PHYSICAL REVIEW B VOLUME

1, NUMBER 1 1 JANUARY 1970

Microwave, Flux Flow, and Fluctuation Resistance of Dirty
Type-II Superconductors*

Ricuarp S. THOMPSON
Brookhaven N ational Laboratory, Upton, New York 11973
(Received 23 June 1969)

We have reexamined the recent theories by Caroli and Maki of the dynamic response of dirty super-
conductors and find them inconsistent and incomplete. Additional contributions, which were not included
by them, are calculated, and new expressions are presented for the microwave and flux-flow resistance. In
particular, we find that the use of the time-dependent Ginzburg-Landau equation for the order parameter,
coupled with the static Ginzburg-Landau equation for the current, is not generally adequate to calculate
the leading superconducting contributions to the resistance. These results imply that the theory of Aslamazov
and Larkin for the extra conductivity due to fluctuations above the transition temperature is also incomplete
and that, in general, additional contributions of the type suggested by Maki must be included.

I. INTRODUCTION

ECENTLY, a very interesting series of articles has
appeared by Caroli and Maki in which the
microwave impedance? and the flux-flow resistance?
of dirty type-II superconductors near the upper
critical field H,, were calculated from the microscopic
theory of superconductivity.* The impedance was
calculated in the gauge in which the small time-varying
field was expressed entirely in terms of a spatially con-
stant, time-dependent vector potential A (¢)=4 e %"
The impedance was found to depend on the relative
orientation of the static magnetic field H and the rf
electric field E({)=—094(¢)/dt, as had been found
earlier experimentally.? The flux-flow resistance was
calculated for a static field E, expressed entirely as a
static scalar potential ¢= Ex, perpendicular to H.

In principle, the results of these calculations should be
gauge-invariant and give the same result for the same
physical limit of a static field £ H, which may be
obtained from the impedance calculation in the limit
w— 0. Taking this limit, we immediately see that the
impedance calculation is incorrect, since a prediction of
infinite conductivity is obtained contradicting the
experimentally established result that a finite resistance
results from the motion of the lines of flux.® [ The corre-
sponding calculations of Caroli and Maki®7 in the pure
limit are also inconsistent. The leading corrections to the
normal-state resistance are given as proportional to
(H ;o— H)Y2 in the microwave case and to (H.—H) in
the flux-flow case. However, at least they obtained a

* Work performed under the auspices of the U. S. Atomic
Energy Commission. A summary was presented earlier: R. S.
Thompson, Bull. Am. Phys. Soc. 14, 128 (1969).

1K. Maki, Phys. Rev. 141, 331 (1966).

2 C. Caroli and K. Maki, Bhys. Rev. 159, 306 (1967).

3 C. Caroli and K. Maki, Phys. Rev. 164, 591 (1967).

4 The earlier work of A. Schmid [Phys. Kondensierten Materie
5, 302 (1966)] obtained the same flux-flow resistance as Ref. 3 in
the limit 7' — T..

§ M. Cardona and B. Resenblum, Phys. Letters 8, 308 (1964);
B. Rosenblum and M. Cardona, <bid. 9, 220 (1964).

§Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev.
139, A1163 (1965); A. R. Strnad, C. F. Hempstead and Y. B.
K1m Phys. Rev. Letters 13, 794 (1 964).

7 C Caroli and K. Maki, Phys Rev. 159, 316 (1967).

finite conductivity in the w — 0 limit, i.e., no Meisner
effect for electric fields perpendicular to the flux lines.]

In Sec. IT we reexamine Caroli and Maki’s impedance
calculation and find important contributions which they
ignored which cancel their infinite contributions to the
conductivity. The finite value remaining is, however,
not the same as they obtained for the flux-flow resistiv-
ity, except at zero temperature. As has recently been
pointed out by Gor’kov and Eliashberg (GE),® the
time-dependent response of a superconductor is rather
singular. Aided by their analysis, we find that additional
contributions arise when the scalar potential is given a
time dependence ge—%¢ and the limit w— O is taken.
When they are added to the results of Caroli and Maki,
we obtain the same resistivity as we got from the
impedance calculation, thus arriving at a consistent,
gauge-invariant answer. The initial slope of the resis-
tivity near H.(T) is found to be twice as steep as
predicted by Caroli and Maki near the critical tempera-
ture, gradually reducing to their value as zero tempera-
ture is approached.

