,' P Aa+e„=36.4

E-type modes

74
140
206
251
316
383
462
596
662

7.08
12.76
9.12
0.28
0.13
3.74
0.09
2.45
0.53

a ~ ~ ~ ~ ~

142.5 24.1
215 0.36
253 2.4
316 2.5
375 2.0
462 0.013
593.5 2.33
673 0.05

(165,175,238,405,750)3.2'
e"=41,' P AK+E.)

——41.0

a Reference 18.
b Reference 15.
& Reference 21.
d Not reported.
e Additional modes.
f I. P. Kaminow and E. H. Turner, Appl. Opt. 5, 1612 (1966).

where i runs over the modes of given symmetry type
corresponding to Fo. A unitary transformation still
exists between the TO and LO normal-mode solutions
(this would not be the case if Fs were dependent on i)
The eigenvalues for the normal-mode frequencies are
of course complex but the observed TO and LO mode
frequencies (to; and to, ') as defined by the scattering
peaks in the Raman spectra may be combined with the
linewidth to yield co and ~, the TO and LO force
constant parameters":

to.s —to 2++ 2 ~ &2 ~ ~s+r 2 (2.2)
' A. S. Barker, Jr. , in Par Infrared Properties of Solids, edited

by S. S. Mitra and S. Nudelman (Plenum Press, Inc. , New York,
1969).

The theory of Sec. I now applies with these values for
ar; and co . Unfortunately the optic-phonon linewidths
in LiTa03 and LiNb03 vary by as much as a factor of
3 at room temperature for modes of either A1 or E
symmetry, so that the constant Fo approximation is
rather poor. Even taking the largest linewidths for Fp,
corrections from (2.3) to the measured values of LO
or TO frequencies do not exceed the precision ( +2.5
cm ') of the experimental data and accordingly the
first-order linewidth correction is not considered

significant. The variation among the linewidths is
evidence that anharmonic coupling among the modes
actually exists, but these higher-order effects will be
assumed to be less important for Raman scattering
computations than the first-order correction described
above.

Finally, of course, allowance must be made for the
variation of the Bose factor across the width of the
Raman line. The published data4 have taken this into
account. While on the subject of the Raman data for
LiNb03 and LiTa03, it should be pointed out that it
now appears (as the result of a reexamination of the
spectra by this author using a double-grating mono-
chromator and improved electronics) that the lowest-

frequency E-symmetry longitudinal phonon in Liwb03
was erroneously reported in Ref. 4 at 117 cm ', and
that the correct value" should be 95 cm '. The line-
width and scattering efficiencies are unchanged. This
makes the Raman data compatible mith the IR data
of Ref. 16. )The 117-cm ' frequency assignment would

imply that the 92-cm ' E-type TO phonon had sub-
stantially greater oscillator strength ( 30) than the
IR data would allow. ] With the exception of this
change, all Raman data for LiNb03 and LiTa03 used
in the calculations to follow are as reported in Ref. 4.

The IR reQectivity spectrum of LiTa03 at room tern-

perature has been measured recently by Ditzenberger. "
From these data, it would appear that a smaller splitting
of the 74—80-cm ' TO-LO E-symmetry-type mode in
LiTaOs would be appropriate. A 75—78-cm ' frequency
assignment is certainly consistent with the accuracy
of the Raman data and would apparently be more
nearly consistent with the IR data. The comparison
of Ditzenberger's data with those of Barker and
Loudon' con6rms that anharmonic effects are much
more pronounced in LiTa03 than in Liwb03 at room
temperature.

Comparison with Experiment

With the warning that the approximations of Sec. I
are evidently less valid for LiTa03 than for Liwb03,
we now turn to examine the predicted relations among
the Raman data, IR data, and experimental values for
dielectric constants and electro-optic and SHG coeffi-
cients. The calculations described below mere all

While this mode was not reported in Ref. 16, there is some
evidence of its presence in Fig. 1 of that paper."J, P, Ditsenberger (unpublishedl.
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carried out on a time-shared computer facility. Initially
the linear dielectric properties of the lattice modes are
determined. The equation system (1.5) is solved for the
transverse charge parameters Z, by requiring that
c(a& )=0 for all the LO frequencies ~ . (Actually
~Z;~~' is thus determined, but the phase of all Z; may
be chosen to be zero; this choice has the effect of
fixing the sense of the TO normal-mode coordinates
W;.) The transverse charge parameters are related to
the IR oscillator strengths (A~, ) of the TO modes by

A~; ~=4vrZ, Z e/a)'. (2.3)

The low-frequency (clamped) dielectric constant eo is
then given by

eo ~=e e+Q a~;e. (2 4)

The values for A~; and eo determined from the Raman
data are compared in Table I with values from IR and
microwave measurements.

