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function of d only as per (2):

Ex=Ex~ s;(d/d„)'*=Vac. Ex,—.

Er.,=z(f P+Ex,) (A5)

(6) The splitting of the conduction-band X levels,
X» and Xg, is proportional to C:

E~,—Ex,——const)& C. (A6)

(5) The energy of the top of the valence band at the
symmetry point L, the L3 state, is midway between the
values for F and X:

(7) The perturbative effect of the d band on the
s-like levels of greatest interest, I"1,, and Li,„ is ex-
pressed by decreasing the Es(Frs,„~F&,,) and
Er(I.s,„~Lr, ,) energy gaps from the values indicated
by (1) according to

K= t K,s—(D. —1)&E;][1+(C/E; s)sJ~', (A7)

where here i =0, 1 and 5E; is a parameter which is a
function of d only as per (2). The values of the 19 pa-
rameters of this formulation are shown in Table V. In
Table VI, we give the empirically determined param-
eters used in this paper for the pure compounds from
which the alloys are formed.
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Numerical calculations of the optical-absorption coefficient for direct, excitonic transitions in a uniform
applied electric field are presented. The electron-hole scattering is treated within the efFective-mass approxi-
mation and leads to an absorption coefficient which difFers markedly in size and shape from the Franz-
Keldysh absorption spectrum. A detailed numerical study of the shape of the absorption-edge spectrum at
photon energies somewhat below the zero-field absorption threshold suggests that for small field strengths the
dominant asymptotic form of the absorption coeflicient is exp( —C, ~E Eo'

~ /f), where —f=
~
e~Fa/R is the

electric field strength in units of exciton Rydbergs per electron-exciton Bohr radius. This result contradicts
the existing belief that the electron-hole interaction does not alter the asymptotic form of the Franz-Keldysh
shape: exp (—Co' ~E Eo'~"'/f). Physical a—rguments are presented to show why the exciton effects should
be important, A discussion is presented of the interrelationships among the present treatment of electro-
absorption and various one-electron, exciton, and many-body formalisms.

I. INTRODUCTION
' 'N 1958Franz' and Keldysh' independently developed
~ - the theory of direct band-to-band optical transitions
in semiconductors in a uniform applied electric field.
The primary prediction of their theory, that the optical-
absorption edge would broaden and shift toward lower

energy in an electric field, was verified experimentally a
year later by Boer, Hansche, and Kummep and others. 4

* Research sponsored in part by the U. S. Air Force Ofrice of
Scientiffc Research under Contract No. AF49(638)1545.

~ W. Franz, Z. Naturforsch. 13a, 484 (1958).
s L. V. Keldysh, Zh. Eksperim. i Teor. Fiz. 34, 1138 (1958)

LEnglish transl. : Soviet Phys. —JETP '7, 788 (1958)g.
3 K. W. Boer, H. J. Hansche, and V. Kummel, Z. Physik 155,

170 (1959).
4 R. Williams, Phys. Rev. 11'7, 1487 (1960); 126, 442 (1962);

V. S. Vavilov and K. I. Britsyn, Fiz. Tverd. Tela 2, 1936 (1960)
LEnglish transl. : Soviet Phys. —Solid State 2, 1746 (1969)j;
I.. V. Keldysh, V. S. Vavilov, and K. I. Britsyn, in Proceedings of

The introduction of modulation techniques by Seraphin'
in 1964 greatly increased the interest in electroreAection
and electroabsorption as diagnostic tools in analysis of
the energy-band structure. This held has naturally
expanded rapidly and comprehensive reviews of the
experimental' and theoretical7 developments are now
becoming available.

It has long been recognized that the Franz-Keldysh
theories and their extensions included no correlation

the International Conference on Semiconductor Physics, Prague, 1960
(Czechoslovakian Academy of Sciences, Prague, 1961), p. 824.

5 B. O. Seraphin, in Proceedings of the Seventh International
Conference on the Physics of Semiconductors, edited by M. Hulin
(Dunod Cie. , Paris, 1964), p. 165.

B. O. Seraphin, in Semiconductors und Semimetuls, edited by
R. K. Willardson and A. Beer (Academic Press Inc., New York,
to be published), Vol. VI.' D. K. Aspnes and N. Bottka, in Semiconductors und Semimetals,
edited by R. K. Willardson and A. Beer (Academic Press Inc. ,
New York, to be published), Vol. VI.



ELECTROAB SORPTION IN SEM I CONDUCTORS ~ ~ ~ 3359

effects—not even the lowest-order effect of this type,
for formation of excitons by the electron-hole interac-
tion. Not until 1966, however, was it suggested that this
excitonic inQuence is prominent in the electroabsorption
spectra of semiconductors. ' In this paper, we study the
effects of excitons on the shape of the electroabsorption
edge.

If one is willing to overlook small effects due to the
sudden creation of the electron-hole pair, exchange,
deviations from the effective-mass approximation and
central-cell corrections (all of which are normally small
in semiconductors), then the calculation of the electro-
absorption (in the exciton approximation)' is formally
equivalent to the solution of the Schrodinger equation
for a hydrogen atom with a tensor mass in an extremely
strong electric field. For the general tensor mass (i.e.,
at a general point in the conduction —valence-band
structure), the Coulomb interaction renders the exact
solution of this equation impossible. And the electron-
hole scattering cannot be realistically treated as a
small perturbation, even in zero applied field, since it
severely perturbs the band-to-band density of states. "
Here we consider only the case of a positive scalar mass
(i.e., an Me critical point); and the hydrogenic equation
reduces to the Stark-effect problem which has evaded
complete solution since the early days of quantum
mechanics. " In the case of the hydrogen atom, the
binding energy is so large that experimentally realizable
electric fields may be treated by perturbation theory to
give useful asymptotic approximations to the wave
functions and energy levels, even though the perturba-
tion expansion necessarily does rot corIverge to physically
meaningful answers for any value of the field strength.
In the case of the exciton, factors of effective mass and
the square of the dielectric constant commonly reduce
the binding energy by several orders of magnitude so
that it is often very small compared with the change of
electrostatic potential energy across the exciton for
fields of, say, 10' V/cm. Hence any attempt to treat
the problem of an exciton in an applied electric field
must be essentially nonperturbative. A variational
approach is likewise excluded, since the potential
energy of an electron in a uniform electric field is
unbounded below (or above); and the conventional
WEBJ approximation is invalid for azimuthal quantum
numbers such that

~
m

~
& 1.i2

' Y. Hamakawa, F. Germano, and P. Handler, J. Phys. Soc.
Japan Suppl. 21, 133 (1966).

~ R. J. Elliott, Phys. Rev. 108, 1384 (1957).' Y. Toyozowa, M. Inoue, T. Inui, M. Okazaki, and E.
Hanamura, J. Phys. Soc. Japan Suppl, 21, 133 (1966).

