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APPENDIX C: APPLICATION OF
RPA SCREENING

Because of our lack of faith in the linear screening of
strong potentials, "we erst isolate the long-range part
of the ionic potential nLa(r) which is defined as follows:

tjLn(r) = 4r —'(1 e"—'")
where r, is the average of the (r t) introduced in

"N. H. March and A. D. Boardman, J. Phys. Soc. Japan
Suppl. II, 18, 80 (1963).

Eq. (37). sLit(r) was Fourier transformed to obtain

wLn(I7) which was then divided by the exchange-
corrected RPA dielectric constant" enpz(q) to obtain
the screened long-range potential ssLrt(q). Using the
fact that only values of vsz, it(q) for q equal to nonzero
reciprocal-lattice vectors are relevant to the band struc-
ture the irrelevant values of vsLn(g) were adjusted to
further reduce the range of esLn(r) which was finally
obtained by Fourier transform. vs&, it(r) was then
recombined with the short-range part to produce the
curve labeled RPA in Fig. 2.
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Nonlinear mixing of electromagnetic waves in low-temperature degenerate semiconductors has been
analytically investigated. Usual kinetic-theory techniques have been employed for evaluating the mixed-

frequency components in the current density. Two types of free-carrier nonlinearity are considered, one
arising from carrier scattering processes and the other due to nonparabolicity of conduction band. Numerical
results, comparing the two nonlinearities for the special case of mixing of two CO2 laser beams in indium

antimonide, have been presented at the end.

r. INTRODUCTION

~ 'ONLINKAR harmonic generation and mixing of
electromagnetic waves in semiconductors has

been extensively studied both experimentally' 5 and
theoretically. ' " It is well established now that at
microwave and lower frequencies the free-carrier
contribution to nonlinearity dominates the contribution
arising from polarization of background lattice; the
latter contribution seems to become important, in
general, only at optical frequencies. " Recent experi-
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ments with indium antimonide and indium arsenide, '
however, indicate that for these materials free-carrier
nonlinearity is the dominant nonlinearity, even at CO2
laser frequencies (wavelengths 9.6ts and 10.6ts). Al-

though this conclusion has been challenged, " there can
be no doubt that for many III-V compounds the free-
carrier cootribution to nonlinear phenomena is very
important even at optical frequencies. In this paper we
devote our attention exclusively to this type of non-

linearity in semiconductors.
Nonlinear phenomena of free carriers arise because

of two different effects: (a) energy dependence of
carrier relaxation time~ 's is'4 and (b) nonparabolicity
of conduction band ""' "For a semiconductor with

a nonparabolic conduction band, both of these effects
occur; however, the current theories " of nonlinear
harmonic generation and mixing seem to be restricted
to either one or the other of these effects. It is the
explicit purpose of the present paper to remove this
restriction. Following Matz, '7 the Boltzmann transfer
equation for free carriers in a uniform isotropic semi-

conductor with spherical nonparabolic energy bands has
been set up and solved by the usual I.egendre-poly-

"S.S. Jha and N. Bloembergen, Phys. Rev. I/I, 891 {1968).
' D. Matz, J. Phys. Chem. Solids 28, 373 (1967).
&& P, Ljcea, Phys. Status Solidi 25, 461 (1968); 26, 115 (1968).



FREE —CARRI ER OPTI CAL NON LI NEAR I TY - ~ ~

nominal expansion methods; an explicit expression has
been obtained for the mixed-frequency component
co3=2~&—co2 in the current density when two electric
vectors of frequencies co~ and co2 are acting on the semi-

conductor. The theory is restricted to relatively low

temperatures (&80'K) and ionized impurity scattering
has been considered to be the sole mechanism of carrier
scattering; the experiments of Kinch" on electron
mobilities in e-type indium antimonide clearly demon-
strate the dominance of ionized impurity scattering
at these low temperatures.

Numerical results have been presented for the mixing
of two CO2 laser beams in indium antimonide and
special emphasis is given to a quantitative comparison
of the two types of free-carrier nonlinearity.

