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(above approximately one-fourth the Debye tempera- where
ture) f p„(which depends on theinteratomic potential)
is linear in temperature. If one defines

8 gaPy
/1 pv=& C pv (r) +

Br „, Up

(A6)

one can obtain a temperature coefficient for the third-
order elastic constants

Capv(T r)=C pq(Toro)+AapvX (T To) (A7)

In summary, C p~~ and g p~ are independent of tem-
perature by definition. Thus, Eq. (A7) predicts that the
third-order constants are linear functions of tempera-
ture (above approximately sr). The slope of a plot of
the constants as a function of temperature is the
coeKcient A p~. Future detailed comparison of mea-
sured values of this coefficient and the theoretical value
as determined from the calculations indicated in Eq.
(A7) could conceivably yield important information
about interatomic forces.
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The coherent-potential approximation (CPA) is extended to study general band shapes and systems having
orbital degeneracy. This permits its application to realistic systems, in particular the EiCu alloys. The e6'ects
of alloying on a highly asymmetric model density of states characteristic of some of the features of the
density of states in fcc transition metals are considered in detail. A model Hamiltonian for paramagnetic
NiCu is constructed using a basis of orthogonalized plane waves and tight-binding d functions. Orbital
degeneracy and hybridization are treated as in paramagnetic Ni. ERects of alloying are assumed to be
restricted to the diagonal elemensts of the d-d block. The model is applicable to the Ni-rich alloys, as is the
approximation used to obtain simple solutions of the full CPA equations. The results are consistent with
recent photoemission data on EiCu, and with the "minimum polarity" hypothesis used by Lang and
Ehrenreich. They are incompatible with the rigid-band model because the scattering potential of the random
alloy is strong compared to the peak widths, Rather than a rigid shift of the density of states, the calculated
concentration dependence shows that the main peaks remain stationary while changing magnitude and shape.
Decomposition of the total density of states into Ni and Cu contributions confirms that, for the expected
position of the Fermi level, the d holes are located primarily on Ni sites.

I. INTRODUCTION

'N this paper the electronic density of states and other
- - one-electron properties of the EiCu alloys above
their Curie temperatures are studied within the co-
herent-potential approximation (CPA). ' The work re-
ported is the first attempt to apply the CPA to a real
alloy system.

The CPA, introduced by Soven' for the study of elec-
trons in a substitutional alloy, and earlier by Taylor'
for the formally similar phonon case, has been studied
in detail in several recent papers. ' '
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The CPA results from the self-consistent solution of
the usual multiple-scattering version' of the Schrodinger
equation, within a single-site approximation, in which
the properties of all sites but one are averaged over, and
that one is treated exactly. It has therefore been found
useful in the description of short-ranged scattering in
the alloy. The principal advantage of the CPA over
other simple approximations results from its self-con-
sistency; the CPA extrapolates away from the limits of
low concentration and weak scattering in a physically
reasonable way. EGects due to details of the possible
local surroundings of a site, are of course averaged over
in this approximation. However, we are not interested,
in the calculations to be reported, in such refinements
as "tails'" of localized states.

The idealized model treated in VKE based on a non-
degenerate tight-binding band is far removed from a
real alloy, but ÃiCu proves to be a good candidate for
treatment by an alloy theory not very much more

' M. Lax, Rev. Mod. Phys. 23, 287 (1951}.' I. M. Lifshitz, Usp. Fiz. Nauk 83, 617 (1964) )soviet Phys. —
Usp. '7, 349 (1963)g.



PARAMAGNETIC SiCu ALLOYS ' ELECTRONIC ~ ~ ~ 3251

sophisticated than that of VKE. It exists in the same
fcc form for all concentrations with no ordered phases.
The lattice constant changes by only 2rs /~ between pure
Ni and pure Cu. ' There is evidence for clustering of like
atoms in a single EiCu sample of roughly equal concen-
trations, ' but the clustering observed is slight and short-
ranged. Far beyond the scope of this study is recent
observation of the magnetic properties of the EiCu
alloys at large Cu concentrations, "which suggest that
the local environment has a strong inhuence on the
magnetic susceptibility of an individual Ni atom in the
alloy. Since we shall seek only the average electronic
properties at low Cu concentrations, it will be sufficient
to picture EiCu as an ideal binary substitutional alloy.

The electronic band structures of pure Ni" and pure
Cu" are well known. Comparison of these band struc-
tures reveals that the only substantial differences lie in
the d bands. They differ enough to preclude use of
perturbation theory or the rigid-band model'3 in the
alloy. However, since they have basically a tight-bind-
ing character, the alloy is suitable for treatment within
the single-site approximtion.

SiCu therefore has many of the properties of the
single-band substitutional alloy treated in VKE. It
divers, however, in that hybridization with the s band
occurs, the d bands are fivefold degenerate, and the
shape of each band, in contrast to the simple model band
used in VKE, is quite complex. The third of these differ-
ences is studied, within the nondegenerate band scheme,
in Sec. II, by introducing a highly asymmetric "steeple"
state density with a sharp peak to represent the presence
of critical points. It is found that the asymmetry of the
band introduces no complications, but that the width
of the peak becomes an important new parameter of the
problem. Only when the strength of the random scatter-
ing is much less than this width is the weak-scattering
limit attained. This observation has immediate rele-
vance to Ni and Cu, for the density of states in each has
characteristics found in the "steeple" model.

Hybridization and orbital degeneracy are added to
the model in Secs. III and IV. In Sec. III, a model
Hamiltonian, based on the s-d interpolation schemes of
Hodges et al." and Mueller, " is constructed. Ke start
with pure Ni, in order to describe the ¹irich alloys,
and show that the most important effect of alloying is
to shift down the atomic d levels at Cu sites. The size

8 K. A. Owens and L. Pickup, Z. Krist. 88, 116 (1934).
B. Mozer, D. T. Keating, and S. C. Moss, Phys. Rev. 1/5,

868 (1968).' T. J. Hicks, B. Rainford, J. S. Kouvel, G. G. Low, and J. B.
Comly, Phys. Rev. Letters 22, 531 (1969)."J.G. Hanus, MIT Solid State and Molecular Theory Group
Quarterly Progress Report No. 44, p. 29, 1961 (unpublished);
E. Zornberg, Phys. Rev. B I, 244 (1970).

