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and integrating outward using Numerov's method.
For large i', the calculated function is fitted to the
asymptotic form (A6) (with 0.5% accuracy) to deter-
mine A.

The allowed absorption coefficient is proportional to
Lsee Eq. (3.18)7

The resulting allowed absorption coefficient is
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If we follow Ralph and we do not normalize X1 and X2

according to Eqs. (A2) and (A7) but instead define
"unnormalized" Xi z& and X, ziv by Eqs. (A1) and
(A8), then we get Ralph's formula

Eg= L47r'e'/m'crt'(co) co]2 IU(0) I'5(E), (A12)

)('$ (E E/) (A9) where
X1—UN

where the factor of 2 is included for spin. In order to
convert the sum over 8' to an integral, we determine
the density of states p(E)=drt/dE by requiring that
the wave function X, [Eq. (A6)j be zero at i=1&
Pi.e., -', f't'(-,'Ls) st'-rtsrg,

Az
p(E') =

dE' 7r 2f
(A10)

sr'f t'
=0 o —1

X ($; t„,E)dry'(t„, E) . (A13)

In Eqs. (A12) and (A13), we have restored cgs units,
with the understanding that all quantities to the right
of the summation in Eq. (A13) are unitless. Equation
(A12) differs from Ralph's result by a factor of 2,
presumably due to spin.
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There is evidence to indicate that some diffusely scattering substances are essentially highly defective
lattices rather than made up of small domains diffracting incoherently with respect to each other. Equations
have been derived for the diffraction profiles from such lattices; they are of a Cauchy type. Highly defective
lattices are characterizable by a mean defect-free distance rather than a domain size. Several criteria are
presented for distinguishing defect-broadening from domain or particle-size broadening, and procedures are
outlined for the separation of strain and defect broadenings.

I. INTRODUCTION

&~EFECTS in structures produce displacements in
the positions of atoms. The effects of such dis-

placements on the scattering intensities have been con-
sidered by several workers. ' ' In the case of crystals,
these treatments have been confined mostly to cases in
which the concentration of defects is small. On the
other hand, diffusely scattering substances are not
treated as lattices containing a high defect concentra-
tion. Rather, they are commonly regarded as composed

*Research supported in part by Fibrous Materials Branch,
Nonmetallic Materials Division, U. S. Department of the Air
Force.' H. Ekstein, Phys. Rev. 68, 120 (1945).' K. Huang, Proc. Roy. Soc. (London) A190, 102 (1947).

s D. 7, Keating, J. Phys. Chem, Solids 29, 771 (1968).

of small particles or crystallites or possessing some sort
of a domain structure within the material such that
the different domains diffract essentially incoherently
with respect to one another. 4 '

At least in carbons, the presence of small particles or
crystallites having sizes indicated by the linewidths of
their diffraction peaks is often not indicated by electron
microscope observations' ' or small-angle x-ray scat-

4B. E. Warren and B. L. Averbach, J. Appl. Phys. 21, 595
(1950).

5 B.E. Warren, Progressin Metal Physics (Pergamon Publishing
Corp. , New York, 1959), Vol. 8, pp. 147—202.

6 H. Brusset, Compt. Rend. 225, 102 (1947); 22'7, 843 (1948).
7 H. Kuroda, J. Colloid Sci. 12, 496 (1957).
8 L. L. Ban, W. M. Hess, and F.J.Eckert, Carbon 6, 232 (1968).
~R. D. Heidenreich, W. M. Hess, and L. L. Ban, J. Appl.

Cryst. 1, 1 (1968).
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traversed without an encounter since the two proba-
bilities are independent:

a(~+«) =g(1)+L~a(~)/«j«= g(~)a(«) .

Consider a cylinder of unit cross-section area having a
length «. The probability g(«) of encountering a defect
when the distance dl is traveled is given by the sum of
the projections on the front surface of all defects lying
within the cylinder divided by the front surface of unit
area, i.e., m7fr2, m being the number of defects per unit
volume, and r the defectradius. Hence, g («) = 1—m~r'«.
Substitution in the preceding equation and integration
yield

g($) e mx r2t ~ I /—L—
I., the reciprocal of mmr2, has a significance analogous to
mean free path; it can be termed the mean defect-free
distance. If we are dealing with point defects having
uniform radii r, an estimate of defect concentration can
be made from the relation of I, to the fraction of volume
occupied by the defects. Designating the latter by P,
we have

P= am4mr'= 4r/3L.

If r~1 A and L~50 A, then P~0.03, that is, the defect
concentration is about 3/o.