Having obtained a consistent theory of the response
of a superconductor to electric fields, we turn our
attention in Sec. III to the paraconductivity ¢’ arising
from fluctuations in a superconductor above its transi-
tion temperature 7'.. We find two dominant contribu-
tions in the region not too close to the transition. The
first has been calculated by Aslamazov and Larkin
(AL),® and for films gives a “Curie-Weiss” behavior
R,/R,= (14-7¢/7)~! for the ratio of the resistance R;
to the constant normal-state resistance R,, as a function
of the normalized difference of the temperature from
T., where 7= (T—T.)/T,. The second contribution,
which we call anomalous, is of the type proposed by
Maki in the three-dimensional case, which for two
dimensions is logarithmically divergent ¢'R,= (27¢/7)

8L. P. Gor’kov and G. M. Eliashberg, Zh. Eksperim. i Teor.
Fiz. 54, 612 (1968) [English transl.: Soviet Phys.—JETP 27,
328 (1968)7].

9L. G. Aslamazov and A. I. Larkin, Phys. Letters 26A, 238
(1968) ; Fiz. Tverd. Tela 10, 1104 (1968) [English transl.: Soviet
Phys.—Solid State 10, 875 (1968)].

0 K. Maki, Progr. Theoret. Phys.

(Kyoto) 39, 897 (1968);
40, 193 (1968).
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XlInr/7., where 7, is a cutoff proportional to the
shift in 7' resulting from an assumed pair-breaking
interaction.

From a theoretical point of view, this divergence
may not be too surprising, since there are several
arguments which for other reasons say that fluctuations
should be logarithmically divergent in two-dimensional
systems.!'2 Experimentally, relatively sharp transitions
have been observed,*3:** with widths in good agreement
with the prediction of AL. One does not know how
much pair-breaking interaction was present in these
films, but it could conceivably have been large enough
to make the anomalous contributions insignificant. The
usual estimates of the shift of 7', due to electron-phonon
or electron-electron scattering, 7°/(Debye tempera-
ture)?, and 7?/Fermi temperature, appear to be too
small to account for the experimental results, but we
do not know how much pair breaking arises from the
imperfect film structure, looking, for example, like
paramagnetic impurities. On the other hand, it could
be that 7, was small and the condition 7¢/7<K7, we
derive for the validity of the expansion of the anomalous
contributions was violated, so that nonlinear effects
became important, which damped out the anomalous
contributions to ¢’. Recently, Masker and Parks!®
have observed transitions in less dirty aluminum films
far from the transitions and found values of 7o about
ten times that predicted by AL. The influence of an
additional pair-breaking interaction, such as the
application of a magnetic field parallel to the film, on
such films to see if the transitions then became narrower
would be a particularly interesting study.

II. MICROWAVE IMPEDANCE AND
FLUX-FLOW RESISTANCE

We will first turn our attention to the calculation of
the anisotropic electromagnetic conductivity for dirty,
bulk, type-II superconductors given in Sec. IV of the
paper by Caroli and Maki.2 As they noted, one must
consider two different geometrical arrangements. The
parallel orientation of the rf electric field £ to the
static magnetic field H[ =H.(#)] may be calculated
more simply and is considered first. The response
function Qii(w) relating the current j to the rf vector
potential 4, by j=—(QA4 was originally calculated by
Maki,! although he did not then realize its validity was
restricted only to the parallel case. In addition to the
normal-state response Qn=—iws, the first additional
term Q' in an expansion in powers of the order parameter
squared is evaluated. The sum over imaginary fre-
quencies which must be computed to obtain Q’ is given

uT, M. Rice, Phys. Rev. 140, A1889 (1965); J. Math. Phys.
8, 1581 (1967).

2 P, C. Hohenberg, Phys. Rev. 158, 383 (1967).

1B R. E. Glover III, Phys. Letters 25A, 542 (1967).