2. MIXED-FREQUENCY COMPONENTS IN
CURRENT DENSITY

k'k'/2m„= y (8), (3)

where m„ is the carrier effective mass at the band edge
and y(8) ~ 8 as 8~ 0. The momentum effective mass
for the carriers, appearing in the Boltzmann equation,
is then defined by

m*= hk/v, (4a)

and for a spherical band is related to m„by the relation

The Boltzmann transfer equation for electrons in a
homogeneous semiconductor may be written as

Bf/Bt (eE/k) —VI,f= (Bf/Bt)„

where E=Eqe'""+E,e'"" is the applied electric vector
and the rest of the symbols have their usual meanings.
We are ignoring the v Vf term in Eq. (1) even though
we know that the wave field is inhomogeneous in space;
the assumption that this term can be neglected is
justified if the amplitude of the field varies only slightly
over the so-called energy relaxation length (8/v8'"),
where 8 is the average carrier speed, v is the collision
frequency, and 5 is the fraction of carrier energy lost in
each collision. When the dominant form of carrier
scattering is ionized impurity scattering, one can always
de6ne a carrier momentum relaxation time r and
replace the right side of Eq. (1) by

(~f/~t). = (f f')/r— — (2)

where f' is the distribution to which f relaxes. An
explicit expression for r is given later.

Instead of denoting the energy-momentum relation
by 8(k) as usual, we use the more convenient relation"
of 8 in terms of k; viz. ,

We assume that the electric vectors E~ and E~ are
oriented along the same direction (the x axis). When the
disturbance in the semiconductor is in one direction
only, there exists an axis of symmetry and one can
expand the distribution function of carrier wave vectors
in terms of Legendre polynomials. Thus, we write

f(k) =P f'(k)Pi(cosg),
L=O

where cos8=k,/k. Substituting this expansion in Eq.
(1) and using the orthogonality and normalization
properties of Legendre polynomials, one obtains a set
of coupled equations for f', f', f', . . . , etc. In the present
analysis we shall only retain terms up to f'; earlier
workers'" have established that this is necessary as
well as sufficient for deriving correct lowest-order
expressions for the mixed-frequency component
= 2M& —co& in the current density. The coupled equations
for f' f' and f'are

8f' 4 eE y 8 f' f'
Bt 3 (2m„)'"y' 88 Qy r

(5c)

(&f'/Bt), denotes the rate of change of f' due to scatter-
ing processes, and corresponds to some higher-order
terms not included in Eq. (2). It can be shown that
inclusion of these terms do not modify the expressions
for the mixed components of current density to the
lowest order in the present expansion scheme (which is
essentially an expansion in the ratio of drift to thermal
velocities" ).

When the applied electric vector has two components
at frequencies ~, and cu&, the time dependences of f', f',
and f' are identical to those discussed by Sodha and
Kaw" for mixing of waves in an ionized gas. Sub-
stituting these time dependen. ces in Eqs. (5a)—(5c),
equating the coefficients of various frequency terms on
both sides of each equation, and making use of the
assumption that

f', f', f'( co~2, co~+cv2, etc.)&&foo,

f'(3(ug, 2cog+cu2, etc.)«f'(co~) or f'(co~)

Bf' 2 eE 1 8 Bf')
(vf') =

I
(5a)

cV 3 (2m„)'"y'gy 88 Bt j,
8f' 2eE

R (2m„)'" y'

gf0 2 -/f2 3 & — fl
X + — + f' = -———, (5b)

88 58b Sy
and

Pl m~p

where y' denotes dy/d8.

' M. A. . Kinch, Brit. J. Appl. Phys. 17, 1257 (1966).

(4b)
~ M. S. Sodha and P. K. Kaw, Proc. Phys. Soc. (London) 88,

373 (1966).
2I J. Vamashita and K. Inoue, J. Phys. Chem. Solids 12, 1

(1959).
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(which corresponds to assuming that the amplitudes of components), one can derive an expression for the
generated harmonic and mixed-frequency components (2&hz —pi2) frequency component of f'. The relevant
are much less than those of the fundamental frequency expression is

2epE22E2*/ Tgy ) B 1 B yp" Bfp' 1 1

3(2zzz„)' 'ky'[1+iT(2piz —pi2) jl B8 i(&oz p—p2)p'gy B8 y' B8 1+ipiiT 1 ipi2T—

Bfpo4 Ty B T Bfp' 1 1 ) 1 B—

5 y [1+z(piz —pp2)T) Bb y' B8 1+zpiiT 1 zpi2T)— 2zpiiy'gy Bb y'(1+zpiiT) B8

4 T'r B T Bfp

5 y'(1+2zpiiT) B8 y'(1+zpiiT) B8

6 T B T Bfpp 1

5 1+z(ppi —pi2)T B8 'r B8 1 z(d2T—

1

1+zpizT

6 T B T Bfp 1
(6)

5 1+2ZpiiT Bb r B8 1+ZppzT

where 8& is the Fermi energy of carriers in the con-
duction band.

The density of energy states in the present repre-
sentation is given by

(2zzz„)2"
1V(b)d 8= — ~'y'"d 8.