As postulated, g(l) modifies e(l) in Eq. (1); that is,
the effective number of neighboring atoms at a distance
l that contribute to the interference function of a de-
fective lattice is g(l)rs(l). Obviously the use of Eq. (1)

to compute the scattering intensity of a large domain is
prohibitive in that the number of terms in the summa-
tion is very large. However, when m(l) in Eq. (1) is
modified by g(l), if L is sufficiently small, say (40 A,
the number of terms that significantly contribute to the
summation is greatly reduced, and the computation
becomes feasible. For the powder patterns, the inter-
ference function is given by the well-known Debye
equation

sin2xsl
(&i2ms ~ 1$ & &i2m sl cosa' sino/ 2

0 2xsl

Substituting the above equation into (1) and modifying
it with g(l), we obtain

Sln27f'Sl q

i(~) =1+7 g(4)~(t.)
2~sl,

(3)

In Figs. 1 and 2 are shown, as dotted lines, the computed
intensities of a diamond lattice (L= 16 A) and a graph-
ite layer (L=15 A), respectively, using Eq. (3). The
formula for calculating the solid line is described
below.

Equation (1) can also be used to compute the scatter-
ing intensities of lattices of finite extent provided ex-
pressions are derived that modify n(l). It is readily
recognized that the modifying expression depends upon
the shape as well as the size of the particle or crystallite.
For spherically shaped crystallites of radius R, the



3374 SAD RI E ROUN

j.o

.9

.7
OI-
u

z .5
0
l-

4

U

O0
X

.2

t

0.5
I

I.O I.5 2.0 2.5 3.0

modifying factor is given by"

e, (x)= 1——,'x+-,'x', (sphere)

for disk shaped layers the corresponding factor is given
by"

ed (x) = (2/s') Leos 'x—x(1—x')'I'j (disk) . (5)

In the above equations, x is defined as x=l/2R. It is
understood that we may refer to e(x) as e, e(l), or
e(l/2R) as the clarity dictates.

In Fig. 3 are shown g, e„and ed as a function of 1/1. or
r/R It is seen that there are differences in the mode of
decrease of the average number of interatomic distances
with increase in the distance. To observe the effects of
the differences on the profiles of powder patterns, inten-
sities have been computed, using Kq. (3) with g(i') being
replaced by e(l), for a spherically shaped diamond
crystallite (R=22 A) and a disk-shaped graphite layer
(R=15 A). The results are shown in Figs. 1 and 2 as
solid lines. The radius R= 22 A for the diamond sphere
was chosen to obtain a peak height comparable to that
produced by the exponential factor. It is seen that there
is a great similarity in the profiles produced by particle-
size broadening and by defect broadening, especially for
the graphite layer.

In Fig. 4 are shown the (002), (100), and (004) re-
Qections of a carbon black before and after correction
for instrumental broadening. The data were taken with
Ag radiation using balanced Rh and Mo filters in trans-

'6 L. H. Gernmr and A. H. White, Phys. Rev. 60, 447 (1941).
~~ S. Ergun, J. Appl. Cryst. (to be published).

—or—
R L

Fro. 3. Comparison of defect factor e '~ (—) with particie-
size factors

p
eq=2/s cos '———1—— (———)2R 2R 4R'

and
e = &

—k(i/2~)+2 (i/2~)' (-- -)

mission geometry, 0.4' beam slit, 0.2' detector slit, and
medium-resolution Soller slits. From the figure, it is
seen that the differences observed in the plots of Figs.
1 and 2 are readily obscured by instrumental broaden-
ing. It is quite evident that a correction for instrumental
broadening is a prerequisite for meaningful profile
analyses.

The powder pattern profiles of the (hN) rejections
seen in Fig. 2 are typical of many carbons such as cokes,
chars, blacks, etc. They are characterized by asym-
rnetric peaks having large linewidths ( twice as much
as those of crystalline rejections for the same dimen-
sion). Assume the intensities of a powder pattern of
carbon are properly corrected for instrumental broad-
ening and other experimental factors. Even then, the
statistical errors, because of low scattering intensities
of carbons, inhuence of the (00l) reflections, and the
added diffuseness because of large linewidths, render it
dificult to make a distinction between defect broaden-
ing and layer-size broadening based on curve-fitting
experimental data over any single peak. Inasmuch as
electron microscope observations and small-angle scat-
tering do not support the presence of layers having
sizes indicated by linewidths, we may conclude that
the observed profiles are well explained by defect
broadening.