» B. Segall, Phys. Rev. 125, 109 (1962); G. A. Burdick, ibid
129, 138 (1963)."N. F.Mott and H. Jones, Theory of the Properties of 3IIetals aid
A/loys (Dover Publications, Inc., New York, 1958).

'4 L. Hodges, H. Khrenreich, and N. D. Lang, Phys. Rev. 152,
505 (i966)."F.Mueller, Phys. Rev. 148, 636 (1966).

of the shift is estimated by comparing the Ni and Cu
band structures, as well as by consideration of the
energy levels of the Hartree-Fock potentials appropriate
to the respective band calculations. The results of the
two procedures agree. This gives rise to a short-ranged
scattering which the CPA can, in principle, treat.

The CPA equations for the properties of the averaged
alloy, derived in Sec. IV, are simple in form, but diffi-
cult to solve. The effective Hamiltonian describing the
averaged system contains a scattering contribution of
two components, of t2, and e, local symmetry. These
satisfy a system of coupled equations analogous to the
CPA equations for the single band. It is shown in Sec.
IV that the equations can be decoupled in the limit of
the Ni-rich alloys, even in the presence of degeneracy
and hybridization.

In Sec. V we calculate an alloy state density for EiCu,
using only the density of states as input. Results are
given for several values of the concentration. Partial
densities of states from Ni or Cu sites may also be ob-
tained in the CPA, and are studied in this section to
estimate the amount of charge transfer in the alloy, and
the consistency of our initial assumption of neutral con-
figurations for each type of atom.

Finally, we compare the total d density of states with
the photoemission data of Seib and Spicer."Sharp struc-
tural features, characteristic of pure Xi, persist in the
alloy photoemission results up to large Cu concentra-
tions. The CPA is able to account for this.

At the outset, it will be necessary to summarize a few
of the CPA results, using notation consistent with VKE.
The one-electron Hamiltonian will be assumed to take
the form

II=W+D=W+Q D„,

where W is periodic and D consists of a sum of random
contributions, each associated with a single site. The
one-electron properties of the alloy are given by an en-
semble average over all possible arrangements of the
atoms in the lattice, of the Green's function,

(G(s))= ((s—D—W) ')=—(s—W —Z)
—'. (1.2)

If the T matrix for a given configuration of the alloy is
defined by

G= «)+(G)~(G),
an obvious functional equation for the unknown oper-
ator 2 is generated:

(TL~j)=o

Equation (1.4) is a self-consistency condition on the
choice of Z.

Decomposing

D —~=K (D.—~.)—=Z J.,

"D. H. Seib and W. K. Spicer, Phys. Rev. Letters 20, 1441
(1968); D. H. Seib (private communication).
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we may define a local scattering operator

T =U„(1—(G)U ) ', (1.6)

between Bloch states. Thus, Z will take the form

Z.,=Z(s) X1. (2 7)

which describes the effect of replacing the effective
medium, characterized by Z, by the true atom at the
given site m. The CPA replaces the general self-consist-

ency condition (1.4) by its single-site approximation':

Equation (2.7) implies a very simple form for the aver-

aged Green's function:

(G)=
I
s—W—Z(s) j '= 0 "&(s—Z(s)), (2.8)

which states that the average effect of substituting a
true atom at a given site in the effective crystal is zero.

The random potential D—2 may be decomposed as in

(1.5), to yield

II. SINGLE BAND OF GENERAL SHAPE
U-= I~)(o-—~(s))(~ I. (2.10)

In this section we discuss, within the CPA, the effects
of alloying upon a nondegenerate band of general shape,
described by a simple model Hamiltonian. The more
complicated case of degenerate bands is examined in
later sections. As in VKE,4 the single-band model
Hamiltonian, when expressed in a Wannier basis in a
tight-binding form

Because U is site diagonal, the local t matrices defined

by (1.6) have the simple Koster-Slater'r form

T„= I1z)(o„—Z(s)){1—Lo„—Z($)]F&'&(s)} '(el. (2.11)

The single-site self-consistency condition (1.7), when

applied to (2.11), leads to the equation for Z(s).

Z= o+ LZ —o"jF(s)LZ—P$, (2.12)

H=P IN)o„(eI+ P ln)t„„(ml,

can usefully be separated into Lcf. (1.1)$

(2.1) first derived by Soven. ' In (2.12), we have denoted the
average of the diagonal elements by e'.

o= ((0 IDIO))=*o"+yo . (2 13)

(2.2)

and m is a scaling parameter equal to half the band-
width and x, y= 1—x are, respectively, the concentra-
tions of A and 8 atoms. We shall set +=1 in all

calculations.
A periodic crystal limit is reached by setting 8=0.

Quantities obtained in this limit will be denoted by the
superscript (0). For example, the Green's function and

the density of states are given, respectively, by

G'o&(s) = (s—W) ' (2 4)

where the off-diagonal elements of 8' are assumed to
have the periodicity of the lattice. However, the diag-
onal elements e„of D are random functions of the site
index. For a binary substitutional alloy 3 8„they take
on the values e" and P, where

o"= -', bw, os = ,'bw, —
f& —=7r& '(o" os), (—2.3)

F (o& (s)— p(o& (E)
Qo

(2.14)

completely specifies J'(') in terms of the density of states
in the unperturbed crystal.