"T. Kato, Die Grstrtdtat, el der Mathesrtatiscttert Wissertscttaftert
in Einseldarstellungen (Springer-Verlag, New York, 1966), Vol.
132, pp. 471—477; R. C. Riddell, thesis, University of California,
Berkeley, 1965 (unpublished); L. B. Mendelsohn, Phys. Rev.
1'M, 91 (1969); C. Lanczos, Z. Physik 62, 518 (1930); 65, 431
(1930); 68, 204 (1931); J. R. Qppenheimer, Phys. Rev. 31, 66
(1928); P. S. Epstein, ibid, 28, 695 (1926); E. Schrodinger, Ann.
Physik 80, 457 (1926).' C. B. Duke and M. E. AlferieG, Phys. Rev. 145, 583 (1966).

Duke was the first one to consider the effects of
electron-hole scattering on electroabsorption, ""and
he based his treatment on an exact solution of the
hydrogenlike problem for a model potential in parabolic
coordinates (the accidental degeneracy associated with
the Coulomb potential leads to separation of the
Schrodinger equation in these coordinates). Ironically,
in solving his model potential problem, he chose to
work only with analytic functions and explicitly ruled
out an exact numerical solution of the hydrogenic
equations as impractical. '4 However, a numerical
solution of the exact problem is made feasible by the
very fact that the potential energy associated with the
applied field is so large compared with the exciton
binding energy.

With the recognition that we had available to us all
the numerical machinery for solving the effective-mass
equation, " we set about the task of doing so. Our
motivation for attempting the solution came not only
from an intent to study electroabsorption per se, but
also from an interest in the lowest absorption edges in
insulators and semiconductors and the relationship
between Urbach's rule and the Franz-Keldysh effect."
During the early stages of this work, there appeared a
paper in which Ralph had solved the effective-mass
equation for excitons and had obtained the electro-
absorption, concentrating on the spectral region near
and above the lowest exciton peak. ' Taking considera-
ble advantage of Ralph's experience, we were able to
calculate the shape of the electroabsorption edge well
below the zero-field threshold. The numerical problems
were considerably more difficult in this low-energy

regime on account of the need to integrate through a
high potential barrier where small numerical errors
were rapidly amplified. Finally, we note that Blossey'
has recently performed calculations similar to those of
Ralph's and ours, from a slightly different viewpoint,
and has included the exciton effects on electroabsorption
near Ms critical points (maxima) in the joint density of
the conduction and the valence bands as well as the Mo
edges (minima) considered here.

In the remaining sections of this paper we shall
present the physical basis and the results of our calcula-
tions. Section II deals with qualitative considerations;
Sec. III is devoted to the formal theory of electro-
absorption and includes a derivation of the Elliott
formula for optical absorption from the viewpoint of
modern linear-response theory. Section IV has a

» C. B.Duke, Phys. Rev. Letters 15, 625 (1965).
A choice dictated in part by the degree of sophistication of the

computing machinery available to him at that time.
~5 J. D. Dow and R. S. Knox, Phys. Rev. 152, 50 (1966).
~6 J. D. Dow and D. Red6eld (unpublished); D. Red6eld,

Phys. Rev. 130, 916 (1963);D. RedGeld, Trans. N. Y. Acad. Sci.
26, 590 (1964).

"H. I. Ralph, J. Phys. C. 1, 378 (1968).' D. I. Blossey, Bull. Am. Phys. Soc. 14, 429 (1969). Ke
gratefully acknowledge conversations with Dr. Blossey about hi~
work.
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discussion of our numerical methods and results. Our equation
conclusions are drawn in Sec. V and summarized in
Sec. VI.

IL QUALITATIVE CONSIDERATIONS
(

p' 8$—eFs ib(r, t) =i@—(r, l)
2m* 81

(2.3)

There are two frequently used methods of calculating
the optical absorption coefficient of a nonmetallic
crystal. The 6rst involves Fermi's Golden Rule for
evaluating the probability per unit time for transitions
between stationary states. In this method, one needs to
know the matrix element of A p between initial and
final states and the density of final states (here p is

the total momentum operator for the crystal and A is
the vector potential associated with the light). The
second method involves the evaluation of the time-

dependent matrix elements of the current, or equiv-

alently, the projection of the time deperi-deist photon-
perturbed initial state on a time-dependent Anal state;
that projection is then squared and appropriately
Fourier transformed to give a frequency-dependent
absorption coe%cient. '

In a static-lattice, one-electron approximation and
a two-band model, the initial and the final states
(whether stationary or nonstationary) are electric field

perturbed valence- and conduction-band states, respec-
tively. The effects of the field F=Fi on each band may
be calculated by solving either (i) the time-dependent
Schrodinger equation for the nonstationary states or
(ii) the time-independent Schrodinger equation for the
stationary band states; in either case there remains
the arbitrariness associated with the choice of gauge.
The two most frequently used gauges are the time-
dependent gauge" Ps=0& Ap= —cFl' and the time-
independent gauge po ——&eFs, As=0 [the minus (plus)
sign refers to the conduction (valence) bandj. In the
former gauge, one considers only nonstationary states
and determines the time-dependent solutions of the
one-band effective-mass equation

1 e
p —-A,

~
f(r, t) =ik—(r,l).

2m* c j Bt
(2.1)

These solutions are (neglecting the periodic part of the
Sloch functions and normalized within a volume V)"

In the time-independent gauge, there are two widely
used approaches. One is to solve the time-dependent

» V. Jacoby, Phys. Rev. 140, A263 (1965).
"C. Kittel, Qgantuns Theory of Solids (John Wiley 8r Sons,

Inc. , New York, 1963), p. 190.
2' Of the two factors in the Bloch function, the 6eld generally

affects the plane-wave part considerably more, since the periodic
part is atomiclike and therefore only weakly polarized by typical
laboratory-strength fields.

lb'(r, ])= V 'l' expi(k (r eFt'/2m*)—

—L(A, 'k'/2m*) +e' 'Ft' 6/m))l/h) . (2.2)

for the Houston functions '

ikey~&&(r, l) = V 'l' expi k(l) r — E)k(l')ddt' (2.4)

with changing momentum and energy:

kk(l) =eF/m* and E(k) =5'k'/2m*. (2.5)

Another approach involves the solution of the eigen-
value problem

(p'/2m* eFs)P(r—,E) =EP(r,E) (2.6)

for the stationary-state plane-wave-modulated Airy
functions"

lb'.s„(r,E)= V—'i"(2Xor')'l' exp(ik, x+ikoy)

&&Ai()is+@/eF5[E k'(k—'+k„')/2m*j}, (2.7)

where X'= 2m*
~

e
~

F/k' The Hou. ston and Airy functions
are related to the functions calculated in the time-
dependent gauge by gauge transformations; they are
related to each other by a unitary (Fourier) transforma-
tion (as may be verified by examining the integral
representation of the Airy function'4).