III. PROFILES PRODUCED BY PARTICLE-SIZE
AND DEFECT BROADENING

A direct confirmation of defect broadening is possible
by a careful analysis of peak profiles. In the following
treatment, it is assumed that the observed intensities
are corrected for absorption, polarization, instrumental
broadening, and Compton modified scattering, and are
then normalized into atomic units. ""Ideally suited
for this purpose are samples that give rise to crystalline
refiections. In this situation, the use of Eq. (1) with
e(l) modified with g(l) or e(l) becomes impractical when
1. or R is large, say )40 A, It is then desirable to use
the lattice-sum technique. In this regard, any given
rejections from a crystallite may be considered as the
(00l) reflections in terms of suitably chosen ortho-
rhombic axes and the scattered intensity may be ex-
pressed in the form of a cosine series':

j(s) =jo(s)(1+2 P A, cos2s.qzs),
@=1

(6)

where z is the mean height of the cell, Ez is the maxi-
mum column height, EA, is the number of cell pairs
that are qz apart, and js(s) represents the intensity of
the (000) reflections (analogous to E of Warren and
Averbach4 or 4' of Houska and Warren' s). If the

' S. Ergun, J. Bayer, and W. Van Buren, J. Appl. Phys. 38, 340
(&967)."S.Ergun, J. Appl. Phys. 40, 293 (1969)."C. R. Houska and B. E. Warren, J. Appl. Phys. 25, 1053
(1954).
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columns have uniform heights, A, is given by'

A, = eq= 1—q/1V, (stacks) (7a)

and the stack height H by H=Ez. If the crystallites
are spherically shaped, A, is identical with e, defined in
Eq. (4), i.e.,

A, = e, = 1—3q/2lV+-,' (q/X)' (spheres) . (7b)

For disk-shaped layers the corresponding equation is

In the last case, the summation in Eq. (6) is extended
to a very large number S.

From an inspection. of Eq. (6), we observe tha, t the
peak occurs at s=s& ——1/z; therefore, we may change
the agruments of the cosine terms from 2m ques to
2s.qz(s —ss). We further observe that the peak width
21s—ss~ at half peak intensity is of the order of 1/1Vz
(cf. Scherrer equation"), and the peak is more or less
confrned to s—ss values such that 1Vz~s—ss~ (1. If
1V) 10, we may replace the sum in Eq. (6) by an integral

2 q q q'
Aq=6d= —cos—I

S E Ã'
(disks) . (7c) i(s) = j(s)/js(s) =2Ã c(x) cosLxC(s)j Cx (8)

For the last tao cases, the diameter 2R is related to
E by 2R= Ez. For the defective case considered in this
study, A, decreases exponentially vrith q, i.e.,

As=e &I@, (defective lattice) (7d)

where Q is the mean number of defect-free cell sequences.

with
x= q/N, C (s) = 27r¹(s so) . (8')—

Simply denoting C(s) by 4&, the integrated equations
for the three cases represented by Eqs. (7a)—(7c) take

I'LL.

Bragg, The Crystalline State, A Geme~al Survey I',G. Bell
and Sons, London, 1919),Vol. 1, p. 189.



the forms, respectively,

i(s) =A
I sin(4/2)/(4'/2))2, (stacks) (9a)

q cells apart is given by

Me '

i(s) = (3N/4) {8L1+(4'/2) —cosC —4 sinC j/4'},
(spheres) (9b)

i (s) = (8Ã/32r) I 32rHi (4)/242$ (disks) . (9c)

For the defective lattice carrying out the summation
for q= 1 to ~, we obtain

(1—u) '1+2'
Z S (defective lattice) (9d)

1 —u 1+u2 —2u cos22rzs

where I.=Qz is the mean defect-free distance. It is
quite evident that if the intensity profiles are of a
Cauchy type cf. Warren, ' it is in accordance with the
defect broadening proposed in this work. Equations
(9a)—(9c) do not produce Cauchy-type profiles.