To construct a form of F& &(s) that is useful for cal-

culation, we shall approximate the density-of-states
function p "&(E) to the accuracy desired by a straight-
line interpolation connecting the points p"&(E~). The
edges of the band are taken to be at Eo and E„.The re-

sulting F(" takes the form

n

F&o&(s) =P a;(s—E;) ln(s —E,).
i=0

(2.15)

Fquation (2.12) for Z(s) requires only knowledge of
F&o&(s), not complete specification of W. Because F''&(s)

is analytic except for a branch cut along the real axis,
the Kramers-Kronig relationship,

p&o&= —~ i Im(1/E) Trl G(o&(E+i0)]
= —ir ' Im(0IG~'&(E+i0) IO)

ImF (o&(E+i0) . (2 5)

More generally, we define

F(s) = (ol(G(s)) Io). (2.6)

When 6 is nonzero, the random terms in D will give
rise to a scattering correction to Z(s) which, in the

single-site approximation, is site-diagonal and will give

a k-independent contribution to matrix elements of 5

The coefficients ai may be found by evaluating the
integral in (2.14), or by using (2.5) in. each of the inter-

vals between 8 s. The second procedure is used in

Appendix A to show that the ui are the differences in

slopes between the segments of the interpolated density

of states to both sides of the points E;.
Form (2.15) for FN& will be used in the numerical

calculations for ÃiCu reported below. It has also been

applied successfully by Liebermann et al." to a tight-

~' G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).
"K. Liebermann, B. Velicky, and H. Ehrenreich, Bull. Arn.

Phys, Soc, 14, 320 (1969).
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results for a range of A concentrations x=0—1 are shown
or = . i e this value of 5 was sufficient to produce

band splitting at all concentrations for the simple model
density studied in VKE, such splitting is seen in Fig. 2

only for concentrations less than 0.5. The two main sub-
an s o not shift much with concentration, but re-

main nearl fixedy ed in energy as the concentration x de-
creases from 50~~q. In fact, at all concentrations there
appear majority and minority regions of the densit of
states, one growing as the other declines with concentra-
ion. This behavior is characteristic of the "split-band"
imit, in which the scattering strength exceeds the band-

width. ' Here, however, 8 is to be compared to the peak
width; it is five times as large.

The asymmetry between effects at the top and at the
bottom of the band continues to be apparent in Fig. 2.

n the results shown for x=0.8 and 0.9, the regions of

broader than the corresponding split-off bands observed
or x=0.2 and 0.1. Finally, we note that the split-off

majority sub-band, or the region of an unsplit densit
of states to which the majority components make the
dominant contribution, has nearly the full structure and
asymmetry of the pure material. By contrast, the asym-
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metry of the minority region of the density of states is
greatly reduced, and its structure almost nonexistent.

The CPA has been shown' to extrapolate in a physi-
cally reasonable manner into the regimes of moderate
concentration and scattering strength. By performing
the analysis complementary to that of the preceding
figure, holding x fixed and varying 6, we can obtain
information about the extent to which the CPA's single-
site averaging adequately describes the true density of
states. Figures 3(a)—3(c) show the alloy state densities
for x=0.1 (a), 0.5 (b), and 0.9 (c), each for several
values of b. The results fall within the exact bounds on
all possible spectra of the model alloy Hamiltonian
which are indicated by the outer boundaries of the V-
shaped regions in the three figures. These bounds are
defined by a theorem which states that the model
Hamiltonian (2.1) can have no eigenstates with energies
outside the union of the two intervals,

where E, and E;„are the edges of the band in the
pure crystal. I.ifshitz' has given intuitive arguments to
suggest that every energy within the bounds (2.17) is
in fact an eigenvalue of some configuration of (2.1).
Because there appears to exist no compact and com-
prehensive discussion of these theorems in the literature,
the necessary proofs are summarized in Appendix B.

The regions of energy allowed by (2.17) for which the
CPA predicts no density of states have been dotted in
Figs. 3(a)—3(c). These regions may be occupied when
approximations transcending the CPA are applied. The
resulting states will be associated with "clustering, "e.g.
local departures from stoichiometry, and will contribute
tails or other structure to the state density in the dotted
region. Since the number of states in the band, and, as
shown in Appendix B, each split sub-band as well, is
fixed, the formation of tails will be compensated for by
a draining off of states in the CPA band.

For x= 0.1, illustrated in Fig. 3(a), an impurity band
splits off above the peak at 8=0.3, and both majority
and minority sub-bands rapidly assume their strong-
scattering limiting forms. Once split oG, the majority
band almost fills its localization region, leaving little
room for tailing effects. On the other hand, the tails
associated with the impurity sub-band may spread over
such a large region of energy that the true density of
states could differ greatly from the CPA result. Because
in Fig. 3(a) the impurity sub-band splits oR at so small
a value of 6, the density of states in the vicinity of the
upper edge is strongly distorted even at the smallest
nonzero values of 8 considered. No value of 8 treated
was small enough for the weak-scattering limit, in which

(2.18)
to be applicable.

The second case, for x=0.5, in Fig. 3(b), is also very
sensitive to alloying. Kith increasing 8 the principal

peak splits. The lower peak overlaps the shoulder region
and becomes increasingly broad as it moves toward the
bottom of the band. This behavior parallels the con-
tinuum broadened impurity levels appearing in the
dilute alloy. "In the strong-scattering regime, the sharp
corners, resembling critical points, are rounded over.
The upper band edges of the tmo split sub-bands, near
which most of the density of states is concentrated, fall
nearer to the exact spectral limits than do the lover
shoulderlike edges. Thus the clustering effects not con-
sidered in the CPA should have less effect upon the
upper edges than on the lower edges.

As shown in Fig. 3 (c), for x= 0.9, the resonance is too
strongly damped to be observable in the shoulder region
at small B. Increasing 8 from zero merely causes the band
to broaden, until at 8~1.4 the impurity band finally
splits off.

As in Fig. 3(a),the majority sub-band, once split,
nearly fills its localization region, but the sharp structure
in this sub-band appears to be somemhat less rounded
off at a given value of 8 than is the structure in the
majority sub-band for the case @=0.1. By compar-
ing Fig. 3(c) with Fig. 3(a), the impurity sub-band
emerging from the shoulder can be seen to be wider and
more symmetric than the sub-band split oG above the
peak by a 5 of the same magnitude.

