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Transport in a Magnetic Field. II. The Transport Equations for an Electron Gas*
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(Received 17 March 1969)

The gauge-independent formalism of the previous discussion is applied to the construction of transport
equations on the density, spin density, and current density of a degenerate electron gas. Interactions are
included in a self-consistent field approximation. Scattering events are treated in a relaxation-time approxi-
mation. Three kinds of rf driving fields are considered: transverse magnetic, longitudinal electric, and
transverse electric.

I. INTRODUCTION

RITING the energy of a many-body system in
terms of the many coordinates and their mo-

menta, we can, in principle, study the system dynamics
by solving Hamilton's canonical equations. The infor-
Ination required for and obtained from this procedure is
of such detail that the prescription cannot be followed.
Also, this formulation of the many-body problem is not
suited to the generation of approximations.

To express the plasma problem in a more practicable
form, we focus our attention on more directly measur-
able dynamical variables such as the local particle den-
sity or current density. We attempt to construct a
dynamics of densities in place of the dynamics of
particles.

There are as many diRerent independent densities as
degrees of freedom of the problem, but because we need
information only about one or a few densities to make
contact with experiment, this point of view is far more
useful. The generation of approximations is greatly
facilitated.

A transport equation is a relationship between various
time and space derivatives of some densities. Setting up
a transport equation in classical physics starts with the
consideration of the joint density of particles in coordi-
nates and velocities, f(r,v). In general, this function is
coupled to more complicated functions, fr(r, r',v),
f (r, rs', r",v). . . , fs(r, r',v,v'). . . , etc. Quite useful ap-
proximations can be obtained, however, by replacing all
these effects by a coupling between f(r,v) and f(r',v') or
even by a phenomenological constant. The construction
of a transport equation then reduces to the kinematic
observation that

itf dv——=v Vf+ —Vvf
Bf cQ

and the identification of rndv/dt with the average force
on a constituent particle. This is the method of the
Boltzmann equation.

The quantum-mechanical problem is more difficult,
so rendered by the uncertainty relation between r and
p. This problem is surmountable in the limit of long-
wavelength variations in the densities. One considers

*Supported by Advanced Research Projects Agency.

the behavior of wave packets describing the motion of
single particles. As long as the spread in the packet can
be maintained well below the characteristic dimensions
of the system, i.e., much less than the wavelengths of
the important phenomena and the Fermi velocity, the
failure of localization is unimportant. The classical
dynamics of particles is replaced by the quantum me-
chanics of wave packets. Silin' has presented transport
equations for the density and spin density based on this
semiclassical approach, and these equations have re-
cently been put to considerable use. ' 4

We claim here that a fully quantum-mechanical
treatment of many-body dynamics leads to equations
which differ from Silin's in the e6ects of magnetic fields.

The reduction of the many-body problem to single-
packet dynamics occurs at a disturbingly early point in
the semiclassical treatment. Furthermore, the treatment
of the forces on a wave packet suggests a different gauge
choice for every particle of the plasma. ' Thus even if no
discrepancies arose, it would be of some interest to at-
tempt the derivation of transport equations from a more
completely quantum-mechanical viewpoint.

It is not sufhcient, however, merely to discard the
semiclassical approach and completely reformulate the
plasma problem. For the. same reasons that the Boltz-
mann equation approach is valuable in the classical
problem, the semiclassical approximation, with its
emphasis on the more directly measureable densities, is
highly useful. %e have, therefore, cast our reformulation
in language which makes as close contact as possible
with the semiclassical form. Our results appear as
slightly diBerent, Boltzmann-like transport equations.

It is also important that we maintain close corre-
spondence between our approach and the semiclassical
forms, because Silin's' ' equations are presented essen-
tially without accompanying derivation.

The joint density function f(r,v) occupies a central

V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957) LEnglish
transl: Soviet Phys —JETP 6, 945 (1958)$.' P. M. Platzman and P. A. Wolff, Phys. Rev. Letters 18, 280
(1967).' S. C. Ying and J. J. Quinn, Phys. Letters 26A, 347 (1968).

4 P. M. Platzman and W. M. Walsh, Jr., Phys. Rev. Letters 19,
514 (1967).

~ A. H. Wilson, Theory of JttIetals (Cambridge University Press,
Cambridge, England, 1953), 2nd ed. , p. 516.