Of the three pictures, the Houston picture is the most
attractive physically, since the wave-functions represent
electrons accelerating according to Newton's law
hk= eF with steadily changing kinetic energy; the
Houston picture is also easily generalized to nonpara-
bolic energy bands providing a vivid classical picture
of the electron or the hole as it oscillates back and
forth through the bands with its effective mass chang-
ing."The wave functions of the time-dependent gauge
have constant crystal momentum but changing energy.
The Airy functions bear less resemblance to the classical
accelerated electron, but are the easiest to handle
mathematically. Like the Houston functions, the Airy
functions and their momentum-space counterparts (the
crystal momentum representation)" can be generalized
for use with nonparabolic bands. In this stationary-state
Airy picture, the acceleration of the electron manifests
itself as progressively more rapid oscillations in the
wave function for large negative values of&a. The

"W. V. Houston, Phys. Rev. 57, 184 (1940)."L. D. Landau and K, M. Lifshitz, Qzt'antlion 3EIechanics
(Pergamon Press, Ltd. , London, 1958), p. 71.

'4 H. A. Antosiewicz, Appl. Math. Ser. 55, 447 (1964).
25 For a more picturesque description of the dynamics of an

electron in an applied field, see, e.g., J. M. Ziman, Principles of the
Theory of Solzds (Cambridge University Press, London, 1964),
pp. 163—165.

26 E. N. Adams, J. Chem. Phys. 21, 2013 (1953);Phys. Rev. 85,
41 (1952); 10'7, 698 (1957);E. N. Adams and P. N. Argyres, ibid
102, 605 (1956).
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presence of a field is responsible for a tilting of the band
edges in real space, with the band edges remaining
parallel and separated vertically by the gap energy.
Therefore the wave functions of the valence and the
conduction-band states have exponentially decaying
tails extending into the forbidden energy gap when

the field is on. (If we define "momentum" by p'/2m*
—eFs=E, this decaying tail corresponds to "imaginary
momentum. ") Thus it is possible for a light wave to
induce a band-to-band transition with energy less than
the gap energy. The local nature of the electromagnetic
perturbation requires that the transition be vertical on
a plot of energy versus position; that is, such a low-

energy transition can occur only between the tail parts
of the wave functions and hence its oscillator strength
is smaller than the higher-energy band-to-band transi-
tions. Therefore, in this picture the Franz-Keldysh
effect may be viewed as a photon-assisted tunneling of
an electron from the valence band to the conduction
band, '~ the energy dependence of the transition prob-
ability being dominated by the band-to-band matrix
element rather than by the density of states.

In contrast, if one uses nonstationary band states to
calculate the transition (as in the Houston picture or in
the time-dependent gauge), then the energy dependence
comes from the effective density of states arising from
the frequency Fourier decomposition of the time-
dependent transition rate. The various pictures are, of
course, connected by unitary transformations; or
equivalently, the time-varying Bloch functions may be
written as a superposition of wave functions whose
tails extend into the forbidden gap (e.g. , Airy functions)
and vice versa.

However, none of these one-electron pictures is
adequate for a discussion of electron-hole interactions
and the formation of excitons. For this reason, con-
centrating on the fact that we are interested in the
optical absorption below the zero-field threshold, we

specialize the discussion to the case of two parabolic
energy bands with minimum and maximum at the
center of the Brillouin zone. The electron and hole
masses are assumed to be scalar; with this approxima-
tion the transformation to center-of-mass and relative-
motion coordinates is possible. Since the total charge
of electron and hole is zero and the electric field is
uniform, the center-of-mass motion reduces to the
propagation of a free particle. The relative motion,
however, will be uncorrelated free-particle-like only if
the electron does not interact with the hole and if the
applied electric field is zero (the field introduces correla-
tions in the motions of the electron and hole in that it
accelerates them in opposite directions). The electron-
hole envelope wave function U(r) describes the ampli-
tude for finding the electron and the hole separated by

"Zener tunneling may be thought of as a Franz-Keldysh
absorption induced by a zero energy "static photon" associated
with the interband perturbation of the effective-mass Hamiltonian.
See C. Zener, Proc. Roy. Soc. (London) 145, 523 (1934).

e'
&' ———e» ~U, (r) =EU, (r),

&2p, er
(2.8)

where p is the exciton reduced mass (p '= m, '+w. i, '),
c is the (static) dielectric constant of the solid, F is
the electric field and is taken to be in the s direction, e

is the electronic charge (e= —~e~), 27rh is Planck's
constant, and E=O corresponds to the gap energy E,.
The potential energy of relative motion as a function of
position along the direction of the field is depicted
schematically in Fig. 1. The straight line through open
triangles is the potential due to the applied electric
field; the Schrodinger equation for such a potential
has a continuous eigenvalue spectrum with Airy func-
tions as its solutions. Such functions oscillate in the far
left half-plane (s((0) and are exponentially damped in
the far right half-plane (z))0). The transition from
oscillatory to damped behavior occurs at the classical
turning point s = E/eF =L~'/

)
e

~

F.H—ere E is the energy
of the electron" measured relative to the zero-field gap
energy (E+E,=A&a=photon energy). For this uniform
field U(z) is exponentially small for energies E less than

28 R. S. Knox, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1963), Suppl. 5,
pp. 37ff; pp. 119ff.

2' T. P. McLean, in Progress irz Senziconductors, edited by A. F.
Gibson et al. t,'John Wiley R Sons, Inc. , New York, 1961),Vol. 5,
p. 54.

30 K. Tharmalingam, Phys. Rev. 130, 2204 (1963)."We shall visualize this problem as the corresponding hydrogen-
atom problem, often assuming that the hole is infinitely massive
and the electron moves in its force field, although we are, in fact, .

discussing the relative motion of electron and hole.

the vector r; that is,
~
U(r) ~' is essentially the pair

correlation function. To include electron-hole correla-
tions in the optical-absorption cross section, one ought
to (a) take the band-to-band cross section for optical
transitions between plane-wave states (or Bloch states)
which extend throughout the entire crystal, (b)
multiply it by the probability

~
U„(0) ~

' that the electron
and hole are in the same unit cell, and (c) sum over all

electron and hole wave vectors, and the states of relative
motion v.' ""In the case of no electron-hole scattering
and zero electric field, the envelope function for relative
inotion is U~(r) = U '"e'" '; hence, we obtain the usual
band-to-band transitions. For zero field, but with a
Coulomb interaction, U(r) becomes a hydrogenic
wave function, and gives rise to the well-known

hydrogenic absorption spectrum. ' ""If the electric
field is finite but the Coulomb interaction is turned off,

U(r) becomes a product of plane waves (propagating
in the plane perpendicular to the field) times an Airy
function (along the field). '

The case of interest here involves both the Coulomb
interaction between the electron and the hole and the
force exerted by the applied electric field. In the
conventional gauge (rather than the time-dependent

gauge), the Schrodinger equation for relative motion is
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V(z)"

0.0

V (z; FIELD)

V (2; COULOMB)

V (z) = V(z FIELD) + V (z; COULOMB)

U (z)

V (z; MODEL )

u (z)

0.0

I

0.0

Fro. 1. The various potentials V (solid curves) and the envelope
of the wave function U (broken curve) of relative motion as func-
tions of the relative position of the electron and hold. along the field
direction. Open triangles and circles show the applied field and the
Coulomb potential, respectively. Open squares show the exact
potential of the combination. Circled positions 1, 3, and 4 are the
classical turning points; position 2 is the local maximum of
potential. The wave-function envelope shown is for the exact
potential and for a state of energy E somewhat below this local
maximum V (the classical ionization energy). The curve through
the filled triangles and circles shows the spirit of the model
potential used by Duke and Alferieff (Ref. 12).

the potential energy at the classical turning points;
and, in particular, U(0) is exponentially small for
energies within the zero-field forbidden gap (E(0).
This phenomenon is just the Franz-Keldysh effect dis-
cussed earlier in a one-electron picture.