14 M. Strongin, O. . Kammerer, J. Crow, R. S. Thompson, and
H. L. Fine, Phys. Rev. Letters 20, 922 (1968).

15 W. E. Masker and R. D. Parks, Phys. Rev. (to be published).
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by Eq. (14) of Ref. 1, and the diagrams considered are
illustrated in his Fig. 1.

Following GE,® we find it useful to divide the sum
into two parts, called regular and anomalous. The
regular part contains products of only retarded or only
advanced Green’s functions [’ (w'+wo)>0];

Q',,,=”<[A[2>{1[¢'<3——ii°—+p>+¢'(%+p)]

2T 12 2 2T
. 27rT|" (1 ) . @ } .
e L Caraad L] | OGS

The notation is identical to that of Ref. 2: (| A|2) is the
spatial average of the order parameter squared, T is
the temperature, ¥ is the digamma function, ¢/ is its
derivative, p=e€y/47T, eo=2¢DH, where D is the
diffusion constant which equals % of the product of the
Fermi velocity » and the electron mean free path /.
For low frequencies, w1 s (T is the critical temper-
ature for H=0) and Eq. (1) may be expanded in
powers of w/mT .. The results may be expressed in
terms of the magnetization M of the sample:

ReQ'\i,=—4eM ,
©  2"(G+p) @)
87T 8/ (3+p)

¢ is the second derivative of ¢, and ¢=T/T.. The
magnetization is given by

ImQ’ 1, =4eM

—4eM = —y (+o)(]A]Y
T
e Hcg(t)—H
o L1622 () — 1]+

©)

using »(#) as calculated by Caroli ef al.,'® which reduces
to the Ginzburg-Landau « at T'. The quantity #» is
the demagnetization coefficient.!”

The anomalous contribution to Q' contains prod-
ucts of retarded and advanced Green’s functions

[0 (w'+awo) <07;

e v

r—Ju- == o) vata ]| @
—iotal 2 2.7 ) TP

The sum Qu=Q,+Q 11:+Q 11, is the same as Eq. (16)
of Ref. 1 and Eq. (29) of Ref. 2. It may be noted that
we have included in Q' 11, two additional diagrams, which
we illustrate in Fig. 1, to obtain this result. Maki also
must have included them in his calculation but without
explicitly showing them. Again for small frequencies

16 C, Caroli, M. Cyrot, and P. G. de Gennes, Solid State
Commun. 4, 17 (1966).
17 T, A. Cape and J. M. Zimmerman, Phys. Rev. 153, 416 (1967).
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we expand in powers of w/7To:

1 w?
: RCQ'na= —4eM—~ 5
2 w2 ep?
1 ©
@ Y'Gte) 1 we
ImQ’”,,=4eM + - .
Tt (5+p) 2wite?

If we require the additional condition (footnote 23,
Ref. 2) that the temperature not be too close to
Teo so that w&m(T0—7T), Egs. (5) may be expanded
in powers of w/ep. Then the sum Qi of O, Eq. (2), and
Eq. (5) is the same as the expansion derived in Ref. 1,
Sec. 3 and Ref. 2, Egs. (34) and (34’). However, they
could have noted in connection with the function
Cu, defined as ImQ’1=4eM (w/87 T ;0)C1i(f) and shown
on Fig. 2 of Ref. 2, that as T'— T, the function Cy
only increases like (T.o— T)'untilw=7(Te—T). Then
C1 reaches a maximum and decreases to 3¢"(3)/¢¥'(%)
at Teo. Also ReQ’n; goes from —4eM to 3(—4eM)
at Tco.

Because no explicit use has been made of the spatial
dependence of A, we may compare our results with the
response calculated by GE in the limit 7— 0. We must
only change the pair-breaking interaction from a
magnetic field to spin-flip scattering on magnetic
impurities by letting eo=2/7,, where 7, is the time
between spin-reversal scatterings. In the limit 7— 0,
¥ (3+p) — 1/p and ¢’ (3+p) — — 1/p?. The anomalous
contributions to Q' cancel out as required to get the
simple form of the time-dependent Ginzberg-Landau
equations GE obtained. However, it is clear that, as
they stated, this cancellation occurs, and the simple
time-dependent Ginzburg-Landau theory is valid, only
when 7<< the pair-breaking energy ej=~7Tc.—7. The
real part of Qi becomes 2¢7,|A|2, which is the usual
static value. The imaginary part of Q'ii» becomes
07| A|%, which was ignored by GE, since it is of order
7w or w/T o with respect to the real part. However, it
gives the leading correction to the normal-state absorp-
tion and will sometimes be important. The presence of
this leading correction Reos/o=1—72|A|? can easily
be seen on the w=0 axis of Fig. 11 of Skalski et al.!®
It is interesting to note from Figs. 2 of Refs. 1 and 2
that the leading absorptive correction changes sign at
t=0.6 and is positive for higher temperatures.