The components of the unitary matrix relating TO
and LO normal-mode coordinate vectors are then
determined from components of the unit solution
vectors x; of the systems

LK—cu Ijx,=0. (2.5)

with P=3, j=1—4 (A& modes), or P=1, j=1—9 (E
modes). The values computed for the polaron coupling
coefficients are given in Table II, where the bare mass
has been set equal to the free-electron mass since this
quantity is not known for Liwb03 nor LiTa03 as yet.
The coupling coefficients are of the same magnitude as
those reported by Barker" for SrTi03, BaTi03, and
KTa03.

' C. Kittel, Quantum Theory oj Solids (John Wiley R Sons,
Inc., New York, 1963).

In (2.4), (2.5) and (2.6) the index i runs over the
number of normal modes of given symmetry type; thus
for LiNb03 and LiTaO~ i runs from 1 to 4 for A~
modes, and from 1 to 9 for E modes. In Eqs. (2.4) and
(2.5) i refers, of course, to TO modes, and in Eq. (2.6) i
refers to LO modes.

The longitudinal charge parameters Z may now
be determined directly from Eq. (1.12). These last
quantities are related to the polaron coupling coefh-
cients, ""n, &, which couple electrons and the jth LO
phonon:

2xe' 2mp*co ' '~'

n,~= P Z &Le„—'g~&, (2.6)
y=l

where e is the charge, and m* the bare mass (in the P
direction), of the electron. For point group 3m, (2.6)
simplifies to

2xe' 2mp~o) "' Z, 'I'-

TABLE II. Polaron coupling coeScients (for free-electron
mass) and LO frequencies' in cm '.

LiNb03
cu (cm ')

273
331
428
874

A I-symmetry-type modes

0.003 245
0.019 347
0.84 399
1.38 864

LiTaOg

0.027
0.14
0.68
1.39

95b
198
243
298
345
428
448
621
881

El,-symmetry-type modes

0.037 80
0.22 163
0.018 248
0.10 278
0.075 318
0.157 452
0.248 474
0.015 648
1.46 870

0.12
0.14
0.038
0.40
0.021
0.16
0.21
0.034
1.41

a Reference 4.
b See text.

The experimental values are all given the same relative
weight by the first term. The prime on the summation
indicates that only modes for which S,~'/0 are in-
cluded. The second term in (2.8) is the relative variance
based on the "sum rule" given by Eq. (1.20). While
the first term assumes a constant percentage accuracy
for the S;~', the second term has the eGect of forcing the
fit toward the stronger modes. A deviation parameter

~~= (I'~/&')'" (2 9)

may also be defined, where A" is the number of terms
contributing to the primed summation in (2.8). This
last quantity may be interpreted as a mean percentage
deviation between theoretical and experimental values
for S~ for the pth set generated by (1.19).

We now consider the quadratic equation system
(1.18) and (1.19). The validity of these relations is
most easily tested by computing vaIues for S~ and r
from the measured values of S~, d, e„, and the other
Raman spectral parameters. With E modes of given
symmetry, there are 2~ separate sets of solutions for
the X components of S~ of that symmetry, each such
set corresponding to a different choice of signs among
the components of n Lonly the absolute value of the
components of n;, I, are determined from (1.18)j. Thus
for the A &-symmetry longitudinal modes (1.18) predicts
16 possible four-component sets S~~, which are to be
compared to the experimental values S~'. For the E-
symmetry modes there are 512 predicted nine-com-
ponent sets.

For the purpose of comparing the experimental and
predicted LO eSciencies we define a variance param-
eter by

i(5''"- '") '
+ (2 8)s" Le.
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TA]%LE III. Experimental values of scattering efficiency for LO modes (ordered by increasing frequency), values calculated

from TO efBciencies (Ref. 4), and measured values of d, variance parameter v (see text), and signs of lattice contributions A'jp
relative to dq;j. Units of Sl, are 10 cm ' sr '.