V. P. Silin, Zh. Eksperim. i Teor. Fiz. 35, 1253 (1958) )English
transl. :Soviet Phys —JETP 8, 870 (1959)j.
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position in the classical and semiclassical transport
theories; physical, measurable numbers are expressed as
integrals over the space of v with f(r,v) as a weight func-
tion. The corresponding quantity in the quantum theory
is the density matrix p. Physical numbers are expressed
as traces of products of operators with the density
matrix. The density matrix is therefore a matter of
central concern.

The interactions make obtaining exactly correct
transport equations humanly impossible. We begin,
therefore, with an undisturbed, noninteracting plasma
and add the interactions through an approximation
scheme; for our discussion here we shall use a form of
self-consistent field approximation.

In the absence of interactions, external driving, or
scattering, the density matrix can be found exactly. The
one-particle eigenstates are harmonic-osciHator wave
functions on various arguments depending on the formu-
lation of the problem. Frequently, they are oscillator
functions of the hybrid variables, p& eA/c. r In this form,
the particle states bear no resemblance to the particle
packets of the semiclassical approximation. Further-
more, constructing matrix elements of interaction opera-
tors depending on r and r' between wave functions on
the hybrid variables is awkward.

In the semiclassical approximation, we begin with
a collection of states describing particles with various
isotropically distributed velocities precessing around 8
at the cyclotron frequency under the inAuence of the
Lorentz force. In application to degenerate Fermi gases,
particles of all velocities up the Fermi velocity are pres-
ent in the plasma; higher velocity particles are absent.
Particles of all energies between zero and the Fermi
energy are present.

In the quantum-mechanical states above, the isotropy
in velocity is built in fundamentally; the states are eigen-
states of m' but not of v, or e„, precession is meaningless,
and only certain discrete particle energies are possible.

It is possible to reformulate the quantum-mechanical
Liouville equation, however, in order to achieve a much
closer correspondence with the semiclassical form. We
have previously developed this reformulation for the
interacting many-body system' by application of a
transformation of Thomas' useful for the free-particle
problem. As we shall discuss, a certain "overlocaliza-
tion" approximation leads to the semiclassical form.
This reformulation is entirely gauge independent, thus
eliminating one troublesome aspect of the semiclassical
appl oach.

In Sec. II, we present solutions of the reformulated
Liouville equation for the case of ideal plasmas. We dis-
cuss the nature of the approximation leading to the
semiclassical form.

In Sec. III we include the eEects of interactions and

7 For example, R. E. Peierls, Quantum Theory of Solids (Claren-
don Press, Oxford, England, 1955), p. 1446.

L. L.Van Zandt, preceding paper, Phys. Rev. 8 l, 3217 (1970).
R. B. Thomas, Jr., Phys. Rev. 1'7l, 827 (1968).

external driving fields. The resulting treatment of the
interactions is of the form of a time-dependent self-
consistent field approximation.

In Sec. IV, we proceed to the actual generation of
transport equations on the particle current and spin
density. To obtain a transport equation, it is necessary
to consider a hierarchy of expectations of various opera-
tors. For instance, to obtain a complete description of
the particle density, we shall consider the density itself,
the current density, the current-density current, and so
forth. The reason for this is that our theory makes its
predictions in terms of traces of various operators multi-
plied by P, not in terms of f(r,v) directly. Effectively, we
build up f(r,v) by generating its moments.

II. SOLUTION OF MODIFIED LIOUVILLE
EQUATIONS IN "LOCALIZED VELOCITY"

APPROXIMATION

Our starting point is the series of basic equations
developed in Ref. 8. Let the Hamiltonian of a many-
body system be given by

s'Qs

The density matrix satisfies Liouville s equation,

We define a new operator p.

8
p=exp Q —A, . — p,

s C ~Pa oy

in which (8/Bp„),„"pmeans

(ih) "[x„rx, n times. . ., p]] n times. ]. (5)

The operator p satisfies a modified equation of motion
obtained from the Liouville equation

LP X& Lr,P]+Fr.,P] P.XK, (6)
8=& 2tsc

in which BC is K but with p, —(%)A, replaced by p, .
Values of physical quantities are found by taking

traces with P. Let gLr„nzv, ]be some interesting operator.
In terms of p,
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Let us consider p™in the representation described by
basis functions which are determinants of plane-wave
states,

P= 2 ID{k'})P({k}{k})(D{k}l (g)
)k} fk'}

Thus we may rewrite Eq. (6) as

gap

E f»f fi~ed k's
(15)

in which {k}means a set of vectors ki ~ kN describing
occupied plane-wave states.