More recently Eliashberg!® has extended the GE
theory to the case of small magnetic impurity concentra-
tions and found singular behavior in the time-dependent
equation for the order parameter in the terms of order
A3, similar to those we find here for the current.
Although such terms are very important in the case of
magnetic impurities, they are not important in the case
of external magnetic fields which we are interested in

18 S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev.
136, A1500 (1964).

19 G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 55, 2443 (1968)
[English transl.: Soviet Phys.—JETP 28, 1298 (1969)].
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F1c. 1. Two additional diagrams contributing to the response
Q'11q in the anomalous regime (wo>w’>0). The solid lines are
propagating electrons, while the dotted lines represent impurity
scattering. Where two dashed lines are shown crossing a vertex, a
summation over all possible numbers of such dashed lines is
implied. Where only a single dashed line is shown, such a summa-
tion is not possible because the two poles lie in the same half-plane.

here. A typical denominator in the time-dependent
perturbation theory for A involves the inverse of this
time-dependent equation, [ —iw-+3E+0(A?) L Unlike
Eliashberg’s case, here the excited states have energies
which are separated by a finite interval §E=4eDH
from the ground-state energy. We can ignore the higher-
order terms in A, subject to the restriction on the size
of A necessary for the validity of the theory, which we
give at the end of this section, AK2¢eDH.

If the rf electric field is oriented perpendicular to the
static magnetic field, the response Q. is composed of
the response for parallel orientation Q,1, which we have
already given, plus additional contributions of two
types. The first type Q';1 arises from the changes in
the order parameter induced by the rf field and was
calculated in Ref. 2, Eq. (31). Again as in the case of
Q' 114, when expanding Q’;; in powers of the frequency w
one must specify whether the condition w<w (T ;0—1T)
is satisfied. If so, the results of the expansion are given
by their Eq. (35);

Y (5+3p)—¥ (5+0)

ReQ'11=4eM
20/ (3+0) ©
w 1 V' (3+3p)
ImQ’ ;3 =4eM —-—(2 ) .
8w Teo pt ' (%-I_P)

If only the condition wnr T, is satisfied, Eqs. (6) will
not be valid as T'— T';o and a different expansion should
be used in this limit;

Led+[0" (3 (3)Jp (dest+30?)

ReQ'.1=4eM ,
4ept+0? o
2 1=2p[¥" S/ (&
im0yt 2L O OD
4:602+w2

Thus the function C,, defined analogously to Cii, also
will not diverge indefinitely as (T¢o— 7)~! in the limit
T — T for any finite frequency, but will reach a peak
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p-(a'-q+4eA)
&
-l ol +ug
Ag!
pe(ql-q+4eA)
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Fi1c. 2. A typical diagram giving additional contributions Q’1»
to the response when Z_ H. Other diagrams of this class are
obtained by interchanging the positions of the order parameter
Aqg, the rf vector potential 4., and the gauge-invariant deriva-
tive (¢4-2ed4) of A,. A vertex correction as shown across the center
of the diagram would vanish when the angular average over the
momenta p at the top and bottom is taken separately, if we
had not expanded the electron propagators in the momentum
change ¢ occurring at A,.

near w=7(Te—7T) and go to the same limit as Cy
at T c0s

Even when we ignore the finite-frequency difficulty
associated with the limit T'— T, there are more
serious difficulties with the results of Ref. 2. Adding
expressions (6) for Q';1 to the results for Q’y, they
obtained

ReQ/',=—4eM A (),
AW =1-[YG+3p)—¥G+p)1/ 200’ G+0),
ImQ’ s =4eM (/87T 0)C. (1),

1 (3+3p) ®)
Clt=C“t——-—— -2 3
R i)
11 39" (3+0)
Cu 1)=- "‘+'————— .
@ t(p ¢’(%+p))

A (¢) vanishes only at the point 7'= T, as illustrated in
their Fig. 1. This result -contradicts the well-known
results of flux-flow experiments, which show that the
conductivity
O
gs=lim

@0 gy

is finite for E_| H. Furthermore, the difficulty with their
results is not concerned so much with incorrect handling
of the time dependence but with the w=0 limit.