The preceding treatment has been confined to defect-
ive lattices of very large extent and to particles or
domains having a uniform size. Equations for diffrac-
tion from small defective domains are readily obtained
by modifying 22(l) in Kq. (1) with g(l) p(l). When using
Eq. (6), the summation is carried out to a finite value
of 1V corresponding to the size of the domain. If Eq. (8)
is modified by the exponential coefficient, it still remains
integrable for the shapes considered in this study. To
develop equations for a structure made up of small do-
mains having a size distribution, an a priori knowledge
of size distribution is essential. However, if the intensity
profile has a Cauchy form, it is physically unrealistic to
explain it in terms of a particle-size distribution, for it
implies that the largest number of domains are those
containing single cells. This can be shown as follows.
Let there be a large number M of columns, and let the
probability that a given column will contain m cells be
e ', c being a constant. There will be Me ' columns
each containing m cells. The total number of cells E in
the assembly is

3fe '

In the assembly, the total number of cell pairs that are

"G. N. Watson, Theory of Bessel Font,"tions (Cambridge Uni-
versity Press, New York, 1952), pp. 328, 666—697.

with n= e '~@. In Eq. (9c), EIi is the Struve function of
first order and is tabulated by Watson. "Since the argu-
ment of H~ is less than 2~, the power series representa-
tion of Hi(4')/42 converges very rapidly, and numerical
evaluation presents no problem.

If Q) 5, the following simplifications may be made in

Eq. (9d): u 1—1/Q and cos22rz(s —s,) 1—22r2z2(s
—sp)2. With these simplifications, Kq. (9d) assumes a
Cauchy form:

(1 o
—c)2

This number divided by S is simply e '& and is the
coefficient of the cosine term. If c is replaced by 1/Q,
the resulting equation will be identical with the de-
fective case.

IV. RELATION OF PEAK HEIGHT
TO PEAK WIDTH

A distinction between defect and more or less uniform
particle-size broadening can be made in a rather simple
manner if the intensities are corrected for strain broad-
ening and Debye temperature effects. As shown below,
the product of peak width and peak height is much
lower for defect broadening. In Eqs. (9a)—(9d), the
maximum values of i(s) are factored, viz. , E, ~PcV,

8X/32r, and (1+n)/(1 —u) 2Q, respectively. Thus the
values of C at which the intensity is one-half the maxi-
mum are readily determined, viz, C =2.78, 3.475, m, 1,
respectively (for the defective case E is replaced by Q
in defining 4'). It follows that in terms of hs, the peak
width at half-peak intensity, the peak heights are given

by

i (sp) = 2.78/2rzhs,

i (sp) = 2.60/2rzd, s,

i(sp) = 2.67/2rzhs,

i(Sp) = 2/2rZAS

(stacks) (11a)

(spheres) (11b)

(disks) (11c)

(defective lattices). (11d)

From a comparison of Eqs. (11a)—(11d), we observe
that for the same linewidths, the defect broadening
would give rise to a peak height much less than that
produced by particle-size broadening; the ratios range
from 0.72 to 0.77. This ratio permits distinction between
defect and particle-size broadening. Further, numerical
calculations show that Eqs. (9a,)—(9c) yield very nearly
the same profiles provided E's are chosen for each case
such that they yield the same height or peak width.

V. BROADENING OF PROFILES BY STRAIN

Small displacements in the positions of atoms or cells
are commonly referred to as strain or distortion. If the
mean square displacements (t2) are independent of the
magnitude of the distance, their inhuence may be
accounted by modifying Eqs. (1) and (6) with the
Debye temperature factor exp( —(t2)s2). The widths at
half-peak intensity of the different rejections would not
be altered significantly. Of particular interest is the
case considered by Warren and co-workers4 ' " for
small random displacements. If negative and positive
strains occur with nearly equal probability, the strain
effects are taken into account by multiplying the coeffi-
cients Ap in Eq. (6) with (cos22rszZp), in which zZp is
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the change in length of a column of length qz. Further,
if the strain distribution is Gaussian the expec-
tation value of the cosine may be approximated by
exp( —27r's'P(Z, ')). For the case in which the mean
square displacement (Z,') is made up of nearest-neighbor
displacements (Zi'), then (Z,') = q(Zi'). Designating

g2 —2~2z2(Z 2)

the coefficient 3, takes the form

A, =e ""&e(q). (12)

The Gaussian strain function has been discussed in
detail by Warren. The results obtained in this study are
in accordance with Warren's conclusions.

VI. SEPARATION OF STRAIN BROADENING

Inasmuch as the Gaussian strain coefficient is a func-
tion of q and s', the separation of strain broadening
from defect or particle-size broadening is obviously
facilitated if intensities are obtained for several orders
of a given reflection. In the case of isotropic strain, all
of the reflections can be used. A general prodecure of
profile analysis is outlined by Warren. ' It involves de-
termination of the coefficients of the cosine terms A, of
intensities of a series of reflections. For a fixed value of
q, a plot of lnA, versus so' should be linear [cf.Eq. (12)).
The intercept of the line yields inc(q) and the slope
—Pq. It is clear that the slopes divided by q should be
constant if q(Zi') =(Z,') and if the strain distribution is
Gaussian. Plots of e(q) versus q should yield information
about the nature of e. This procedure is very general in
that it involves no a pnori assumptions as to the nature
of A, nor of (Z~'). However, the method is very sensitive
to slight errors in the corrections and handling of data.
Slight errors can result in large fluctuations in the coeffi-
cients obtained.