Consider the operator p, p, XB r,p. To find matrix
elements of this, we construct

p (D{k'}l~ p.XB r. lD({k"}))P({k}{k}) (9)
fkff }

since (D({k'})
~
D({k}))= 8({k',}{k}).To give meaning

to matrix elements of r, between plane-wave states, we
write

e$'}f$$ j
g, =lim

with a similar expression for y, . Taking B in the s direc-
tion ensures only x, and y, need be considered. Multiply-
ing the plane-wave state e'k'" by e'& ~ changes it to
e'(k+&'&'". This plane wave is an eigenstate of p, .
Carrying out the indicates sum over {k"}yields

i»fk'XB Vf, P({k'},{k}).

If we now take the operator p, p, XB (Pr,) and con-
truct its matrix elements, we obtain

—Q iI»k'XB Vf,P({k'},{k}). (12)

Combining (11) and (12) yields

(Zp. XB.b.,P3)»'», ». »

i(hk'XB Vf,+5k'XB V„.)
ke(k},k'& f

k' }

XP({k'}{k}) (13)

By a similar set of manipulations, we obtain a similar
expression for

(2 Lr,Pj p XB)»'».»~»

i(»'kXB. V,.+hkXB V,)

Xp({k'},{k}).
We can write (f»p/fl/)»i, .», »i, »

as two terms:

Bpih—

Bp e
=ib — + Q —(k+k')

l9t (k'},fkj fixe/ k s k (k},k"jk'} 2mC

XB (Vi,+Vf, )P({k'},{k}). (14)

by writing P as P({k+k'}, {k—k'}) and making the
k+k' part time dependent with

d e—(k+k') = ——(k+k') XB.
dt mc

(16)

The problem of the plasma in the magnetic field has
now been reduced to the solution of Eq. (15) from which
not only the gauge, but even reference to the Q.eld has
been eliminated. That the problem can be cast into the
zero-Geld form, however, presents something of a para-
dox, since there are characteristic differences in the field
and no-field problems which should survive any series of
nonsingular transformations; as examples of such di6er-
ences, we have the differing lower bounds and charac-
teristic structure of the energy spectra.

The resolution of this paradox lies in considering the
conditions which p and p must satisfy besides the
Liouville equation. To represent physically meaningful
states, p must have all real non-negative eigenvalues.
This condition implies that the eigenvalues of p are real,
but it does not make them positive. The operation
defined in (4) is not a similarity transformation and thus
can change the character of the spectrum. If we treat
p like an ordinary density matrix, we are led through
the transformation (4) back to a p with nonphysical
eigenstates. Conversely, insisting that p have only non-
negative eigenvalues leads to a p™ with negative eigen-
values. The distinctions between field and no-field cases
have vanished from the differential equation for the
density matrix, but survive in the form of initial condi-
tions. If, in addition, we need to consider pure states
p'= p, we are led to ensembles in the space of trans-
formed states p'& p.

The importance of the negative eigenvalues of p and
the extent to which they depart from unity or zero de-
pends on the degree of localization of the states in k
space. We may consider forming packets in the space of
functions obtained by solving (15), applying the trans-
formation, (4), to the resulting P and so obtaining P. As
long as the initial packet is broad compared to the
separation of states in neighboring Landau levels, p ap-
proximately describes a pure state and has eigenvalues
1,0,0,0, .... Only when we attempt to make the packet
too small in p do the eigenvalues of p become pathologi-
cal. These results are developed for a specific example in
Appendix A.

Thus as long as our results are not sensibly dependent
on a tight "localization" of states in k space we may
ignore the actual necessity of using broadened states in
solving (15).This is equivalent in the cases we shall con-



L. L. VAN ZAN DT

sider to ignoring the condensation of energy eigenvalues
into Landau levels. It is precisely the approximation we
need to obtain the semiclassical formalism. We shall now
proceed with the solving of (15) Lor equivalently (16)j,
in an "extreme localization" approximation. Of course
we obtain no de Haas —van Alphen effect nor related
phenomena, exactly as in the semiclassical approach.