The Coulomb interaction potential is the line through
the open circles; the sum of it and the applied potential
is denoted by open squares. The qualitative behavior of
the wave function U(z) (depicted for a value of E less
than zero) is included in Fig. 1 as the broken curve:
(i) It oscillates in the far left plane, (ii) crosses into the
potential barrier at a classical turning point Qi where

es/ez eFz=E, (i—ii) is d—amped exponentially into the
point Qs where the potential barrier is a maximum
(z= —( ~

e
~
/eF) "], (iv) rises exponentially until it

crosses through the second classical turning point
Qs ( e'/ez eFz=E), —(v) rem—ains relatively flat near
z=0 (for an s-like state), (vi) crosses into the potential
barrier in the right half-plane at Q4 (—e'/ez —eFz=E),
and (vii) decays exponentially. The difference between
the cases with electron-hole interaction and without is
that steps (iv), (v), and (vi) above would be missing
if the Coulomb term were turned off. Hence the
Coulomb interaction (i) reduces the spatial decay rate
of the wave function in the barrier (since the barrier
is smaller), (ii) leads to an exponential rise in U(r) as
r approaches zero, and (iii) allows U(r) to be totally
undamped near the origin. Therefore we expect that the
inclusion of the electron-hole Coulomb interaction will
exponentially enhance U(0) and the optical-absorption
coeS.cient. In making these statements, we have

tacitly assumed that the wave-function normalization
is unaffected by the Coulomb interaction. This is true,
in fact, because the potential energy associated with the
electric field is unbounded below. Thus the wave
function can be normalized only by confining the system
to a large but finite box. In such a case the overwhelming
contribution to the normalization comes from near the
boundary of the box. Note also that the tunneling of the
electron away from the hole makes the wave functions
qualitatively different from the zero-field hydrogenic
functions (no matter how small F is). It is this qualita-
tive difference which is responsible for the divergence of
perturbation theory. Observe also that the Coulomb
interaction, on account of its long range, affects the
qlaetitative behavior of the wave functions at large
values of

~

z
~

. For example, the wave function un-

doubtedly approaches a logarithmically phase-shifted
Airy function as s approaches negative infinity; much
as Coulomb waves become logarithmically phase-
shifted plane waves in the zero-field case."However,
in the asymptotic regions the solutions to Eq. (1) look
qlalitati~ely like Airy functions: For s~ —~, they
have increasingly rapid oscillations (the momentum of
the electron is increasing) which gradually diminish in
amplitude (the current associated with the electron is
finite).

The above considerations apply to the situation where
the photon energy is such that E&—(e'/e~z~)+ I, e~Fz
for some x&0; that is, energies such that the electron
must tunnel through a barrier in order to get away
from the hole. At higher energies the exciton is ionized

by the applied field, but is still strongly affected by
the Coulomb interaction. Eeee though the excitoe is
ionized by the field if can sfill be responsible for a eery

sfrong and quite sharP line in the oPtical absorPtion-
spectrum. The reason for this is that the electron is in a
resonancelike state in which it coherently bounces back
and forth off the walls of the hole's potential, especially
in the x and y directions, before it leaks out to infinity in
the z direction. (Even if the energy is positive, so that
there is no Coulomb potential wall in any direction,
the electron once created. near the hole will still have a
desire to stay there since the classical forces are in
that direction. ) An exact classical criterion for the
ionization of the nth (n= 1, 2, . . . ) exciton of zero-field
binding energy E„=—R/n'= —~E„~ may be obtained

by considering the energy required to get over the
potential hump in Fig. i. For an exciton of binding
energy E„=—R/n', this results in a critical field for
ionization of F,=eE '/4~e~' (or, in terms of the exciton
Rydberg R and radius a, f,= ~e~Fa/R=1/Sn4). In
general, quantum effects will result in an even smaller
critical field since the field-perturbed levels will often
shift to higher energies than the unperturbed E„=—R/
e2, and tunneling will help the electron go through the

» L. D. Landau and E. M. Lifshitz, QNuetum 3fechewics
(Pergamon Press, Ltd. , London, 1958), p. 419.
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potential barrier. Note that even though ionization of
the eth exciton occurs for fields stronger than F,
=R/Sis4eu, a discernible exciton peak remains in the
absorption for fields an order of magnitude larger, as
may be seen from both experimentap' and theoret-
icaP~ "'4 absorption spectra.

Duke and Alferieff have proposed a somewhat
similar criterion for ionization based on calculations
with their model potential. "Their calculations indicate
that the exciton peaks disappear for 6eld strengths
giving values of f in excess of 0.30 and 0.10 for the n= 1

and m=2 lines, respectively. The classical criterion
indicates that ionization occurs at smaller values of f,
namely, 0.125 and 0.0078, respectively. However, as we
have emphasized, even though ionization may occur,
well-defined but broad peaks will be shown to remain
for fields as strong as

~

e
~

Fa/R =f=0.8 and. 0.2 for the
first and the second exciton, respectively. The differ-
ences between Duke's and Alferieff's approximate
results and the more exact answers can be attributed
to their model potential. That potential is, we believe,
also responsible for the prediction (which fails to agree
with our numerical results) that the Coulomb interac-
tion does not alter the shape of the low-energy Franz-
Keldysh edge. The potential was formulated in para-
bolic coordinates

(2.9a)

(2.9b)

in which the Schrodinger equation (2.8) separates so
that the total effective potential energy becomes a sum
of parts depending on the individual coordinates

Duke and Alferieff chose 'Ui($) to be purely Coulombic
or purely uniform-fi. eld-like depending on whether $
was less than or greater than a chosen parameter t';

with a similar choice for 'U, (f). There is some incon-
sistency in this choice since, for example, 'U&(f) would
be purely Coulombic everywhere along the positive
s axis, while 'Ui(t) is Coulombic all along the negative
s axis. Nevertheless, we have overlooked the topological
complications of parabolic coordinates, and have
illustrated what we believe the Duke and Alferieff
potential was meant to represent by the curve through
the filled circles and triangles in Fig. 1. It should be
clear (as Duke and Alferieff emphasized) that such a
potential generally underestimates the tunneling of the
electron away from the hole and the linewidths as is
indeed the case in Ref. 12. As those authors recognized,
their potential also fails to provide an accurate descrip-
tion of the Stark shifts since it excludes the applied
electric field from the region where the wave function is
large, while excluding the Coulomb potential from the
region where ~eFs~ is large.