In the case of defect broadening, the resulting ana-
lytical expression for the interference function permits
a direct and rather simple analysis of the profile. Modi-
fying A, [defined in Eq. (7d)) for the Gaussian distor-
tion effects, we obtain

i(s) =21V e(x)e—"*cosCx dx, (18)

in which v=EB's'. The above equation is integrable for
the three e's discussed in this study. The resulting ex-
pressions are somewhat cumbersome. However, their
examination revealed that a plot of As versus sp' would
yield a straight line following an initial curvature, the
slope of the line being equal to 0.93 P/~z. Further-
more, the initial slope of the curved section is equal to
0.5 P/~z, i.e., about one-half of that of the straight sec-
tion. Thus, extrapolation of the plot to zero abscissa can
be made without introducing serious error. The inter-
cept corresponds to 2.78/7rlVZ and to 3.475/irlVz for
stacks and spheres, respectively.

Having determined the strain and defect or domain-
size-coefficients, the peak heights should be examined
for the effects of the Debye temperature factor if the
peak heights should be used as a criterion for deciding
whether defect or particle-size effects prevail. If the
ratios of the observed heights to those calculated is
independent of the order of reflection, it indicates neg-
ligible Debye temperature effects; otherwise, an expo-
nential decrease with sp' is expected. The degree of
agreement between the observed and calculated results
should permit an authentic distinction.

the maximum when

As= 2 (s—sooi) 1/7rgz+ (8'/n z) spoP, (17)

in which sopi corresponds to the peak position of the (00t)
reflections, As is the total width at half-peak intensity
of the peak (00l), z = 1/spoi and Qz =J., the mean defect-
free distance. According to Eq. (15), if hs for the
different orders of reflection is plotted against spp) a
straight line should be obtained with the slope and inter-
cept yielding the values of P and Q. Once this is done,
the observed profiles can be compared with those cal-
culated using (14) or (16).

The direct prodecure outlined above is not necessarily
confined to the case of defect broadening. When modi-
fied with e ""q, Eq. (8) takes the form

—g
—(&/Q+&282) q

Q (13)

Substituting Eq. (13) into (6) and carrying out the
summation to q= ~, we obtain [cf. (9d) j,

in which

(1—u) '1+u
i(s) =—

1—u 1+u —2u cos2vrzs

1—g
—(&/ Q+~2~2)

(14)

(15)

If Ps'(0. 1 and Q&10, Eq. (14) takes a Cauchy form:

2Q
i(s) = 1

1+Q8's'

27rgz(s —so) ) '
1+

~

. (16)
1+Qb's'

From Eq. (16), we note that the intensity is one-half

VII. DEFECTS IN CARBONS AND METALS

It was recently shown that the coefficients A, of the
(00() reflections of a raw and heat-treated carbon black
showed exponential distributions. '4 " In Fig. 5 are
shown the observed and calculated powder-pattern in-
tensities (in atomic units) of the (002) reflections of th&

heat-treated carbon black (cf. Fig. 4). From Fig. 5, it is
seen that the profile is of Cauchy type, and Eq. (16)
reproduces the observed profiles faithfully. The equa-
tion based on uniform stack height yields a high peak
height when it matches the peak width or a broad peak
when it matches the peak height (cf. Ref. 15). It may
be argued that the observed profiles could be explained
equally well by particle-size broadening if it is assumed
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Equation (3) then takes the form

j(s) =1++g(lp)n(l, )Jp(, 2prsl, ), (19)

where Jp is the Bessel function of zero order. If g(l) is
replaced by e&(l), Eq. (19) would give intensities dif-
fracted by disk-shaped layers under the conditions
specified. Equation (19)is ideally suited for small or very
defective layers. The coeKcients of the Bessel terms
can be obtained by a Bessel-Fourier transform of the
intensities. As stated earlier, for sharp rejections we
resort to lattice-sum technique and use Eq. (6) and those
that follow it. In this situation, jp(s) is given by

In Fig. 7 are shown Inc, versus L=qz for cold-worked
tungsten filings and for aluminum filed under liquid
nitrogen (and measured at —160'C). The data are the
intercept values of Warren's plots of lnA, versus Sp for
different L's. ' It is seen that inc, is linear with q; hence,
A, has an exponential form which is in accordance with
Warren s observations that particle-size broadening is
of a Cauchy type. The slope of the straight lines drawn
correspond to the reciprocal of mean defect-free dis-

-I.2—

jp (s) =am''/16irssp, (20)
-I.O—

where o is the atomic density (atoms/A') of the layer,
m is the multiplicity factor, and F' is the geometric
structure factor.