III. SELF-CONSISTENT FIELD APPROXIMATION

We are interested in a homogeneous electron gas
driven by some external rf field. We shall consider
separately two types of driving field: a magnetic field

driving the electron spins and. an electric field driving the
orbital motion. We begin with the spin-driving magnetic
field because it is the simpler. In our Hamiltonian (1),
we take

then apply the variation equations'

BC'*)

bb(k) 81 2 t; .a t, .
QC'

fCC —iIt dr &"& . (19)
sixes k'8

Using our assumptions about the form of C' in (19), we
obtain a set of self-consistent 6eld equations for the
b(k). This derivation is presented in detail in an ap-
pendix, and a similar one has been presented elsewhere, "

f t)
(est ei+qc) b(kt')+sA~ — b(kt')

(Bt fixed k

U'(r & )—t. (&i(q r~ rat)&——+e-i(q r~ cut)&+j— (17) =Q {V(k —k')(hatt, +qt —ttt, t)
k'

The wave vector and frequency of the driving field are
given by q and ce, the amplitude by cp.

Our unperturbed starting state is described by an
ensemble of Slater determinants of plane-wave states
with time-dependent wave vectors. The driving field
in (17) takes a state kt' and converts it to the state
k+qJ, and vice versa. (It is this reciprocity which inakes
the spin-wave case easier. ) We therefore take linear com-
binations of states, b]&pi, t+fts(pi, +qg as oui approximate
one particle states in the presence of the driving field
and form Slater determinants from them to obtain ap-
proximate wave functions.

From these wave functions, we construct p. To deter-
rnine the bi(k), bs(k), we could use the variational prin-
ciple on t)p/t)t developed in Ref. 8. The time variation
of the various k could likewise be obtained. However,
our result in (15) and (16) of the preceeding sections
makes this more general but more cumbersome pro-
cedure unnecessary. Instead, we use (15) to write

( ejg)
fce =ih(

~ tt )fi ik'

as an eQective Schrodinger equation for the eigenstates
of p, and (18) may then be solved approximately by the
use of the "time-dependent Hartree-Fock" approxima-
tion. We have elsewhere" discussed this approximation
at length including its derivation from Frenkel's" "
variational principle.

We erst assume that c() is small so that we may expand
in powers of co about the undriven starting state. We

'q L. L. Van Zandt, Phys. Rev. 1'72, 8'l2 (1968)."J. Prenkel, S"ave Mechanics, Advanced Gerreral Theory
(Clarendon Press, Oxford, England, 1934),p. 253.

"See also A. D. McLachlan and M. A. Ball, Rev. Mod. Phys.
36, 844 (1964).

This expression is composed of readily identiGable parts.
The kinetic-energy difference and the time-deriva-
tive terms are frequently encountered in self-con-
sistent field calculations as the energy denominator
et,+qt, —et,t+ Itet. The interaction term can be broken into
two parts. One part is proportional to b(kt') and can be
added to 6kt —Ek+~g to correct the single-particle kinetic
energies by the addition of the Hartree-Pock exchange
energy. The second part involves a sum over "other"
states of terms proportional to the response of the other
states to the disturbing rf field. This part assumes the
role of a correction to the driving field by the addition
of an internal polarization.

We obtain p by solving (20), using the ft's to construct
single-particle wave functions, combining these wave
functions in Slater determinant many-particle func-
tions, and constructing an appropriate ensemble from
many-body functions of diGering nk, ,

The construction of single-particle wave functions
from combinations of plane waves, kf and k+qf, as
well as the derivation of (20) assumes that k and k+q
are separated in k space, that the required packet size
or spreading of the wave functions may be ignored. This.
assumption also enters the semiclassical approximation
when the constituent packets on which the Lorentz force
is calculated are eventually replaced by mell-defined
plane waves. We are here in a position to place quantita-
tive limits on the validity of that approximation.
Quoting from the Appendix, the wave vector q must be
large compared to QP ' which measures the extent to
which p is not diagonal in the "extreme localized" func-
tions. Now QP ' may be made small only if simultane-
ously Qn ', the parameter measuring the ensemble
width (as opposed to packet width), is made large. This
ensemble width should be kept much less than the Fermi
radius to preserve a well-deGned Fermi surface.