IIL MODEL HAMILTONIAN FOR NiCu

Construction of a model Hamiltonian to describe
cViCu requires some picture of the crystal potential in
the"alloy. This is a dificult problem in general, but for-
tunately less so in the case of EiCu. The fact that the
dimensions of the Kigner-Seitz cell are almost identical
in Ni, in Cu, and in their alloys suggests as a starting
approximation that me place on Ni and Cu sites in the
alloy the atomic Hartree-Fock potentials in the con-
figurations appropriate to the calculation of the respec-
tive band structures of the pure metals. The high energy
cost associated with departures from charge neutrality
in each cell suggest that the neutral configurations mill

be approximately self-consistent in the alloy. Band
structures in agreement with existing experimental data
have been obtained for Ni" and for Cu" in the Hartree-
Fock approximation, starting with atomic 3d"4s con-
figurations. It is not surprising that the resulting plane-
mave-like bands are nearly identical outside of the re-
gion in which hybridization with the d bands takes place.
In each case there is roughly one non-d electron per
atom in the crystal.

From these comparisons, me expect the s bands in
SiCu to be unaffected by alloying, and concentrate our
attention on the alloy s tight-binding-like d bands. Thus
the alloy states may be expressed in a basis of a few
reciprocal-lattice vectors and five tight-binding d func-
tions, whose construction is discussed in detail below.
We shall derive a model Hamiltonian for this basis in

"J.Friedei, Suppl. Nuovo Cinmnto 'F, 287 (1968).
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the form of the combined interpolation schemes of Refs.
14 and 15. The problem of determining the alloy poten-
tial has thereby been reduced to that of specifying a few
matrix elements of that potential. Explicit consideration
of correlation effects between d electrons vill be un-
necessary, as we are interested in the properties of the
alloys above their Curie temperatures.

Further comparison of the Cu and Ni band structures
shows that the Cu d bands lie lower than those of Ni,
and are somewhat narrower. Since pure Cu and pure Ni
correspond to the endpoints of the alloy series, these
differences determine the effects of alloying on the d-d
block of the alloy model Hamiltonian. To discuss this
block we must first transform it from the customary
Bloch tight-binding basis into a basis of atomic orbitals.
In this form we write the d-d block of the model Hamil-
tonain as

where the ~pn. ) represents a d orbital, centered on the
mth site. If p is 1, 2, or 3, the orbital has t&, symmetry
about its site; if p is 4 or 5, the symmetry is e,. A Ni
oribtal is used if the site e is a Ni site, and similarly
for Cu.

The shift of the d bands may be accounted for by
letting the e„„take values appropriate to pure Cu and
pure Ni on Cu and Ni sites, respectively. The narrowing
implies some random behavior for the t„„„.However,
the effects associated with randomness among the off-
diagonal elements cannot be separated in the form of
(1.1) into independent contributions from each site, so
they are intractable in the present form of the CPA.
Therefore, we shall require that the off-diagonal part
of the d-d matrix (3.1) be translationally invariant, and
set the t„„,„equal to their values for pure Ni, in order
to discuss the Ni-rich alloys. It would be possible to give
the off-diagonal elements some heuristic concentration
dependence without removing the requirement of trans-
lational invariance. We have not done this, since ex-
perience with the single-band model' has shown that a
wealth of physical behavior can be obtained from a
model with only diagonal alloying effects.

As a final justification for this approximation, we note
that direct evaluation of the tight-binding matrix ele-
ments of (3.1), using the atomic Hartree-Fock orbitals
and potentials for Ni and Cu, shows that the variation
in the alloy of any off-diagonal element is small with
respect to the difference between diagonal elements
since the differences between the two potentials are both
quite localized near the center of the atomic cell and
contribute little to two-center integrals. Moreover,
effects of alloying on the off-diagonal elements of the
Hamiltonian (3.1), although they do cause the change
in width, cannot alter the basic topology of the d bands.
Therefore, we feel that the procedure of treating only
the diagonal effects of alloying is a physically reason-
able one.

It remains only to determine the size of the splitting
8 between Ni and Cu d states. This is the same for the
two orbital symmetries, since crystal field terms are
small in both Cu and Ni, and can be determined by
comparing the values of the parameter Eo, which in
Hodges's" notation takes the place of e„„in the absence
of crystal field splitting, in the interpolation Hamil-
tonians for Ni and Cu. Eo proves to be 0.06 Ry greater
in Ni than in Cu, when referred to the point I'~ as origin.
We make this choice of origin because, as noted above,
the s bands in Ni and in Cu are nearly identical, and are
assumed to be unchanged in the alloy.

As a check, we can also estimate the splitting 8 by
comparing the positions of the 3d levels of the neutral
atoms in the 3d"4s configurations, using atomic poten-
tials modified to include the increased screening in the
solid due to the higher s-electron density in the core
region. " In these modified potentials, the 3d states lie
above the 4s levels, as the associated bands would in a
solid. Comparing in each case the 3d energy with the 4s
energy, which can be shown" to fall roughly at the mean
energy of a singly occupied s band in the solid, we find
again a shift of 0.06 Ry between Ni and Cu 3d energies.
Our model Hamiltonian's d-d block, as constructed in
the localized basis, consists simply of the corresponding
d-d Hamiltonian for pure Ni, with all the diagonal ele-
ments of Cu sites shifted down by 0.06 Ry.

IV. CPA FOR INTERPOLATION HAMILTONIAN

We shall now study the properties of the full inter-
polation Hamiltonian for a EiCu alloy, using the d-d

block derived in Sec. III, and extending the CPA to
treat the d bands in the presence of hybridization and
orbital degeneracy. This Hamiltonian, expressed in a
basis of tight-binding Bloch functions and orthogo-
nalized plane waves, will be separated into a random
part D and a configuration-independent part W:

W„W,g 0
W~g Wgr + Dgg 0

.Wd, Wz g Wpg. i0 0 Dz z.
(4.1)

The various blocks in (4.1) are labeled by the indices s
for the plane-wave-like states, d for the tight-binding
d states, and E or T for d states constructed from atomic
orbitals of e, or t2, symmetry, respectively. Although
the basis functions used in defining (4.1) are not transla-
tionally invariant because of the site-dependent assign-
ment of orbitals, we assume configuration-independent
and translationally invariant matrix elements W. We
shall set them equal to the appropriate elements of the
interpolation Hamiltonian describing pure Ni; thus they
are concentration-independent as well. The details of

~2L. Hodges, thesis, Harvard University, 1966 (unpublished),
Appendices.