They left out of their calculation certain important
contributions, which we call (’;, and illustrate in Fig. 2.
This type of diagram contributes only when E1 H,
because if E||H then A4,,Ll (g¢+2¢4) and the average
over angles gives zero. As usual, the real w is replaced
by an imaginary discrete frequency iwo=1¢2nr1" during
the calculation. Before analytic continuation, the sum
of the additional contributions is

Qu(w)=—c|A]8rT( 2 +X)

@' <—wp @'>0

9)

(o LY e
2o’ [+e  2|wtwo|te/ |20 two| +3e0
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The sum over frequencies is obtained in terms of the y
functions by separating the various types of denom-
inators into partial fractions:

Q’12(wo)
€9 1
——alalE )
7T | 2ep+wy
1 wo 47I'T
R
2¢g—wy \2 27T (2eptwo)?
x[¢<l+ = +3> (o) |~
2 ap TG ]— (2eq—cwo)?

Moy )] oo

The analytic continuation to real frequencies may now
be made simply by replacing wo by —iw. Then Eq. (10)
may be expanded in powers of w/T ;0 (with no modifica-

tions in the limit 7' — T, for ws=0),
ImQr w o|lA|?
m! 9= -
* 8T «T

{zw'(%+p>

1 .
- —[¢'<%+3p)—w<%+p)3} .
I

When these new contributions are added to those given
in Egs. (8), we obtain the necessary cancellation of the
real part so that ReQ’,=0 and a corrected value for Cy;

o|Al2
ReQ' 2=~ ——¢/(3+0)A (),
T

1 WG+
C.@)=Cu(t)+— — —‘———1// Gte) )
et ¥ (5+p)
(12)
' (G+0)

2
C_L(t) = - + .
pt W' (3+p)

From this value of C,, the film conductivity o, is
obtained

os=c— (4eM /87T .0)C.(t),

_ 4x:*(0) L (1) ( H (13)
‘”"G[H T 16[202() —1Tm\ ch(t)ﬂ’

where k1(0)=1.20x and Lp(f)=ptC, is plotted in Fig. 1
of Ref. 3. For finite w7 T s, Egs. (2), (5), (7), and (11)
may be summed to obtain the correct frequency-
dependent expressions in the limit 7' — To.
Unfortunately, the value of the flux-flow resistivity
we have obtained by correcting Ref. 2 differs from that
obtained in Ref. 3 by the factor Lp(¢). The reason is
that the anomalous contributions given by the small
w limit of Eqgs. (5) were left out of the calculation in
Ref. 3. The calculation in Ref. 3 was performed in the
gauge ¢=Fx. The anomalous contributions in this
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gauge arise from diagrams of the type shown in Fig. 3.
One might think such diagrams, which contribute only
in the range 0<w’<wo, could be ignored as being of
order wop if ¢ was assumed to be time-independent
(wo— 0). However, GE showed that due to the singular
vertex corrections a factor of 1/wo arises from the sum
of all corrections on the lower end of the diagram,
resulting in a finite wo—> 0 limit. The Coulomb force
has been included by requiring there to be no fluctua-
tions in the density of electrons. Terms of order A? of
the type shown in Fig. 3 were not explicitly included in
GE because they vanish in the 7=0 limit. The addition
of these anomalous terms to the results of Ref. 3 gives
exactly Eq. (13).1e