A 1 modes (113) coefficients 8 modes (131) coefficients

LiNb03

SL,(expt) 113 1.0
Sl, (calc)»3 0.9
(n/d) +
r13(calc) =12X10 '2 m/V

d31= —6.25X10 "m/V'

1.2 0.9
1.5 0.5
+

v=30%

3.2
2.4
+

LiNb03

Sign (o,/d)

r (calc)
r51 (expt) b

19
28

di~=dsi ———6.75X10 "m/V'

+ + +
+

v =270'Fo
(4 modes used)

r13 (expt) =9X10 "m/V

LiTa03

Sl, (expt) 0.03
SI.(calc) 0.02
(n/d)
r(calc) = —8X10 "m/V

ri3(expt) =9.5X10 "m/V

d» ——1.5 X10-» m/Va

0.4 0.2
0.5 0.2

+
v=30%

0.7
0.6

LiNb03

S333~(expt)
S333~(calc)
(n/d)
r33(calc)
r33 (calc)

Ai modes (333) coefficients

d33= —37.5X10 "m/V'

1.22 0.38
0.12 0.02
+ +

0.32
0.7
+

39
39

1.64
1.6
+

rga(expt)b

LiTa03

S33P (expt)
L333 (calc)
(o/d)
rq8(calo)

r33 (expt)

0.03
0.09
+

40

36

d3a= —23X10 "m/V'
0.3 0.17
0.003 0.001
+ +

v =115%

0.69
0.26
+

LiNb03

S51~(expt)

Ssis (calc) 0.45 0.16 1.9
1.90.1 0.2 0.4

E modes (131) coeiiicients

415=d 31= —6.75 X10 12 m/V'

0.07 — — 0.05
0.03 1.05

3.0 0.1

LiTa03

S:P(expt)

S~i'(calc)

Sign (n/d)

(calc)
r51 (expt)

LiNb03

Sl, (expt) 222

S22P (calc)

Sign (0./d)

r» (calc)

r22 (expt)"

LiTa03

S»& (expt)

5»2 (calc)

Sign (o/d)

.»(calc)

r» (expt)

0.04

d1"=d31=1~ 5X10 "m/V'

0.02 0.05
0.09

2.4 0.02 0.05 0.38
0.49 0.05 0.04 0.05

+
+ +

1.6X10 '2 m/V @=27%
20X10 "m/V (3 modes used)

I" modes (222) coefficients

422 =3.6 X10 "m/V"

0.005

0.02

0.04 0.05 0.09 0.07
0.05 0,03 0.04

0.01 0.04 0.2 0.08
0 0.16 072

+
0,2

6X10 "m/V

3.4X10 "m/V
v =154'7o

d22=2.4X10 "m/V'

0.1 0.06 0.02 0.06 0.04
0.08 0.09 0.24 0.04

0.001 0.1 0.02 10 ' 0.03
0.05 0.09 0.34 0.05

+ + + + +
+ — +

9.6X10 '2 m/V
55'Fo

a R, C. Miller and A. Savage, Appl. Phys. Letters 9, 169 (1966);J. E. Bjorkholm, IEEE J. Quantum Electron QE-4, 970 (1968); QE-5, 260 (1969).
b I. P. Kaminow and E. H. Turner, Appl. Opt. 5, 1612 (1966).

The "best" set of S~ is determined as that set for
which V„ is a minimum. A unique choice of signs for
the components of e;;k relative to dj,;;is thus determined,
and a value for r, ;& may be determined from (1.24).
The values so computed for r and the LO scattering
e%ciencies are compared with directly measured
quantities in Table III. The values for the "deviation, "
e„, and the signs of a;;~ for each mode relative to dl, ;;,
are given as well. It should be emphasized that there
are no free parameters whatsoever to be adjusted, and
that absolute rather than relative theoretical and experi-
mental values are compared; thus the possibility of
systematic error in the determinations of experimental
quantities may be important.

In the case of coefficients with index (51), only some

of the LO scattering eKciencies are known, and only
these have been fit, so that this comparison is less

meaningful. The comparison of the index (13) coeffi-

cients should be more signi6cant, since the LO eK
ciencies are known most accurately for that scattering
geometry. Indeed, the agreement seems best for these
scattering eKciencies and the electro-optic coefficients
agree well with direct measurement. We note also that
the signs of the nts components are (relative to dts)
exactly opposite for LiNb03 and LiTaO3. The n»
components, however, are all the same in sign as d33

for both materials. There is an ambiguity in the
determination of the experimental values of S33~
arising from the experimental geometry employed. 4

The results in the table were obtained as the best
choice (minimum v„) for any combination of S»
consistent with the published data.