2'L. Hodges, R. E. Watson, and H. Khrenreich, Phys. Rev.
Letters 24, 829 (1970).
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the interpolation Hamiltonian, and the fitting of its
parameters, are contained in Refs. 14 and 22.

It will prove useful to express the elements of the
random d-d block D in terms of the matrix elements of
some simple projection operators. The basic projectors
are I' ~ and I'„p, which select the subspace of e, or t2,
symmetry about the site e, and have the properties

the d-state densities pz and p&. When the exact Z, or any
reasonable approximation to it, is used in (4.7), pg and
pp satisfy simple sum rules:

dE Pz(E) =2, dE PT(E) =3. (4.11)

PngPmg=~nmPngy PnTpmT= 0nmpnr ~ PngPmT

(4.2)

Because D, as noted in (4.6), is site-diagonal, both
the scattering matrix T„and the self-energy 2, in the
single-site approximation, will be site-diagonal:

Other projection operators may be constructed from
these to select all d states at a given site, or all states of
a given symmetry in the crystal:

P„=P„g+P„r, Pg QP„g,——Pr QP„T.——(4.3)

Useful operators are also obtained by summing only
over Ni or Cu sites in the alloy:

PNi P P PCu P P
(N i) (Cu)

PZN' PZP"' ——etc. (4.4)

Z=QP Z P„. (4 12)

T„is obtained by a simple generalization of (2.11) to
the subspace of the five d orbitals. Application of the
self-consistency condition (1.7) yields the CPA equation

Z = (D„)—(D„c"—Z )P (G)P„(D„N'—Z„), (4.13)

analogous to (2.12).
Because Z„and P„(G)P„are properties of the aver-

aged crystal, they must have the fcc point symmetry.
Therefore, we have

All of these subdivide the subspace selected by I', the
operator projecting onto all d states:

p pgypr PNi+PCu p p
and

Z„=ZZP„g+ZTP„T,

P„(G)P„=FgP„g+FTP„T.

(4 14)

(4.15)

The operator D, given by (3.1), when expressed in
terms of the operators of (4.2),

D= ZnDn= Zn(&ngpng+ &nTPnr)

ggNxPZNx+ &TNiPTNi+ qgcuPgcu+ &TcuPrcu (4 6)

is seen to be a sum of single-site scattering contributions.
Its effects will be treated by using the CPA to de6ne
an appropriate effective self-energy such that, in the
single-site approximation,

Although the configuration-dependent basis set used in
deriving (4.1) precludes associating an operator in real
space with the averaged matrix (G), we may use (4.7)
to obtain physical quantities, such as the average den-
sity of states per atom:

p(E) = —(mN) ' Im Tr(G(E+i0)). (4.8)

Equation (4.8) may be decomposed, using the pro-
jection operators, into the contributions from different
types of states:

IIA II(II/A) = (II/A) IIA II= II.
It can be shown that

(4.17)

Here Zz z and Fz & are site-independent scalar quan-
tities. Substituting (4.15) and (4.14) into (4.13) yields
two scalar equations for Z~ and Zy..

Zg= (eg) —(ego" Zg)F g(e—gN' Zg), (—4.16a)

Zr ——(er) —(~r "—Zr)FT(er '—Zr) . (4.16b)

Although each of the equations (4.16) has exactly the
form of the single-band case (2.12), they are coupled
through the implicit dependence of F~ and Fy on both
Zg and Zr. There is no simple relation of the form (2.9)
to represent, for example, Fg(s) in terms only of Zg and
the unperturbed Green's function.

Sy an explicit calculation of Fz, we shall now de-
scribe its dependence on Zg and ~~, and develop an ap-
proximate method of decoupling the Eqs. (4.16). The
technique to be used is the partitioning method of
Lowdin. '4 Given an operator A and a projector 0, the
operator (II/A) is defined by

where

p= p.+p~= p.+pz+ pr, (4 9) Ij:A-in = (4.18)
A —IIA P(1—II)/A)A II

p.= —(7') ' Im(Tr(1 —P) (G)),
pg= —(irlV) ' Im(Trpg(G)),

(4 10a) Using this procedure, we may evaluate

(4.10b)
and

pr = —(mE) ' Im(TrPT(G)) . (4.10c)

Since p, is small, we shall be primarily concerned with

Fg = (2X) 'TrP g (G)Pg
= (2A) 'Trpg(s W ZgPZ ZTPT) —'Pg — (4.19—)

"For example, P. O. Lowdin, J. Appl. Phys. 33, Suppl. 1, 25j.
(&95&).
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Pg(G)PE= PE(P(G)P)PE,
1 pg '(g)

Fg '(s)=- dn
2 z—9

(4.29)and the partitioning proceeds in two stages, the erst,
using (4.18) inside the parentheses of (4.20), to separate
the s from the d states, the second to obtain the e, con-
tribution. The result is

implies that the only input information needed for the
calculation is the e, and t2, components of the Ni density
of states, and the value obtained in Sec. III for 8.

The conditions (4.26) of course limit the validity of
the results obtained in this simple way, but the limita-
tions are not severe. The model Hamiltonian was con-
structed to describe the region of low Cu concentration,
in which AE and AT are expected to be small. The ap-
proximation (4.26) appears in (4.25) in two places. The
hybridization term Q is a slowly varying function of the
energy, "and the changes in argument are permissible.
The neglect of hg and hr in the denominator of (4.25)
may be more important near the band edges. 4 However,
a quantitative check is provided by a comparison of the
upper edges of the e, and t2, bands. Without the approxi-
mation (4.26), Eqs. (4.16) predict that the two edges
coincide. Use of (4.26) leads to a difference in energy
between the approximate edges, which, however, is
small. The practical benefits of the approximation,
which avoids rediagonalization of (4.1) for all values of
ZE and ZT, outweigh these limitations.

YVith the self-energies calculated from the CPA equa-
tions (4.16), we can ob.tain the components of the alloy
density of states by combining (4.10) and (4.15):

(4.21a)Fg(s) = (2A') ' Tr(PE/Lg),

L,g = z Wg g—Zg —Qg g —)Wg—r+P gQj
Xp'r/(s Zr &—rr —Qrr)]—[Wrg+Q»j (4 21b)

The quantity Q(s), which contains all the effects of
hybridization, is defined by

(4.22)Q(s) =Wg, -W,d.
z —B'„

In (4.21), Zz is seen to affect Fg only through the final
term in the denominator, which describes coupling, both
direct and indirect via hybridization, between the e,
and the t2, states.