'3 Q. H. F. Vrehen, Phys. Rev. 145, 675 (1966).
34 J. D. Dow, S. A. Newman, and B. Y. Lao iunpublishedl.

Before moving on to more formal topics, it is appro-
priate for us to say a few words about units and numbers.
The natural units of energy and length for this problem
are the exciton Rydberg E and the exciton Bohr radius
a, respectively,

In these units, the binding energy of the is exciton is
—1. The field strength is therefore naturally written in
terms of the dimensionless parameter

mo
=3.89)&10 "e' —F (F in V/cm). (2.10)

Note that f is the ratio of the potential energy drop of
the field across the radius of the exciton to the exciton
binding energy. In these units the relative-motion
Schrodinger equation (2.8) becomes

( V' 2/r+ fs—)U=—EU,

where we have made the transcription to unitless
quantities (V, r, s, F, E) ~ (u 'V, ra, sa, fR/

~

e t a, ER).
Although it might appear that for small f the electric
field can be treated as a perturbation, it cannot as we
have stressed above. Likewise for large f, it is not
generally permissible to neglect the Coulomb interaction
or to treat it as a perturbation. The reason is that the
Coulomb potential is unbounded below, and hence can
guarantee that any perturbation series expansion is
either physically meaningless or divergent. A similar
situation occurs in the case of exciton effects on the
zero-6eld absorption, where the actual theoretical
absorption spectrum only begins to quantitatively
coincide with the spectrum calculated omitting the
electron-hole interaction at photon energies in excess of
40008. above threshold. "

Finally, in Table I we present the values of f which
correspond to a field of 104 V/cm for various semi-
conductors and insulators with the listed reduced masses
and dielectric constants. Also tabulated are E. and a.
In the case of insulators, these numbers should not be
taken too literally, since the exciton radius is of the
order of a lattice constant, the Wannier model breaks
down, and there is some question concerning whether
the low- or high-frequency dielectric constant or some
intermediate value should be used for e." Thus the
listed values of R, a, and f may be off by factors as
large as 4.0, 0.5, and 8.0, respectively. Also, we have
generally assumed that the hole mass is infinite so
that the exciton reduced mass is equal to the electron
mass, and we have overlooked the distinction between

» W. B. Fow1er, Phys. Rev. 151, 657 (1966). See this reference
for more accurate exciton binding energies in insulators.



J. D. DOW AN D D. REDI-1 ELD

TABLE I. Relevant properties of excitons. Values of the exciton
Rydberg E= zrz*e'/2 z'h' and radius a=hzz/zrz*e' are calculated
from the measured values given for the static dielectric constant
e and electron eBective mass m*/nz. Calculated values of our
dimensionless field strength f )see Eq. (2.10)j correspond to an
applied Geld of 104 V/cm.

Substance (rrz*/nz)' It (eV) a (A)

Ge (direct)
C (diamond)
GaP
GaAs
InSb
Cds
ZnO
ZnS
ZnTe
Pbs
Cu20
AgCl
AgBr
Tlcl
T1Br
MgO
LiF
NaCl
KC1
RbCl
CsCl

p 033o
(1)

0 34e
0.067'
0.015'
0.20"
0.24'
0.281
0.15~
0.16~
0.80
0.35'
0.24o
0.32'

(1)
(1)
(1)
(1)

0.50'
0.52'

(1)

16
5.8d

10
12
18g
8.9'
7.9
8.3
9.7

170
1Pn
9.5

11
38
31&
9 8n

9 pa
5.9~
4.5
4.6
7.2&

0.0018
0.40
0.044
0.0061
0.00067
0.035
0.053
0.055
0.020
0.000072
0.10
0.052
0.029
0.0031
0.015
0.14
0.16
0.39
0.33
0.33
0.26

250
3.1

16
94

620
23
17
16
35

575
6.9

14
23
62
16
5.2
4.8
3.1
4.8
4.7
3.8

0.00078
0.036
1.5

93
0.065
0.033
0.028
0.17

8000
0.0070
0.028
0.080
2.0
0.10
0.0037
0.0029
0.0008
0.0014
0.0015
0.0015

the bare band ma, ss and the phonon-enhanced mass
(the enhancement will generally only be significant in
the alka, li halides).

III. FORMALISM

In this section we derive Elliott's formula for the
coefficient of optical absorption by excitons, using the
language of linear-response theory. "We have kept the
derivation concise, referring to readable presentations
where necessary. In addition to defining notation, this
section is meant to state the approximations leading to
the Elliott formula and to establish the relationships
between well-known formulas of semiconductor optics
and the less familiar notation of many-body physics.
In doing this, we wish to emphasize that the modern

"G. H. Wannier, Statistical Physics (John Wiley R Sons,
Inc. , New York, 1966), p. 492; R. J. Kubo, J. Phys. Soc. Japan
12, 570 (1957); M. S. Green, J. Chem. Phys. 20, 1281 (1952).

a If no value of m*/m was available, it was taken to be unity.
b Sources for m+/m and ~ are the same unless otherwise indicated.
0 Y. Hamakawa et al. (Ref. 59).
d Handbook of Chemistry and Physics (Chemical Rubber Publishing Co.,

Cleveland, Ohio, 1967).
e O. Madelung, Physics of III-V ComPounds (John Wiley 8z Sons,

Inc. , New York, 1964).
f E. D. Palik, R. Kaplan, B.W. Henvis, J. R. Stevenson, S. Iwasa, and

E. Burstein, in Proceedings of the ¹inth International Conference on Physics
of Semiconductors, Moscow (Nauka, Leningrad, 1968).

& R. B. Sanderson, J. Phys. Chem. Solids 26, 803 (1965)."J.J. Hopfield and D. G. Thomas Phys. Rev. 122, 35 (1961).
1B. Segall, in Proceedings of the Conference on II-VI Semiconducting

ComPounds, edited by D. G. Thomas (W. A. Benjamin, Inc. , New York,
1967).

& J. C. Miklosz and R. G. Wheeler, Phys. Rev. 153, 913 (1967).
& D. T. F. Marple and M. Aven, in footnote i.
' P. T. Bailey, M. W. O' Brien, and S. Rabii, Phys. Rev. 179, 735 (1969).
m Deduced from data in M. Grossmann, in Polarons and Excitons, edited

by C. G. Kuper and G. D. Whitfield (Plenum Press, Inc. , New York, 1968).
n F. C. Brown, in footnote m.
o J. W. Hodby, J. A. Borders, F. C. Brown, and S. Foner, Phys. Rev.