An analysis of the profiles of the (100), (110), (200),
(210), and (300) reflections of a carbon fiber showed
them to be of Cauchy type and readily matched by
Eq. (12) or (14).As outlined earlier, a plot of Ds versus
sp gives a good indication whether the coefhcients A,
are exponential. In Fig. 6 is shown a plot of ~s versus
spP for all of the (hk0) reflections studied. The fact that
the points belonging to (100), (200), and (300) reflec-
tions fall on a straight line indicates a Gaussian distri-
bution of distortion coef6cient and an exponential form
for A, . The fact that the points belonging to (110) and
(210) reflections fall on the same line indicates an
isotropic distortion in the layers,

-8—

—.6—

4—

80

L=qz

120 160 200

FIG. 7. lnAO' versus L for cold-worked tungsten and aluminum
filings (data correspond to the intercept values of Warren's plots
of Ar, versus hP) (Ref. 5),
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tances, i.e., 130 and 230 A for the tungsten and
aluminum, respectively.

Warren observed that the materials studied were
obviously not fragmented into small separate particles
of sizes indicated by particle-size broadening equations.
Instead, he contended, cold work has produced some
sort of domain sturcture within the filing such that the
different domains diffract essentially incoherently with
respect to one another. The domain concept does not
pretend to explain the form of A„' however, it is
physically unrealistic if A, decreases exponentially
with q, for as shown earlier, it implies that the largest
number of domains are those containing single cells.
It appears that if physical evidence is lacking for frag-
mentation or for the presence of domains having a
reasonable size distribution, the concept of large defect-
ive domains is physically more realistic. The dimension
that one should seek is not the particle size but the
mean defect-free distance.

APPENDIX

We present a representation of interatomic distances
l and the number n(l) of neighboring atoms at a dis-

tance / from an atom.

n(l):n(l)= 3,
6

= 6
6

—12

if q= 0 and p mod 3AO

if q=0 and p mod 3=0
if q=P
if p/q/0 and (p —

q) mod 300
if pWqNO and (p —q) mod 3=0.

We define p mod q as the remainder when p is divided

by q. In dealing with disk-shaped layers having a finite

size, an upper limit p,„must be imposed on p. The
upper limit modifies the conditions imposed upon p and

1. Graphite-Like Layer Having a Bond Distance

f:1=l (p0'+q'+p )q"', where p and q are integers such
that p)0 and p&q&0.

q in the set l as follows:

2. Diamond-Type Lattice Having a Bond Distance lp

/: l=/, ((p'+q'+r')/3)'~' where p, q, r are all odd or
all even integers with p) 0. If odd, the additional condi-
tions are p&q&r, if even, Lp)q&p mod 4 and q&r) (p+q) mod 4 and (r—(p+q) mod 4) mod 4=0).

If p, q, r are all odd,

{n(l)), where n(l)=12, if r=qWp
=12, if p=qWr
= 24, otherwise.

If p, q, r are all even,

{n(l)), where n(l)= 6,

12

=24,
=24,
=24,
=48,

if r= q=0
if p=q=r
if p= q and r=0
if p=q/r/0
if pAq=r40
if pAqWO=r

if 0/qW pQr&0 and r4q.

In dealing with spherical crystallites of finite size an

upper limit p, must be imposed on p. The conditions
imposed upon p, q, r in the set l are as follows: If p,
q, r are all odd, q p+1, p'+q'&p, „, ', r&q+1, and
p'+q'+" =p--'

If they are even, p mod 4&q p+1, p'+q'- p, ',

(p+q) mod 4&r -. q+1, $r —(p+q) mod 4j mod 4=0,
and p'+q'+r'Cp . '. For the finite size, n(l) defined

above must be multiplied with e(l) defined by Eq. (4).

min{p, (p, '—4p')"' —~p}&q&0.

For the finite size, n(l) as defined above must be multi-
plied by e(l) as defined by Eq. (5).