If the energies entering (4.21) are redefined slightly
by introducing

(4.23)AE ZE 6E 7 AT ZT 6T

and
Z'=Z —AE, (4.24)

by inspection. However, (4.19) is first rewritten, using applied independently to Fg and to Fz. The integral
representation,

(4.20)

the denominator of (4.11) may be rewritten as
pg(E) = —(2/zr) ImFE(E+zO),

pr(E) = —(3/zr) ImFr(E+z0).
(4.30)

s' —egN' —Wgg —Qgg(s'+Dg) —(Wgr+PEQ) /Pr/
(s +Ag Ar Er Wrr Qrr)$—(WrE+QPE) .

(4.25)

Even the partial densities of states pE T ' and pE T
coming from Ni and Cu sites, respectively, in the alloy,
may be expressed in terms of XE,T and Iiz, T. For ex-
ample, pTN', defined by

prN'(E) = —zr
' Im Tr(Pr"'G(E+zO)), (4.31)

DTT &T
I' T

TNi &TCu
(4.32)

It will now be clear under what conditions a relation of
the form (2.9) is valid for (4.25). If DE=0, the hybrid-
ization term becomes approximately Q(z ); if in addi-
tion 3E—&T=O, the terms describing e,—t~, mixing de- may e eva ua"ed by us'ng &he exPres»on
pend solely on z'. These criteria are guaranteed, both
for this case arid for the analogous treatment of FT, by P, Ni

the conditions

DE=0, AT=0. (4.26)

Fg(s)=FgN'(s')=Fg '(s Zg+cg —'), (4.27)

If (4.26) holds, we may neglect 6E and Ar in (4.25),
and obtain

for PrN'. Because the projection operator (4.32) is con-
figuration-dependent, the average in (4.31) must be
taken over both the Green's function and the projector.
The result may be expressed in terms of G in several
steps; making use of the form (4.1) of D, we have

and, in like fashion,

Fr(s) =Fr"'(s Zr+ erN') . — (4.28)

( z( zr er ")G)=( r(H ——W—r ")( —II) ')
=Pi(s—W —er ")(s W Z) ' Pr- — —

=P,(Z,—.,o.)(G), (4.33)
In (4.27), FEN' is taken to be (4.19) with Z given by its so that, finally,
value for. pure Xi, i.e., ZE= eE '. The definition of I"T
in (4.28) is analogous. Now the techniques developed pr '(E)= —(zr&) '(&r ' —&r ") '
for a single band of general shape in Sec. II may be )&Im Tr(Pr(Zr —ere")(G)j. (4.34)



PARAMAGNETIC Ni Cu ALLOYS: ELECTRONIC ~ ~ ~ 3259

This expression, which is exact for the model Hamil-
tonian (4.1), reduces in the single-site approximation to

p&Nx(E) 3(7r+)—1(e&Ni e&cu)—1

I( — ') ( + o 3, (
using (4.14) and (4.15). A quantity similar to (4.34),
but valid only within the single-site approximation, was
derived in VKE. There the local state density mas
evaluated at a site containing a Ni atom and surrounded
by the effective medium characterized by Z, then mul-
tiplied by the probability that the site contained a Ni
atom, yielding

prN'(E) = —(1V) '(1—x) Im(F r(E+iO)/
I 1—(er"'—Zr)F r (E+t'0)$}. (4.36)

This was interpreted as the partial density of states per
Ni site in the averaged crystal. Using (4.16b) to relate
Zr and Fp, one can show that (4.35) and (4.36) are
equivalent in the CPA. Both definitions (4.35) and
(4.36) may be used in other single-site approximations,
but they yield different results. While the more general
expression (4.35) always satisfies the natural condition

pr(E) = p~ '(E)+w'"(E), (4.37)

definition (4.36) satisfies (4.37) only in the CPA. These
results generalize the discussion of the local densities
given in VKE.

O
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V. DENSITY OF STATES IN ¹iCu ALLOYS

The calculation of the density of states in the EiCu
alloys has now been reduced to a form in which the only
input information needed is pz ', pzw', 8, and x. These
determine Zr and Zz by Eqs. (4.16) and (4.29), and the
total and partial densities (4.8), (4.30), and (4.31), as
mell. The e, and t2, components of the density of states
in Ni can be determined easily in the interpolation
scheme, and are shown in Fig. 7 of Ref. 25. The t2,
density has two characteristic peaks, while the other is
relatively structureless. The work of Ref. 14 showed
that the position of the lower peak in the density of
states is quite sensitive to hybridization, so the explicit
treatment of hybridization of the alloy d bands, as
carried out in Sec. IV, is essential for an accurate
treatment.

The results of the CPA calculations, using as input
52-point interpolations of the form (2.15) of the f2, and
e, Xi partial densities, are contained in Figs. 4—7. Figure
4 shows the I2, densities for Cu concentrations of 0, 10,
20, 30, 40, 50, and 60%. The strong peaks characteristic
of pure Ni and Cu persist in all cases studied, but the
effects of alloying are nonetheless strong. At low con-
centrations, the peaks lose intensity rapidly and broaden
slightly, mhile the many wiggles due to fine features of
the density of states are quickly damped out. This pro-
cess tapers off at a concentration of about 30%, after

"N. D. Lang and H. Ehrenreich, Phys. Rev. 168, 605 (1968).

50% Cu

-4
~ 2

ENERGY (Ry)

60% Cu

FxG. 4. t2g density of states in SiCu, calculated in the CPA for
the model Hamiltonian (4.1), based upon that of Ni. In this, and
the results shown in Figs. 5—7, the splitting between d levels in Ni
and Cu is taken to be 0.06 Ry. The concentration, indicated at the
right, is increased in steps of 0.1 from pure Ni to 60% Cu. The
origins of the curves have been displaced for sake of clarity.

which the shape of the band changes little. The peaks
continue to lose height slowly, and the second peak
gains in strength relative to the first. The upper edge
of the t2,-state density function shifts very little as a
function of concentration.