The agreement for the quantities with index (13)
is quite good, and is about the same. for both materials.
The 30%%u& probable deviation is about what would be
expected for ~10% uncertainty in the values of Sr,
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TABLE IV. Raman derived and direct experimental values of
electro-optic and SHG coeScients (10 " m/V).

Mat. 1

LiNb03'

LiTa03'

GaAsb

ZnS'
(cubic)

BeOe f

ZnO'g

CdSe h

Coe6.

r13
d31
r51
d15
r33
d33
r22

r13

r51
d15
r33
d33
r22
d22

r41
d14

r41
d14

r33
d33
r13
d31
r42
d24

r33
d33
r13
d31
r42
d24

r33
d33
r13
d31
$42

d24

Calc

12—6.5
23—32
39—36

5.7
17

9.0—0.3
18—13
44
49—9.9
3.9

—1.54
137

—0.81, 0.28

—3.9 —2.1

—2.1 —1.0

—7.6 ' —1.8—1.4 —1.4

—1.1 0.5

18.1 ' —10.0—2.7 +0.1

—1.2 +0.27

Expt

8.6—6.8
28

(—6.8= de&)
30.8—37.5
3.4
3.6

7.9—1.5
20

(—1.5 =dg&)
35.8—23

2.4

—1.5
100-500

1.2—2.1a
30.5d

2 ' 6—9.5—1.4
2.8

3.1

2.4
42&13

1.1—26&5
~ ~ ~

—29a8

a Values of r from I. P. Kaminow and E. H. Turner, Appl, Opt. 5, 1612
(1966); values of d from R. C. Miller and A. Savage, Appl. Phys. Letters
9, 169 (1966); J. E. Bjorkholm, IEEE J. Quantum, Electron. QR-4, 970
(1968); QE-S, 260 (1969).

b Reference 5.
& Scattering data from Ref. 24.
d C. K. N. Patel, Phys. Rev. Letters 16, 613 (1966).

Scattering data from Ref. 7, experimental values of r from Kaminow
and Turner (footnote a).

& Experimental data not available presently.
g Fxperimental values of d from R. C. Miller, Appl. Phys. Letters 5, 17

(1964).
h Experimental values of d from Patel (footnote d).

S~, and d13. Geometrical requirements and the occur-
rence of optical index damage in LiNb03 and LiTa03
combine to reduce the signal-to-noise ratio for the
5»~ measurements and these effects account quali-
tatively for the higher deviation. It is also likely that
the values for d33 are not so accurate since phase-
matched measurement of this quantity is not possible.
For the E modes the agreement is less satisfactory, al-
though the compounding of errors is much more severe
with nine modes than with four as for the A1 modes,
and as the E-mode LO efficiencies are generally small,
the measurements are prone to relatively greater
experimental error as well. It is also possible that small

uncertainties in the mode frequencies play a significant
effect in calculating the LO efficiencies. The (22)
results are considered to agree with the theory, in spite
of the discrepancy between calculated and measured
values of r» for LiTaO~. This coefFicient is dominated
by lattice contributions and a different choice of relative
signs for these is required to produce agreement with
the measured value of r2~. It is not surprising that in
at least one instance the "noise" in the input data is
sufFicient to cause a minimum variance solution to
correspond to an incorrect sign choice out of the 512
possibilities.

All in all, it is felt that the theory of Sec. I provides a
quantitative description of the relations between
electro-optic and SHG coefficients and Raman scatter-
ing efficiencies for LiNbO3 and LiTa03 at room tem-
perature, at least to the accuracy of the published
data. Strong evidence is thus provided for the validity
of using the macroscopic field in (1.17). Also, it appears
that the infIuence of anharmonic effects on the LO
scattering efficiencies of LiNb03 and LiTa03 are not
significant in comparison to the present experimental
errol.

III. DISCUSSION

The relations given in Sec. I permit the determina-
tion of nonlinea, r optical coefficients from Raman
scattering data, at least in principle. Practically, there
is a "threshold" requirement on the accuracy of the
Raman data which must be met for an unambiguous
choice of the signs of the various lattice contributions
to be made. In general, the more lattice modes con-
tribute, the more accurately the Raman data must be
known. In any given case the degree of precision
required for an unambiguous determination depends on
the particular combinations and magnitudes of fre-
quencies and scattering efficiencies of the optic modes
of the appropriate symmetry. It seems doubtful that
determination of optical nonlinearity from Raman data
for crystals having appreciably more complicated
spectra than LiNb03 would be practical.