The revised prediction for the initial slope of the flux-
flow resistance is shown in Fig. 4. It is the same as
given in Ref. 3 at =0, and twice as steep near 7= T .
However, it is necessary to note that this expansion has
a very narrow range of validity as 7'— T'co. The static
calculation of the penetration depth (ReQ) is valid in
the range ALnT .. However, the dynamic calculation
of the conductivity (ImQ’) is only valid in the range
AL eo=(Too—T) (or ALw for finite frequencies when
w>€o). This restriction on expansions in powers of A
can be inferred from the observation that if all fre-
quencies w—> 0 in the expressions for the Green’s
functions, the only remaining parameter for expansions
for small A is A/eo, as is verified by direct calculation of
the anomalous terms of order A% The restriction on
magnetic field thus becomes increased from H . (t)—H
KH»(0) to Heo(t)—HKH 2(£)/H :2(0). We illustrate
the different regions of validity in Fig. 5. When account
is taken of the large fluctuations near the transition,?
one would expect experimental comparison with this
theory to be quantitative only for intermediate and low
reduced temperatures {. The data of Kim ef al. indicate
approximate agreement with the theory, showing slopes
of the resistance of the order of 2-4. However, we can-
not determine very precisely the temperature depen-
dence of the slope near the transition from their
published curves.

F1ec. 3. A typical diagram giving
anomalous contributions to the cur-
rent in the gauge ¢=FEx. The only
nonvanishing regular contributions in
this gauge come from the time
dependence of A induced by E.

19 H, Ebisawa and H. Takayama (unpubhshed) have found the
time-dependent Ginzburg-Landau equation used in Ref. 3 in-
correct at low temperatures owing to the noncommutivity of the
momentum operator with the scalar potential. However, they
found that due to a cancellation of errors the current derived in
Ref. 3 is the correct regular part, as we stated.

2 K, Maki, Phys. Letters 27A, 481 (1968).
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=Hco(t)

AT H

t=T/Teo

Fi6. 4. Slope of the flux-flow resistance at H.. () as a function
of the reduced temperature ¢= 1"/ T for dirty materials with «£>>1.

As Maki has pointed out?' these calculations are
easily extended to a semi-infinite superconductor with
a magnetic field near H,; parallel to its surface. One
simply uses the appropriate static value for A% given by
Maki and replaces the ground-state energy eo=2¢DH .,
by 0.59(2¢DH ;) and the first-excited-state energy 3eo
by 5.62¢o. In addition, in the E1 H orientation the
matrix element squared of 4 between the ground and
excited states

(0] Hx|1)2=~ (0| H?|0)— (0| Hx[0)?,

which gives a contribution $H ., to the numerator of
Q’,, must be replaced by approximately %(0.59H ).
Higher-order excited states, which make no contribu-
tions in the bulk type-two case, do contribute here,
but computer solutions show that the error involved in
neglecting them is small <79, (see also Fink?). ReQ’,
no longer vanishes in the small w limit for £1 H. The
ratio of ReQ’ for E1 H toits value for E||H, whichisa
measure of the anisotropy, becomes 0.586 (independent
of temperature). We have made detailed calculations
of the response for all film thicknesses, including the
regime of flux entry? for films of thickness approxi-
mately equal to the coherence length, and will present
our results in a separate paper.

III. FLUCTUATION RESISTANCE

Recently, a great deal of attention has been paid to
the rounding of the resistive transition due to fluctua-
tions. The most popular theory has been that of AL,®

21 K. Maki, Progr. Theoret. Phys. (Kyoto) 39 1165 (1968);
G. Fischer and K. Maki, Phys. Rev. 176, 581 (1968).

2 H. J. Fink, Phys. Rev. 177, 732 (1969)

B E. Guyon, F. Meunier, and R. S. Thompson, Phys. Rev.
156, 452 (1967).
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Fic. 5. Static generalized Ginzburg-Landau theory for the
penetration depth (ReQ) is expected to be valid to better than
about 209, accuracy in the entire region above and to the right
of curve S. The dynamic theory for the resistance (ImQ’) in the
small frequency limit applies only in that part of the first region
which lies above the curve D.

which, as has been emphasized by Abrahams and Woo,
is based on the addition of a time derivative of the order
parameter to the Ginzburg-Landau equation with the
proper sign to restore deviations from equilibrium.
When an electric field is applied an extra current
arises from the time derivative of the fluctuations of
the order parameter, giving rise to a “Curie-Weiss”
form of the conductivity os=0(147¢/7) in a two-
dimensional film. AL obtained 7¢=5¢2Ro= (1.52X 105
Q) Rn, where R is the film resistance per square area.
The response calculated by AL is similar to the Q'y;
part of the calculation in Sec. II.