This behavior of the t2, density should be compared
with that predicted by the virtual crystal model, which
takes the limit (2.18) of weak scattering. The latter pre-
dicts that the band will shift uniformly, with no change
in structure. Clearly, this does not occur in Fig. 4. Also
the shift of the upper edge of 0.03 Ry predicted for the
case x=0.5 is three times the shift calculated in the
CPA. Even if scattering corrections to the virtual crys-
tal limit (see VKE, Eq. 4.20) are included, the resulting
changes in structure affect all parts of the band equally.
This cannot explain the different behavior noted in Fig.
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N

-.2
ENERGy (Ry~

FIG. 5. The average t2, state density, calculated in the CPA for
the case 80'P& Xi, 20'P& Cu, is separated into its contributions
from Xi and from Cu sites in the alloy. These sum to give the total
t2~ density, denoted "TOT".

4 in the top and bottom of the band, where the bottom
half broadens while the separation of the two peak. s at
the top remains constant. A similar eGect was noted in
connection with the steeple model in Sec. II, whenever
8 exceeded the characteristic size of the steeple.

Because the scattering strength chosen was already
strong with respect to the widths of the t2, peaks, the
results were not terribly sensitive to the precise value
of 8 used. The same calculations were performed with 8
increased by a factor of 2, with results at low concentra-
tions almost identical to those shown in Fig. 4. At
higher concentrations the stronger scattering caused
the density of states to be more strongly smeared out
than were the corresponding examples for 6=0.06 Ry.
Similar conclusions hold true for the sensitivity to 8 of
the other calculated quantities presented in this section.

Several more detailed features of the calculations are
shown in Fig. 5, for the case of 20% Cu. The curves
represent the contributions to the average t&, density
of states from Ni and from Cu sites, pz ' and pp ", as
defined by (4.36), and their sum which, by (4.37), is
the net t2g state density in the alloy. To a remarkable
extent, the Ni states dominate the top peak, while the
Cu states are shifted to lower energies. Although the
density of states on the Ni sites closely resembles the
pure Ni state density, the density of states on the Cu

sites bears little resemblance to that of pure Cu or Ni.
Because the Ni partial density is much greater than the
Cu component near the top of the d bands, it is clear
that in the Xi-rich alloys, for which the Fermi level
lies in this region, d holes will be found primarily on the
Ni sites. Thus, our conjecture that the Xi and Cu sites
would retain the 3d"4s configurations in the alloy is
substantiated. This "minimum-polarity" hypothesis,
supplemented by some exact results concerning mo-
ments from Ref. 4, forms the basis of the simple calcu-
lations of the magnetic properties of A"iCu reported in
Refs. 25 and 26. This work assumed that the Cu sites
did not contribute to the density of states at the Fermi
level, and postulated a concentration dependence for
the peak at the top of the d band which is roughly simi-
lar to that calculated here.

The complete set of calculations for the Ni-rich alloys
is summarized in Fig. 6. For the six cases studied, from
10—60% Cu, we plot the t2, and e, densities of states and
their sum, the total state density, p&. The peaks in the
total d density of Fig. 6 are almost entirely due to pz.
Because p~ ' has little structure, we must compare 6
with the over-all bandwidth to determine if the weak-
scattering limit applies. Since 8 is much less than the
bandwidth, virtual-crystal-like behavior is indeed seen
in the e, states in Fig. 6, and their upper edge shifts down
more rapidly with concentration than does the top of
corresponding 32, state density, where the scattering has
been seen to be effectively stronger. As mentioned in
Sec. IV, the difference in behavior of the edges is an
artifact of our approximate decoupling of the equations
governing the states of the two symmetries. Since the
inconsistency is not too great, it has simply been ig-
nored in computing pz.

Finally, in Fig. 7, we compare the calculated total
densities with the photoemission data of the Stanford
group. " There are difficulties in the interpretation of

1O.O-

80.. (a)

m 60
LJJ TOT

I— 29t

m 20-
o 00
i 10.0-
~ 80. (d)
UJ~ 60-

4.0-
2.0-

{b}

(e)

0.0
-.60 —.40 —.20 0.00-.60 —.40 —.20 0.00 -.60 —.40 —,20 ' 0.00

ENERGY {Ry) ENERGY {Ry} ENERGY (Ry)

FIG. 6. Total density of d states in XiCu, calculated in the CPA
by adding the t2g and e~ components, properly weighted to account
for orbital degeneracy. Results are plotted for concentrations of
(a) 0,1 Cu, (b) 0,2, (c) 0.3, (d) 0.4, (e) 0,5, and (f) 0.6. The t2,
curves in this 6gure are also plotted in Fig. 4. The eg state densities
were obtained by the same procedure as were the t2g densities, using
the same value for the atomic splitting.

"S.Kirkpatrick, B. Velicky, H. Ehrenreich, and N. D. Lang,
J. Appl. Phys, 40, 1283 (1969).
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adduced to explain the behavior of transition metal
alloys, often fail. Our model, by requiring as input only
the density of states in pure Ni avoids speculating on the
fine details of the Hamiltonian in the crystal. The good
agreement between the calculations and various experi-
ments shows the CPA to be a potentially useful tool for
quantitative studies of these alloys.