2A3

Using this equation one can readily write down an
expression for the current density in terms of f' This.
expression ls

J— yf'd8
3(2zzz )'"

y'y'"f 'd8 (7)

where m is the carrier concentration in the semi-
conductor.

In order to carry out the relevant integrations, we
must now choose a specific form for y(8). Let us in-
vestigate the form of y(8) for low-gap semiconductors
like indium antimonide. Following Kane's modeP' for
low-gap semiconductors, the energy of an electron is
related to its wave vector k by the relation

8(P) Q2P2/2ZZZ 2 8 +2[8 2+ (8/3)P2$2jit2 (g)

where mp is the free-electron mass, E, is the band gap,
and I' is a matrix element dined by Kane as

P= —i(IZ/zzzP) (S~ Pp~ Xp),

"E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957); H. Ehren-
reich, ibid. 2, 131 (1957).

where the * over E2 denotes its complex conjugate.
For fp' we use its lowest-order value for degenerate

semiconductors; viz. , the usual Fermi-Dirac distribution

8—8p)
f,'= 1+exp

KT j

When the effective mass m*«mp, one can neglect" the
first term on the right side of Eq. (g) and zzz„ in com-
parison with zzzp in Eq. (9), and obtain

k2= (2m„/Izz) (b+ b'/b, ),
which may be rewritten as

v(8) = 8+ (8'/8. ) (10)

In a more general case, one can retain this power-series
representation of y(8) in terms of b, with 8, replaced
by a general constant b&.

We must also give an explicit expression for the
carrier momentum relaxation time. For dominant
ionized impurity scattering, one may write"

K p2(2zzz*)'"8'"
T= = Tpp'~'(2 p+ p,)'"

pre'1V;g (b)

where p= 8/KT, Kp is the dielectric constant of the
material, X; is the concentration of impurities, g(b) is
a slowly varying function of carrier energy and will be
assumed to be constant in the present analysis and

7 p

(KT)2(2zzz )'"Kpz

me4E;g 8,'"
Substituting for fi2 in Eq. (7), using the definitions

Eqs. (10) and (11), of y and T, and assuming that pi&T,

23T. C. Harman, J. M. Honig, and B. M. Tarmy, J. Phys.
Chem. Solids 24, 835 (1963).

in which 5 is the spatial part of conduction-band wave
function, Pp is the Z component of momentum operator,
and X3 is one of the triply degenerate valence-band
functions. Khrenreich" has shown that I' can be
approximated by

382(zzzp —zzz„) '~2

E~-', A
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Fro. 1. Variation of
I jia I

Ldefined

by Eq. (14)] with it= (sr/ET) and
Q= (ru2ro) ' for (cai/&ai) =0.91 (cor-
responding to CO2 laser beams with
wavelengths 10.6 p, and 9.6 p).

IO
0

MIXE 0
ONTRI BUTIO N

=0.7

=0.4

—Q=O.O

BOLIC CONTRIBUTION

IO

0 5 6

oi2r, (err —oi2) r))1, one obtains

A2 =rr&K*&P exp(i(2oir —oi,)f5, (12)

where rr= (&e'8,'/2m„'o, i'Z' T'), A is a dimensionless
complex quantity involving definite integrals of the type

e'
PgQ— -de (13)

p L1+exp(e )e5r' —(eq2+e)e"

(which result from in. tegration over the energy-de-
pendent carrier relaxation time and the carrier eBective
mass), p, q, and r may be integers or half-integers, and
er ——Br/KT. The explicit expression for A has not been
presented because of its extremely cumbersome form.

3. DISCUSSION

The definite integrals defined by Eq. (13), for various
values of p, q, and r were evaluated numerically. These
integrals are required for the evaluation of A and hence
that of Ji2 .

Figure 1 illustrates the variation of

with r) = er = (Sr/ET);for, various, values", of Q= (oi2ro) '

and for the special case of the mixing of two C02 laser

beams (wavelengths 10.61' and 9.6 p) in indium antim-

onide. The curve with Q=0 gives the contribution due

to the band nonparabolicity (NP) alone; successively

higher values of Q correspond to higher and higher

contributions from energy-dependent scattering (EDS).
It is noted that even for Q=0.1, EDS gives a large

contribution to the mixed current density. For a tem-

perature of 80'K and carrier concentrations in excess of
10" cm ' in indium antimonide (i.e., the regime where

Q is in excess of 0.1), one should thus be able to observe

the EDS contribution to mixing (notice that this con-

clusion rests on the assumption that the dominant form

of carrier scattering is the ionized impurity scattering).
At lower temperatures, carrier concentrations less than

1.0" cm ' may be high enough for giving sizable EDS
contributions.