Letters 19, 952 (1967).
& D. H. Martin, Advan. Phys. 14, 39 (1965).
q R. S. Knox and K. J. Teegarden, in Physics of Color Centers, edited by

W. B. Fowler (Academic Press Inc. , New York, 1968) Appendix A.

E(zo) = 2zz(zo)zo/c=zoes(zo)/crt'(to). (3.2)

This latter expression is the one which is most useful
for quantum-mechanical calculations, since e&(oz), as
we shall see, is related to the current induced by the
transverse field g. A knowledge of es(zo) for all fre-
quencies, together with the dispersion relation

1 "
es(x)

ei(&o) —1= P — dx, —(3.3)

37 We work throughout in the Coulomb gauge. Note that @ is
the Geld in the wzediurn. (See Refs. 38 and 39.)

38 D. Pines and P. Nozieres, The Theory of Quanta' Liquids, 1:
Normal Fermi Liquzds (W. A. Benjamin, Inc., New York, 1966),
p. 2516.

» H. Ehrenreich, in Proceedzzzgs of the Izzterzzatzonal School of
Physi cs "Enrico Fernzi" Course XXXIV, Varenna, 1965, edited by
J. Tauc (Academic Press Inc. , New York, 1966), pp. 113—128.

40F. Stern, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1963), Vol. 5, pp.
300ff.' V. M. Agranovich and V. L. Ginzburg, Spatial Dispersion in
Crystal Optics and tlze Theory of Excitons (Wiley-Interscience,
Inc., New York, 1966).

many-body techniques allow us to find formally exact
expressions for the dielectric function e(&o) and provide
us with elegant machinery for systematically performing
perturbation expansions. In the final analysis, however,
mathematical elegance is no substitute for physical
insight.

In order to calculate the optical properties of semi-
conductors in a uniform electric field F, we assume that
a plane monochromatic homogeneous transverse wave
(associated with incident photons plus transverse mag-
netic interactions)" " is propagating through the rne-
dium of interest, with oscillating electric field

E(r,t) =ReSe'&' '"'

Here 5 and f are complex: 5= Ei+iEs and f= lri+iks,
where hi=it'(zo)&o/c and ks=zz(zo)zo/c define the (re»)
index of refraction z)'(zo) and the extinction coefFicient
zz(zo).4o We further assume that the semiconductor is
isotropic (e.g. , has cubic symmetry) and linear, and is
characterized in the classical crystal optics limit" by a
frequency-dependent complex dielectric function «(zo)
= ei(to)+is&(to) and a magnetic permeability tz(zo)

(which we henceforth take to be unity since the
magnetic susceptibility of semiconductors in the
frequency region of interest here is typically negligible

compared with unity). Maxwell's equations then lead
to the basic dispersion relation

f. f= (zos/c')tz (zo) e (to)
= (to'/c')(zt'+izz)'~(zo'/c')e(zo). (3.1)

The absorption coefFicient E(oi), which is defined as
the fractional decrease in the time-averaged power
density per unit distance in the direction of photon
propagation, is then easily expressed in terms of the
extinction cock.cient, or alternatively in terms of the
index of refraction and the imaginary part of the
dielectric function
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momentum K and internal quantum numbers v
I Kcvv)

formed by appropriate superposition of electron-hole
pairs, with the weighting of each pair state determined
by the electron-hole envelope function U,„„K(R'):

Kcvv) =V'&'~ 'P V,„„x(Ros)
Rea0

conduction and valence bands. With this approxima-
tion, the sum over k in Eq. (3.16) can be performed,
resulting in a 5 function in R,q . The remaining expres-
sion for current matrix element may be inserted into
Eq. (3.11) to give the imaginary part of the dielectric
function:

l(.k,
I

s-'s "- p l.k,+K) I
~2m2 K~O)kg~0

x' 8X Z s*"'"'"c+.Rs'+R.s'c R~'IO) (3.12)
Rg0

Here E is the number of unit cells, the subscripts c, e
refer to the (nondegenerate) conduction and valence
bands from which the exciton is formed, and c Ro

(c„RO+) destroys (creates) a Wannier state in band I
centered at lattice site R'. The c's and c+'s satisfy the
usual fermion anticommutation rules, and we have
omitted all spin indices. Introducing the second-quan-
tized representation for the current operator, in terms of
the one-electron matrix element (sR le '&'vlj Ris)
between Wannier states,

XQ I
V... x(0) I

'5(h(o —Eg —E,„„x), (3.17)

and the Elliott formula for the "allowed" optical-
absorption coefficient':

4m2e2

&~( )=, I(»ol picks)l'
m'cr)'(o)(o

XZ I V„(0)
I
'~(E—E„). (3.18)

8
3(q) = p —(i;R I

e '&'pl jR,')c+;R,oc;R,.o,
R 0. R20m

we obtain the current matrix element

~Pl/2

(0I'3(q)l«vv)= 2 V- K(R &')
mg R„,o

X p e'"'""'(v,Rs'Ie 's'e pic&Rs'+R, b').
RJb0

Henceforth, we suppress the indices c, v, and K(=0),
and let E=ha& —Ev.

There remains only the specification of the electron-
hole envelope function U(r). Noting that the exciton,
on account of its small binding energy, is considerably
more polarizable than a unit cell, we assume that the
periodic parts of the Bloch states are unaltered by the
applied field. "In this case, the wave equation for U(r)

(3.14) reduces (in the Wannier continuum limit) to the
hydrogenlike effective-mass equation" "

Since the single-particle momentum matrix element in
Eq. (3.13) is to be evaluated using wave functions
localized at sites Rs +R,s, the dominant contribution
to the current matrix element will occur when the
valence and conduction Wannier functions occupy the
same site (R,so=0) and have maximum overlap. An
alternative, and more conventional expression for the
current matrix element is obtained by introducing the
single-particle Bloch states

( hs e'
V' ———eFz IU„(r) =EU„(r). (3.19)

2m er

The label v stands for energy E, azimuthal quantum
number m, spin o-, and "parabolic eigenvalue" t. The
function U(r) is to be normalized to unity over the
volume of the crystal.

IV. NUMERICAL CONSIDERATIONS

resulting in

Ilk) =cV '~' Q e '"' "'INR '),
Ro

(3.15) The calculation of the electroabsorption has been
reduced to the solution of the e6ective-mass equation
(3.19) (in dimensionless form):

eV'I'
&0I e 3(q) IKcvv)= g U,„„x(R..')

mX R.a0

Xp(sk le '&'e. p I
ck+K)e '&a+K&'"" (3.16)

( 7' 2/r+ fz) V„(r)=—EV„—(r), (4.1)

for the wave function at the origin and the density of
states per unit energy. The introduction of parabolic

Concentrating on photon energies in the neighborhood
of the threshold for "allowed" transitions, we approx-
imate the single-particle matrix element by its value at
the minimum point (ks ——0) in the difference between

'R. S. Knox, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1963), Suppl. 5,
p. 121.

49The relative error introduced by this approximation is of
order ag/a where cl, is the lattice constant and a is the exciton
radius.

"Thus we neglect terms of order 8/d, E, where AE is a typical
interband energy separation and is typically of order 1 eV except
in cases of nearly degenerate bands.
V "L. J. Sham and T. M. Rice Phys. Rev. 144, 708 (1966);
G. H. Wannier, ibid 52, 191 (193 .)."We neglect changes in the static dielectric function due to the
applied field. See, e.g., V. M. Agranovich, Fiz. Tverd. Tela 8,
2801 (1966) LKnglish transl. : Soviet Phys. —Solid State 8, 2239
(1966)3.