Maki® has proposed a different theory of the fluctua-
tion resistance based on the anomalous terms Q'yi, of
Sec. IT. Maki applied his theory only to the three-
dimensional case, perhaps because it is divergent in
lower dimensions. Even so, we now understand that
these anomalous terms appear in all dynamic calcula-
tions near T'co, so we must deal with these divergences
for films and wires. We agree with Maki’s note added
in proof to Ref. 10 that the two types of fluctuation
conductivity must be summed.

Introducing the temperature-independent coherence
length £=0.85(£0) 2=y (3)D/4nT 0], the AL result
for a fluctuation of momentum ¢ is given in a simple
form. We may call this contribution the regular one ¢, :

o’'2(q) =met'q* cos’d {1/[r+£¢° ]} . (14)

6 is the angle between ¢ and £. To sum over all fluctua-
tions, this expression must be intergrated over an
appropriate momentum element. For a two-dimensional

% E. Abrahams and J. W. F. Woo, Phys. Letters 274, 117
(1968).
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film of thickness d<&(H)=¢/|7|Y2, the momentum

element is
1 /' 2T df
(27r)2 / /;)

The AL result follows integration:
o' ,(2D)=¢2/16dr. (15)

For bulk samples the three-dimensional momentum

element is
d3q 0 qz dg 1 1
/ = —_— / d cosf.
@2x)3 Jo

272 2
In agreement with Schmidt?® we obtain
o' (3D)=¢2/32¢7112, (16)

In practical units e?=2.43X10-* Q1. The coherence
length may be obtained by measuring Ho=|7|/2e£
or H.=1.69H,, for precise comparison with theory.?
The general result which interpolates between Eqgs. (15)
and (16) for any film thickness may easily be obtained
by summing discrete prependicular momenta nw/d,
corresponding to the allowed eigenvalues of the cosine
function, which satisfies the boundary condition of
vanishing derivative;

o’ +(2—3D)= (e2/32&rV2)[coth (dr' 2/ &)+ &/d-1%].  (17)

In one dimension, the momentum element is (1/S)
X Jo2(dg/27) where S is the cross-sectional area of
the wire;

o' ,(1D) = me2E/ 1657312, (18)

The anomalous response may be calculated similarly
from the most singular part of Egs. (4) and (5);

o'a=0o¥/(3)| A2/ 21 Tey (19)

by replacing e by Dg? and |A|2 by the fluctuation
probability given by Maki®

|A|2=[T/N(0)11/[r+ (£9)];
=3me2(1/¢)1/ (++E¢?).

Only the zero-frequency part of |A|2 has been included
here. A careful consideration of the analytic continua-
tion, including the frequency dependence of | A|2, shows
that the leading singular contribution to ¢’, is correctly
obtained in this simple way in this particular case.??-28

25 H. Schmidt, Z. Physik 216, 336 (1968).

26 J 1. Gittleman, R. W. Cohen, and J. J. Hanak, Phys. Letters
29A, 56 (1969). These authors did not determine the coherence
length precisely from the critical fields and could only compare
their results roughly with theory.

27 We wish to thank A. I. Larkin for discussions of the analytic
continuations involved here. AL now agree that these additional
Mhak1 contributions must in general be added to their previous
theory

28 Recently, E. Abrahams, M. Redi, and J. W. F. Woo (unpub-
lished) have shown that takmg only the zero-frequency part of
|A|? gives the wrong answer for the fluctuation contribution to
the density of states N (w) [Phys. Rev. B 1, 208 (1970)].

(20)
1)
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The same momentum elements apply as before. In
agreement with Maki, we obtain

o'a(3D)=¢*/8tr2, (22)

although for the total ¢’(3D) we get 5/4 ¢/4(3D) and
not the factor 7/4 mentioned by Maki.