To determine the degree to which this method of
measurement of nonlinear coefficients is practical,
"best-fit" values of d and the resultant values of r
are listed for LiNb03 and LiTa03 in Table IV, com-
puted from the Raman data and refractive-index data
alone. Values of r and d for GaAs' are included as well,
as are values for ZnS, computed from Nilsen's scattering
data, "and for ZnO, BeO, and CdS computed from the
data, of Arguello et al.7

As discussed elsewhere, ' we consider the Raman
determination of d41 and r41 for GaAs to be the best
present value. Both possible solutions for ZnS from
Nilsen's scattering data" and for BeO, ZnO, and CdS
from the scattering efficiencies of Ref. 7 are listed. Both
Nilsen and Arguello et al. confuse the electro-optic

» W. G. Nilsen, Phys. Rev. 182, 858 (1969).
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coefficient with the . purely electronic contribution
thereto. Since they ignore the lattice contribution to
the electro-optic coefficient, their comparison of calcu-
lated and experimental values would be appropriate
only if the lattice contributions were small; which is
not in fact the case. The confusion stems from appli-
cation of equations from the earlier paper by Loudon
cited above'; see Sec. 2 of the Appendix.

For LiNb03 and LiTa03 the quantities derived from
the A~-mode data are in fairly good agreement with the
direct measurements. The values of d2~ and d~5 deter-
mined from the E modes do not agree so well. "Mea-
sured" values for d» are actually the value for d»,
which we have assumed to be the same as d~5 as required

by Kleinman's proposed symmetry. '4 With the excep-
tion of r22 for LiTa03 the electro-optic coefficients
calculated all agree with direct measurement to within

40% on an absolute basis. For ZnS only the constant-
strain values for r4~ are available, and our computed
value should properly be compared to the constant-
stress value.

The computed values for r and d for CdS and ZnO

compare adequately with directly measured quantities.
CdS exhibits considerable dispersion in the Raman
scattered intensities in the visible transparency region'
and values for r at 514.5 nm rather than 632.8 nm and
for d(SHG) in the visible rather than at 10 600 nm,
if available, would be more appropriate for comparison.
The values for ZnO, which shows much less dispersion,
are in excellent agreement.

We conclude that the determination of nonlinear
optical coefficients from Raman data can indeed be
practical, particularly as an alternative when direct
measurement is impossible or inconvenient. This
method could be particularly useful for the evaluation
of new nonlinear optical materials, which are often
not available with the optical or electrical quality
required for quantitative direct measurement.

Finally, we wish to point out that Eq. (1.21) may
be used as a test of the Kleinman symmetry proposap'
mentioned earlier. Consider the case of quartz, which

belongs to point group D3(32), wherein d,4(SHG)
= —d»(SHG) is required by the point symmetry.
According to Kleinman's symmetry proposal (d;;z
invariant to any permutation of i jk), however, di4(SHG)
= d25(SHG). Thus di4(SHG) and d~q(SHG) must
vanish for quartz; from (1.21), then,

ZLS,„, (i)l~ (i)3=Et S,„,r(i)i (i)3,

where the sum runs over the 8-symmetry modes.
While other aspects of the Raman spectrum of quartz
have been studied extensively, "quantitative intensity
data has not been published. Such a test of the Klein-
man symmetry proposal should be at least as sensitive
as test involving direct measurement of SHG- coefficients.

'4 D. A. Kleinman, Phys. Rev. 126, 1977 (1962).
25 See, for example, J. F. Scott and S. P. S. Porto, Phys. Rev.

1619903 (1967).

IV. CONCLUSION

Equations have been derived relating the Raman
scattering efficiencies for longitudinal and transverse
optic-mode branches and nonlinear optical coefficients
in acentric crystals of (otherwise) arbitrary symmetry.
Within the limitations of the adiabatic and electro-
static approximations, and the harmonic approxi-
mation, the equations may be applied to the quanti-
tative determination of nonlinear optical coefficients
in terms of Raman data. The use of the macroscopic
field, rather than the local field, in computing the
electro-optic contribution to the LO scattering effi-

ciency, has been justified, although either description
will give correct results if used in a consistent way.

Evidence has been presented that the equations are
indeed valid for Liwb03, and approximately valid for
LiTa03, at room temperature. The results of computer
analysis of the equations and the various published
Raman and nonlinear optical data, indicate adequate
agreement between theory and experiment on an
absolute basis without any adjustable parameters.