M ICPNDUCTORF LF CTRROAB SORPTION I N SE 3367

-3.0
IO

-I.5-2.5 -2.0
I I I III I I I II I I

- I.O
IO'

IO
0

IO
0

10

-I.S-2.5 -2.0
II II I I I I II I I I

"I.O
Io

IO -I
IO

Io -„ -IO'

-2
IO—

IO

Io'— —IO-'

Z0
-3

fL IO—
II0
M
Q3

tt

IJI

IO
V)

O

IO =

-3
IO

-„IO

-5
IO

Io—-6

O

IIII-
z

IO~-
O

O
CP

I

I-

lo—
O
I-
CL
IK
O
III
III
'C

-6—IO

-Io

—Io

-6IO- -6—IO

—IO-'-
N

N

—Io

IO -„ —IO
IO-IO

-&0 -2 5
I

I
I

- 2.0
I

- l.5

-8
IO

- I.O

IO-II

-3.0
~ ~ ~ ~ ~ ~

-2.S
IO"

~ ~ ~~ ~
I

I I ~ ~
I -I.o"2.0

E

(b)

asured from the energy gap

(a)

o ee tdeldste gi n e es or
'

n ths. Energy is measure
iving theb S

' () h Colof th t bed e cito . (b)
te sh'ft of vertical scaleI ranz-Keldysh result. Note s i o

coordinates, "

x= (g')'ts cosy, y= (g)'t' sinIfI, s=-,

where
x (~)x.(t) . ,

( I)"' (4.4)

e E . 4.1)'4 intoallows the separation of the q.

x,"—UI($)x, =o, (43 )

(4.5)
t'1 —m'

i l(k) =—
I + -+4& sf I, —
k 4p

X,"—Vs(t')X, =0, (4.3b)
h's Ref. 17), except

h
'

I dd. Not th
the same as Raphs

Vi . 2 U(0) ' S E) for one spin j ls the sa
n which we ave i

samequantity we plot in Fig. 2 U(0) ' o

M. Lif hit, Q t 3E h' L. D. Landau a
(Pergainon Press, Ltd. , London» p.

p1 —m' 1—tI.(|)=-I +
k 4I'

e se aration parameter 'por" arabolicThe quantity t is the sep
e."Note that the "potentiaeigenvalue. ' o e

is ex onentially decaying inas $ ~ Io, so that Xi $ 18 expoll



3368 J. D. DOW AND D. RED F IELD

lo'

10—

K
O
l-
CL
K
O
CO

8
W
Co

CV

IO—

IOs—

l
0-4

l05
0.0 LO 2.0 3,0 4.0 5.0 6.0 T.O 8.0 9.0 10.0

l

f

FiG. 3. Field dependence of the absorption coefficient at several
spectral positions in the absorption edge. The electric field is
measured in the dimensionless form defined in Eq. (2.10).

where, in the notation of the Appendix,

that region of space; hence the eigenvalue t will have
an infinite number of discrete values t„, where m=0, 1,
2 . ; . is the number of nodes in Xr ($). Similar considera-
tion reveal that X,O ) is oscillatory for large t" Hence .the
program for solving the Schrodinger equation is (a)
6x E, specify e, and guess an approximate eigenvalue
t„; (b) numerically solve the quasi-Schrodinger equation
(4.3a) determining the eigenvalue t„and the normalized
value of f 't'Xr($) as $~0; (c) integrate the second
quasi-Schrodinger equation (4.3b) and obtain f "'X&(f)
as f —+0 and the density of states. Thus the eigen-
functions of the effective-mass equation may be labeled
by four quantum numbers; the energy E, the eigen-
value t

I
e is the number of nodes in X,(j)], the

azimuthal quantum number m, and the spin o-.

LNote that for ns/0, U(r —&0; 8, m, t„, m, o.) is zero
and there is no contribution to the "allowed" absorp-
tion. ) The details of the integration procedure may be
found in Ralph's paper'; we have repeated the essential
features in the Appendix for convenience. The resulting
expression for the absorption coefficient for the case of
"allowed" transitions is

2x' 8

V. CONCLUSIONS

Two significant facts emerge from these calculations:
(1) Well below the edge, the logarithm of the absorption
coeKcient varies very nearly /ieearly with the photon
energy; and (2) below the zero-field absorption thresh-
old, the absorption varies exponentially as 1/f Tha, t is, .
for small fields'~ and energies below the zero-field edge
(f((—E), the absorption coeflicient va, ries asymptotic-
ally as

E~ expL —Cp IEp —8 I/f), (5.1)

where Co and Fo are constants. This directly contradicts
a theorem of Duke and Alferie6'2 which states that in
this limit the absorption coefficient reduces to the
Franz-Keldysh coefficient

We should emphasize that the asymptotic form (5.1)
has been deduced from numerical data, and therefore
has in no rigorous sense been proven by us to be a

"B. Xumerov, Publ. Obs. Cent. Astrophys. Russ. 2, 188
(1933)."J.W. Cooley, Math. Tabl. Comput. 15, 363 (1961).

"For large fields (f»1), the Franz-Keldysh form of the
absorption is restored as the applied 6eld completely overwhelms
the Coulomb interaction. (See Ref. 34.)

The numerical integration of Kq. (4.3) utilized
Numerov's method, " with the eigenvalues t„of Eq.
(4.3a) determined by Cooley's correction formula. "
Numerical errors were kept to a minimum by using an
interval-doubling scheme which permitted utilization
of a fine mesh where the wave functions varied rapidly
and a coarser mesh in the regions where the functions
Xi and X~ were smooth. In order to feel confident of our
results, we (1) ran the computer program on two
diferent computers with different hardware and
software; (2) ran the program in both single- and
double-precision arithmetic; and (3) "turned-off" the
Coulomb interaction by replacing the 1—t in V~ with

(—t). In cases (1) and (2) our results did not change,
indicating that there was no random numerical error
responsible for our answers. In case (3), we recovered
the results of the Franz-Keldysh eGect without the
electron-hole interaction; this suggests that it is ex-
tremely unlikely that any significant systematic nu-
merical error is present in our results.

The results of the calculations are presented in Figs.
2 and 3, where

I U(0) I'$(L~'), which is proportional to
the absorption coefficient, is plotted as a function of
energy E for various fields f and as a function 1/f for
various values of E, respectively. For comparison's
sake, we have included in Fig. 2(b) the corresponding
values of

I
U(0) I'5(E) calculated for the Franz-Keldysh

effect (with no electron-hole interaction). Note that
E= —1.0 is the binding energy of the unperturbed
exciton and that f is the field strength in units of
exciton Rydbergs per electron-exciton Bohr radius.
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tion of the electron-hole scattering. Therefore we
believe that it is appropriate that Duke's and Alferieff's
theorem be reexamined theoretically.