APPENDIX A: FITTING AN ARBITRARY E& &

The density-of-states function p(0) (E) will be approxi-
mated by straight-line interpolation between the points
p'0) (E;) which we denote p;. E, and E„denote the band
edges. The interpolated density of states is given, for P
in the interval between Z; ~ and E;, by

Comparing (A7) with (A6) and using (A2) yields the
general result

u; =b;+~—b;. (A8)

It remains to be shown that F(o)(s) ~ 0 as 1/s when
s~~ as required by the definition (2.14) and the
asymptotic properties of G('&. Expanding the arguments
of the natural logarithms in (2.15) in this limit in powers
of s 'yields

n
F(') (s) =P a, (lns —E; lns+E, +0(s ')), (A9)

i=p

as ~s~
—+~. The coefficient of the s lns term vanishes

because, using (AS),
p(E)= p+b (E E')—

where the slope bi is

(A1)
n n

Q a;=P (b;+i —b,)=0.
i=p i=p

(A10)

b'= ( *
—p*-i)/(E' —E'-i) . (A2)

n

F(» (s) =P a;(s—E,) ln(s —E,),
i=p

(2.15)

can generate just such a linear interpolation of p()
through

At the edges, pp and pn=0, and we specify that bp and

bn+x= 0.
The form assumed for F( )(s) in Sec. II,

The coefficient P;a,E; can be evaluated by a summa-
tion by parts:

n n n

Z a'E'= 2 (b'+i —b' )E*=Z(b'+)E'+i —b*E')
i=p i=p i=p

n
—Z b'+i(E'+i E~), —(A11)

i=p

n n

b;+.i(E;+i—E,) =Q p;+i —p;=0, (A12)
i=p i=()

Im ln(E+i0) =xi, E 0

Imln(Eji0)=0, E)0 (A3)

assuring the proper asymptotic behavior.
and put a branch cut along the negative real axis.

To fix the a;, we compare p(0)(E) as given by (A1)
and via (2.5) by (2.15) in each of the intervals (E; i, E;).
Matching the two expressions for E in the interval

(E„ i, E„)determines a„directly:

APPENDIX 8 LOCALIZATION THEOREMS

Limitations on the configuration average of the spec-
trum of our model Hamiltonian may be obtained from
two directions. I ifshitz' has argued intuitively that any
eigenvalue of a pure crystal of either component will
also be an eigenvalue of some configuration of the binary
alloy. He reasons that in a random alloy there will be a
nonvanishing probability of a su%.ciently large cluster
of like atoms to yield eigenenergies arbitrarily close to
those of the pure substance. The spectrum of a pure A

crystal, in our model, occupies the closed interval
(+2B+E;,2(')+E ), while the spectrum of a pure 8
crystal fills the interval (——2ib+E;, —-',b+E,„).The
conjecture of Lifshitz, therefore, is that the union of
these two intervals must be contained within the aver-
aged spectrum of any substitutional AB alloy.

In the rather special case of a one-dimensional alloy
with certain restrictions on the atomic potentials, this
conjecture can be proved, using mathematical tech-

(A4)~n= bn)

while comparison in the interval (E; i, E,) relates a, to
b; and all the a;+&). . .) a . Let us assume that by induc-

tion we have determined the a,+~, . . . , a„, and seek u;.
Then, for E in (E; i, E,), (2.15) and (2.5) imply

n

p(o) (E) = P a, (E E,.) (AS)

Because we have already fixed a,+i, . . ., a„, (AS)
becomes

p(')(E) = ;(E E,)+p;,+b, (E—E;—) . (A6)—
However, from (A1),

p(0) (E) p+ b, (E E.)

p()(E)= —ir ' ImLF( (E+i0)j. (2 5) in which E„+i is some arbitrary energy. The first term
in the secondline of (A11) vanishes because b„~i=b0=0,

In determining the coefficients a; needed to do this, we while the se(ond term becomes by (A])
take the conventional definition of the principal value
of ln(s):
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niques which do no generalize to three dimensions. "
We know of no proof for three dimesnions.

It can be shown rigorously for a very general clsas
of alloy Hamiltonians, including the present, that there
will be no states in the alloy with energies outside the
limits just suggested. The proof uses methods developed

by Kato, 28 applicable to any Hamiltonian constructed
from bounded operators.

The two parts of our Hamiltonian (1.1), D and W,
may be represented as bounded operators in a Hilbert
space, in the sense that both have hnite Dorm. We de-

fine, for convenience, the norm of an operator to be the
magnitude of its largest eigenvalue. We now consider
the operator D+XW, where P, ranges from 0 to 1, and
construct its resolvent:

E(s) has poles at all points in the spectrum of D+XW,
but is analytic elsewhere. The power-series expansion
for R(s),

R(s)=(s—D) '+(s—D) r)i.W(s —D) '

+(s—D) 'XW(s —D) 9.W(s —D) '+. . . , (B2)

the point s and the nearest of +-,'b. The eigenvalues of
W lie on the real axis, in the closed interval (E;„,E,„).
If we assume that E .„= E—;, then ((W[)=E, and
the series (82) converges outside of two circles of radius
XE, , centered on &-,'8. This implies that the eigen-
values of D+XW, which are real, must all be contained
in the union of the intervals (rsli+XE;„, sb+XE ) and

(—-',h+XE;„,——',8+)~E,„).
Setting X=1 gives the'limit sought for the spectrum

of the model Hamiltonian. There is also a useful corol-
lary. For P =0, there will be exactly xS eigenstates of D
with eigenvalue —,5, and yE eigenstates with eigenvalue
——,'b. Since the eigenvalues are continuous functions of
the parameter X, there will be the same numbers of
eigenstates of D+XW in the intervals (+srb+E
%-,'|i+)E, ) as there had been eigenstates of D at
&-,'8, until the two intervals overlap. If 8 is sufficiently
large, 8&2, that the two regions remain distinct when
X= 1, there must be two separated sub-bands, which
will contain xN and yN states apiece.

We assumed above that E,„and ~E; ~
were equal.

It is trivial to remove this restriction by adding to 8' a
constant P,

converges absolutely for values of s such that s (Emax Emin) y (B4)

X(((&—D) 'W~[~&&(((s—D) '(( ~~Wjj &1. (B3) subtracting g from D, and considering the resolvent

Of course, the convergence of the expansion in a region
of s guarantees that no eigenvalues of D+XW lie in that
region.

Since D has only two eigenvalues, —', +8, the norm of
(s—D) ' is simply the inverse of the distance between

"J.M. Luttinger, Phillips Res. Rept. 6, 303 (1951).
's T. Kato, Progr. Theoret. Phys. (Kyoto) 4, 154 (1949), cited

and discussed in A. Messiah, Qgantuez 3IIechanics (John Wiley R
Sons, Inc. , New York, 1962), p. $12ff.

The norm of W+g is (E E; ), and th. e—poles of
(B5) lie in the intervals

For 'A= 1, this gives the same limits obtained above.