Note addedin proof The ab. solute signs of all compo-
nents of r are now known experimentally for LiNb03
LK. F. Hulme, P. H. Davies, and V. M. Cound, J.
Phys. C 2, 855 (1969)).Also the absolute signs of the
d components for ZnO, CdS, LiNb03, and LiTaO3 are
now known PR. C. Miller and W. A. Nordland, Appl.
Phys. Letters 16, 174 (1970); and (unpublished)].
These results have been included in Tables III and IV.
A positive value for dai (LiTa03) requires ri3(0, in
confhct with Turner's measurement (footnote a,,
Table III), otherwise the sign relations are generally
consistent with the Rarnan data.

APPENDIX

I. Macroscopic and Microscopic Fields

To some extent our difference with the authors who
consider the local field to be the proper fi'eld for cornpu-
tation of the electro-optic contribution to LO Raman
scattering efficiency is only semantic. We consider that
the state of the crystal is completely described by giving
the 3E coordinates of the E atoms in a unit cell, and
the three components of the macroscopic electric field,
including any externally applied electric field. It is
clear that these 3N+3 quantities suffice to cover all

degree of freedom of the crystal plus external electric
field. The local field at the /th atomic position may be
written as'4 '6

where P(rn) is the polarization due to atoms of type rn
and P(l, rn) is the Lorentz local-field factor. We may
now consider that the macroscopic optical polariza-
bility 0.;; may be given as a sum over the microscopic
polarizability contributions from each atom, which we
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call p(i),' thus, that the proper relation to the SHG coeScient is

(Be/BE ..)s ——4d(SHG). (A4)

We may now write for the differential of o.;;

de;;=+ dy, ;&'&

E

(A2)

and reexpress (1.16) or (1.17) with the local-field
terms explicitly displayed:

87 (')

~+lac(l) W, E

~+loe(l)

()p, .(&) En. o
dlVs. (A3)

()E „g,~... 8$'"

The third sum on the right-hand side of (A3) contains
Be/BEi,.~ which we will identify with 4d(SHG). The
first two terms were called simply Be/BW in Sec. I.
Since the local fields are functions of the atom positions
W only )from (A1) and (1.2)j, it is immaterial whether
(A3) or the forms of (1.16) and (1.17) are used. In
either case, only the macroscopic field term contributes
an additional amount to the LO scattering amplitude,
above and beyond the TO amplitude. It is not possible
to identify the microscopic quantities By/BEi„with
any of the nonlinear optical coefficients, which are
defined so as to relate macroscopic fields. "

2. Identification of Be/BE

It is easily seen that (Be/BE „)ir can correspond
quantitatively only with a nonlinear optical coe%cient
determined with all three electromagnetic frequencies
well above the lattice resonances so that the optic
modes cannot contribute. Boyd and Kleinman" show

Burstein et al. ' denote this quantity as b, and refer to
it as the "electro-optic tensor, " whereas it actually
represents owly the nonlattice contribution to the linear
electro-optic (Pockels) tensor r;;„. Mooradian and
McWhorter' correctly identify the quantity b with the
SHG tensor rather than the electro-optic tensor, but
are in error numerically by a factor of 2, i.e., they write
b=2d. (Their numerical results for GaAs appear to be
based on the correct relation, or to include a compen-
sating factor-of-2 error, however. ) Kaminow and
Johnston' made a similar mistake, corrected in an
erratum.

Loudon has referred to the additional LO scatter-
ing term as an electro-optic effect" and Poulet' also
mistakenly identified this contribution with the
Pockels coeKcients. That the error persists is shown
in the recent papers by Arguello, Rousseau, and
Porto, ' and Nilsen, " who continue to confuse the
electro-optic contribution to LO scattering and the
electro-optic coefficient appropriate to the Pockels
effect. Their values for electro-optic coefficients com-
puted from Raman data thus represent only the
electronic contribution terms to the electro-optic
coefficient. Since they have not included the lattice
contribution, their quantitative comparison with
directly measured electro-optic coefficients is not
appropriate, particularly as the lattice contributions
to the electro-optic coefFicients in the materials they
consider are of similar magnitude to the purely elec-
tronic terms.

"Workers who wish to apply Eq. 52 of the erst paper cited in
Ref. 2 should be aware that Loudon has pointed out (second
paper cited in Ref. 2) that Z4& in that equation represents only an
electronic electro-optic contribution.