In two dimensions ¢/, is logarithmically singular.
In terms of a low-momentum cutoff ¢,= ¢ 17,12, we
obtain

o'o(2D)= (e2/8dr)In[ (r47.)/7c]. (23)

The interpolation formula between Egs. (22) and (23)
is obtained by again summing over discrete momenta
nr/d;

e? £
¢s(2—3D)= — I:ln(
87rd dr Al

sinh

(Z(T—I-Tc)”2>

TJ:c)] o

The divergence problem is unaffected by the presence
of the third dimension when d<¢&/(r+7.)V2.

7. may arise from the change in T, due to a pair-
breaking interaction. For example, if a magnetic field
is applied parallel to the film 7,=6=[7,(0)—T.(H)]1/T.
=1(eHd£)2. Then the total conductivity due to fluctua-
tions is

o' (2D)=1o/(++8)+ 2ro/T)In[ (++08)/5]. (25)

Near the transition this result tends to AL, but far
away it has values typically an order of magnitude
larger. A perpendicular field also has a pair-breaking
influence. Because of the discrete nature of the excita-
tion spectrum, ¢>= (2n+1)2¢H, the results are different.
Far from the transition (7>>7.), the limiting value is

o' (2D)= (ro/7) (142 In2y7/5) , (26)

where 6=2eH £ and Euler’s constant Iny=0.5772.

The cutoff of the divergence may also be obtained
from the frequency w if w/7.>7.. In this case by
referring to Eq. (5), we see that the denominator ¢—2
in Eq. (21) is replaced by &/[(rw/8T.)*+ (&)%].
Following Schmidt,? we introduce the notation &= mw/
16T .r. Then the frequency-dependent anomalous
response which should be added to Schmidt’s result
for the AL contribution is

o/a(2D)= 27¢/7)[&r—In(2®)]. 2n

Both contributions ¢’, and ¢, are always positive, so it
is somewhat puzzling that significant changes in the
conductivity were not observed in one reported micro-
wave experiment,? especially since corrections to the

+y1n(

B R. V. D’Aiello and S. J. Freedman, Phys. Rev. Letters 22,
515 (1969).
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static conductivity were expected only very near the
transition. A more recent experiment by another
group® shows good agreement with Schmidt’s theory,
as expected for lead films, in which the static conduc-
tivity is dominated by the AL contribution.
For wires the divergence is much stronger, going as
g
o'a(1D) = (e2£/2S) (1 /77 M2—m/27%2) . (28)
If the cutoff is due to a pair-breaking interaction like
that resulting from the application of an external
magnetic field, the total conductivity due to fluctuations
may be expressed in terms of §=[7.(0)—T.(H)]1/T.;

The answers we have obtained for the first corrections
to the conductivity are valid only as long as they are
small compared with higher-order corrections. For the
regular terms the requirement is met simply if ¢'<o.
However, the anomalous terms are more badly behaved.
As we noted at the end of Sec. IT the expansion of the
anomalous terms goes as (A/Dg?)?. Substituting Eq. (20)
for |A|? and integrating over the appropriate momen-
tum element, we obtain the requirement ¢'e7, in
one and two dimensions. Even in the three-dimensional
case, the higher-order dynamic response is singular,
requiring ¢’'Ko(77.)12. These results may be verified
by examining a typical anomalous term of order A4

In general, we do not know how large 7, is, nor do we
have a rigorous calculation of the response to all orders
in A, which would be important if 7, is small. However,
starting from any small 7. we can increase it by applying
an additional pair-breaking interaction. Therefore, it
would be particularly interesting to study the effects
of magnetic fields on those films which show fluctuation
conductivities larger than AL.

The results given in this section are valid for not too
large shifts of 7', 6<%, and for perpendicular fields
only if 72>5. We have also calculated more general
results not subject to these limitations and will present
them in a separate publication.®

IV. CONCLUSION

We have recalculated the dynamic response of super-
conductors to electric fields, removing some incon-
sistencies and obtaining significantly different results
from previous calculations. Further experimental work
might test the validity of the details of the theory in
the microwave, flux-flow, and fluctuation regimes.

% S. L. (A.) Lechoczky and C. V. Briscoe, Phys. Rev. Letters
23, 695 (1969).

3t International Conference on the Science of Superconductivity,
Stanford, 1969, Physica (to be published).