VI. SUMMARY

In summary, we have shown numerically that the
dominant asymptotic behavior of the logarithm of the
optical-absorption coefficient (for f&(—E) is very nearly
linear in E/f, where E is the photon energy minus the
band gap, and f is the applied field strength in units of
exciton Rydbergs per electron-exciton Bohr radius.
Results of calculations of the electroabsorption near
and below the zero-field edge have been presented for
intermediate field strengths characteristic of the fields
generated by optical phonons in alkali halides. The
calculations are presently being extended"" to larger
field strengths, higher energies, and forbidden and
indirect transitions for the purpose of comparing with
available electroabsorption data" and electroreQection
experiments. ' "
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X (&)
B(t„,E) = lim-

p~0 ]((m[+i)/2
(A3)

are then used as input, along with E, f, and m, for the
solution of the equation for X,(t'). For the calculations
presented here, only m=0, 1 led to significant contribu-
tions to the absorption.

The reason for the normalization (A2) is that the
volume element in parabolic coordinates is

d'~= '. (k+l )-dk 4 d(t,

so that U(r) is box normalized according to

(A4)

The program then checks to see if the Xumerov
integration formula is suitably satisfied at the joining
point; and adjusts t according to the Cooley formula,
if necessary, and repeats the integration process until
convergence is attained. For fixed E, f, and m, there are
a countable inhnity of values t„ for t, corresponding to
the number e of nodes in X~. The value of t„and the
quantity
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of the physics of electroabsorption.

j U(r) I'd'r

" X.'(~)X"0-)
(~+l.) (A5)

(([m[+1)/2 +0(V) (A1)

APPENDIX

The solution of the differential equations (4.3) for
the wave function (4.4) begins with the specification of
E, f, and m. (For the allowed transitions considered
here, only m=0 contributes to the absorption. ) An
approximate value of t is specified; and the asymptotic
form of Xi($) is determined by the WKBJ approxima-
tion. The Numerov integrator is then used to integrate
inward until Xi(g) has a relative maximum. "A similar
outward integration is started at /=0 with a knowledge
of the behavior of the (unnormalized) X,($) near the
origin

At this point, we note that X, is normalizable (since it
decays exponentially as $ ~ oo); while the asymptotic
properties of Eq. (4.3) indicate that Xs approaches an
(unnormalizable) Airy function, possibly phase shifted

by a logarithmic amount 6, having the asymptotic
form (A depends on R and /„)

Xs(g)
(sf+&If)"'

2 fE
sin f'/'~ —+,'f ~

-+8 -. (A6)
3 (f )

The most divergent contribution to the normalization
integral (5) as I.s —) oo is

"Xis($)
d$ Xssm)df =1'

o

The two solutions are joined at the outer maximum and
then each is rescaled so that X~ is continuous at the
joining point and normalized to unity:

1= 2X'

-X.'(~)
dg(2L, ,)'»As (A7)

X '(&)
d)=1. (A2)
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Here the lower limit on the f integration does not matter
since all the contribution (in the limit I.s —+ ~) comes
from the upper limit, permitting the evaluation of the
integral using the asymptotic form (A6).

The coefficient A in Eq. (A6) is determined by solving
the differential equation (4.3) for Xs Q'), starting at t =0
with the expansion for the unnormalized X2

(1—~)l.
(t.) =t.a~i+i)» 1y +0Os) (A8)

[m)+1
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and integrating outward using Numerov's method.
For large i', the calculated function is fitted to the
asymptotic form (A6) (with 0.5% accuracy) to deter-
mine A.

The allowed absorption coefficient is proportional to
Lsee Eq. (3.18)7

The resulting allowed absorption coefficient is

4srses 241 2

+A
m'crt'(co)to sr(2f)"'

l~t(&; t-,E)~.(r; t-,E) I'
XP lim (A11)

& I
U (0) I'~(E—E.)

=2 lim
gEi) 0$ 0

I
x (5 t,E')& (&; t-,E') I'

If we follow Ralph and we do not normalize X1 and X2

according to Eqs. (A2) and (A7) but instead define
"unnormalized" Xi z& and X, ziv by Eqs. (A1) and
(A8), then we get Ralph's formula

Eg= L47r'e'/m'crt'(co) co]2 IU(0) I'5(E), (A12)

)('$ (E E/) (A9) where
X1—UN

where the factor of 2 is included for spin. In order to
convert the sum over 8' to an integral, we determine
the density of states p(E)=drt/dE by requiring that
the wave function X, [Eq. (A6)j be zero at i=1&
Pi.e., -', f't'(-,'Ls) st'-rtsrg,

Az
p(E') =

dE' 7r 2f
(A10)

sr'f t'
=0 o —1

X ($; t„,E)dry'(t„, E) . (A13)

In Eqs. (A12) and (A13), we have restored cgs units,
with the understanding that all quantities to the right
of the summation in Eq. (A13) are unitless. Equation
(A12) differs from Ralph's result by a factor of 2,
presumably due to spin.
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There is evidence to indicate that some diffusely scattering substances are essentially highly defective
lattices rather than made up of small domains diffracting incoherently with respect to each other. Equations
have been derived for the diffraction profiles from such lattices; they are of a Cauchy type. Highly defective
lattices are characterizable by a mean defect-free distance rather than a domain size. Several criteria are
presented for distinguishing defect-broadening from domain or particle-size broadening, and procedures are
outlined for the separation of strain and defect broadenings.

I. INTRODUCTION

&~EFECTS in structures produce displacements in
the positions of atoms. The effects of such dis-

placements on the scattering intensities have been con-
sidered by several workers. ' ' In the case of crystals,
these treatments have been confined mostly to cases in
which the concentration of defects is small. On the
other hand, diffusely scattering substances are not
treated as lattices containing a high defect concentra-
tion. Rather, they are commonly regarded as composed

*Research supported in part by Fibrous Materials Branch,
Nonmetallic Materials Division, U. S. Department of the Air
Force.' H. Ekstein, Phys. Rev. 68, 120 (1945).' K. Huang, Proc. Roy. Soc. (London) A190, 102 (1947).

s D. 7, Keating, J. Phys. Chem, Solids 29, 771 (1968).

of small particles or crystallites or possessing some sort
of a domain structure within the material such that
the different domains diffract essentially incoherently
with respect to one another. 4 '

At least in carbons, the presence of small particles or
crystallites having sizes indicated by the linewidths of
their diffraction peaks is often not indicated by electron
microscope observations' ' or small-angle x-ray scat-

4B. E. Warren and B. L. Averbach, J. Appl. Phys. 21, 595
(1950).

5 B.E. Warren, Progressin Metal Physics (Pergamon Publishing
Corp. , New York, 1959), Vol. 8, pp. 147—202.

6 H. Brusset, Compt. Rend. 225, 102 (1947); 22'7, 843 (1948).
7 H. Kuroda, J. Colloid Sci. 12, 496 (1957).
8 L. L. Ban, W. M. Hess, and F.J.Eckert, Carbon 6, 232 (1968).
~R. D. Heidenreich, W. M. Hess, and L. L. Ban, J. Appl.

Cryst. 1, 1 (1968).