The density and temperature dependences of the XP
and KDS contributions to the mixed current density

can be obtained from the variation of
~
ji2

~

with

r)= hr/KT in the two limiting cases, Q=O and Q= 1.0,
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respectively. We would like to emphasize however, that
while looking at the temperature dependence of the
EDS contribution, one should keep in mind the re-
stricted temperature range ( 30—80'K) for which. the
theory is applicable.

In the general case, it is difficult to state the explicit
dependences of the NP and EDS contributions on
temperature. However, in the case when the EDS
contribution is a small correction to the NP contri-
bution, one may be able to distinguish between the two,
by noticing from the analysis that the temperature
dependence of EDS contribution is close to the tem-
perature dependence of NP contribution multiplied by
the temperature dependence of (cosr o) '. Thus/the
dominant scattering mechanism determines the dis-
tinction between the temperature dependences of NP
and EDS contributions.

Wynne' has recently carried out an interesting
experimental investigation on optical mixing in GaAs,
Ge, Si, and InAs and has drawn some very useful
conclusions about the nonparabolicity of the conduction
band in GaAs. He has however, summarily rejected the

EDS mechanism of optical mixing in his paper. It is
quite conceivable that the parameter range of his
experiments (especially the low carrier concentration)
is such that the EDS contribution is actually negligible.
However, it is quite clear that if one goes to a different
parameter range (such as the one studied in this paper),
then the EDS contribution may become comparable to
the NP contribution and one will have to take it into
account to draw correct conclusions about band
nonparabolicity.

We conclude, finally, that optical mixing by free
carriers in semiconductors may contain comparable
contributions from conduction-band nonparabolicity
and an energy-dependent scattering time.
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Effects of band structure on photoelectric yields from silicon have been determined from the interpretation
of measurements which were made on surfaces oriented perpendicular to (111), (110), and (100). It was
established that the yield spectrum for properly polished and annealed silicon is the same as that for cleaved
and annealed silicon; low-energy electron di6raction patterns were obtained for all surfaces. Photoelectric
thresholds obtained for (111), (110), and (100) silicon were 4.60, 4.73, and 3.11 eV, respectively. Improved
experimental procedures show that yields well above threshold vary more rapidly with photon energy
than those previously observed. Crystallographic differences in yields near threshold are ascribed to two
sources: (1) the ionization energy h, which represents surface-barrier energy, and (2) the additional energy
Ez required to emit electrons with crystal momentum (k) at an angle 0 to the surface normal, beyond that
for Ic at 8=0. It is shown that for transitions near the center of the Brillouin zone (BZ), Ez can be quite
small (~0.15 eV); hence, electrons at large 8 can be emitted for hv —hvo only a few tenths of an eV, where
hvo is the threshold photon energy. For (hv —hvo) &1.0 eV, electrons are emitted for all 8, i.e., for all ex-
citation within the inner half of the BZ. A quantitative estimate of crystallographic yield dependence gives
good agreement for the assumption, suggested by the band structure, of transitions near threshold peaked
for lc along (111).These considerations lead to a more accurate interpretation of F versus (hv —hv~),
which depends on the position in the BZ of the operant optical transition. Such sects must be considered
in analyzing all photoemission experiments, including both yield and energy distribution measurements.

I. INTRODUCTION
' 'N terms of one-electron solid-state theory, the volume
& - photoelectric process consists of three stages: (1)
excitation of an electron to an upper energy band by
absorption of electromagnetic radiation; (2) motion of
"hot carriers" in the upper band with elastic and
inelastic scattering; (3) emission through the potential
barrier at the surface of those electrons which have
sufhcient energy and the proper crystal momentum.
Investigators interested in band structure information
concentrate on stage 1 generally by measuring energy

distribution of emitted electrons'; those interested in
surface barriers concentrate on stage 3 generally by
measuring total photoelectron yield versus photon
energy. '

'Typical recent papers are J. L. Shay and W. E. Spicer, Phys.
Rev. 161, 799 (1967);T. A. Callcott, ibid. 161, 746 (1967);T. E.
Fischer, ibid. 147, 603 (1966);F. G. Allen and G. W. Gobeli, ibid.
144, 558A (1966).' Some typical papers are J. van Laar and J. J. Scheer, Surface
Sci. 3, 189 (1965);F. G. Allen and G. W. Gobeli, Phys. Rev. 127,
150 (1962); J. van Larr and J. J. Scheer, Philips Res. Repts. 17,
101 (1962);J. A. Dillon, Jr., and H. E. Farnsworth, J. Appl. Phys.
29, 1195 (1958).