TRANSPORT IN A MAGNETIC FIELD. I I

From Appendix A we have and assuming a small obtain

(eP) it'«1,
Qs cps '&p

(21) Z a(r, t) =Z Lc'"" ""+c '"' ""1
s @gal 5$C

(29)

and since q))1/QP and ki;))1/gn, we have

k'qkp- '
L)c

2m

for the driving field. This has a form similar to (23), so
we construct similar wave functions to obtain

(22)
(ek, n ek+q, r)d1(k, e)+» —

~
di(k, e)

Btl fixed k

as the condition for the validity of the semiclassical ap-
proximation. Outside this range, explicit account must
be taken of the dispersion of the individual single-par-
ticle states about their mean k vector. In other words,
the uncertainty principle operating between v and v„
may not be ignored if (22) is not satisfied. We shall point
out in a subsequent paper where this condition has been
violated in recent publications.

We consider now longitudinal density waves. Equa-
tions analogous to (20) may be obtained by taking

U'(r e )—d fci(q r,—raii+c —i(q r~—a&ii) (23)

and assuming wave functions of the form

ipk, u+dl(pk+q, r+d2pk q, ri— (24)

+Q V(k —k')(nk ~q .—nk, .)Ldi(k', e) —di(k, e)]
k'

+d e iut—

where the qk are plane-wave functions. Self-consistent
Geld equations on the d's have been derived by many
authors. Reference 10 includes a derivation in the nota-
tion„and language used here,

t' cj

(ek, ,—ek+q .)di(k, e)+»~ — di(k) e)
5 R iixed k

= V(q) Q (nk, .—nk+, , )di(k', e')

= U(q) Q (nk, .—nk ~q, , )di(k', e')
k', 0'

+P V(k —k')(nk ~q .—nk, )Ldi(k', e) —di(k, o)j
chap

+ — (k+q) c
—'"' (30)

The only difference between (30) and (25) is in the form
of the deriving terms reflecting the differences in the
fields (23) and (29).

This completes the assembly of the self-consistent
field relations necessary to construct our transport
equations.

IV. TRANSPORT EQUATIONS

A transport equation is a relation between various
time and space derivatives of some physical quantity.
The physical quantities for which we shall construct
transport equations are densities and current densities;
the'simplest of these is the particle density itself,

N

n(r)—=Tr Q (i(r —r,)p. (31)
s=l

Physically meaningful numbers are obtained as traces
of the appropriate operators multiplied by the density
matrix. "We shall consider, besides the density itself,
the spin density:

and

d2(k+q, e)+di*(k,e) =0. (26)

N

e(r)—=Tr P e,8(r —r,)p, (32)

The only substantial difference between (25) and (20)
is the appearance of the "direct" term, proportional to
V(q), as well as the exchange terms.

Finally, we consider the case of transverse electro-
magnetic driving fields. To treat these, we set U(r„e,)
=0 and take

1 — ea(r„t) '
ps

~ 2m c
(27)

for the kinetic-energy part of fC. We relate a(r, ) to the
rf Gelds by

B„(r)=v &&a(r,t),

1 Ba(r, t)
Eg ————

c 8t

the particle-current density:

j(r)=—Tr Q —',{v,8(r —r,)+ti(r —r,)v, )p, (33)
S=l

the spin-current density:

S(r) =-,' Tr P e,{v,8(r—r,)+8(r—r,)v.)p, (34)
S=l

"The transport equation of Ref. 9 is obtained by considering a
certain set of matrix elements of p. We shall see, Eq. (61), that in
the self-consistent field approximation these elements actually are
the appropriate quantities to study. This does not seem to be an
obvious result, however, and we feel that the following discussion
may clarify the relation of these matrix elements to actual physical
quantities.
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the current-current density:

I;;(r) =-,'Tr p {v„.n„S(r—r,)+8(r—r,)v,g„}p, (35)

Pkp~q, kp must restore to the diagonal one of the two states
changed by BC. We then have {[X.,g}~,~, ,~, for the only
signi6cant parts of [3C,p] in the trace. We may evaluate
the various necessary matrix elements by procedures
similar to those used in Appendix B to obtain

and a hierarchy of tensor current densities obtained from
powers of the velocity operators.

We obtain equations of motion for the operators by
differentiating by time

8(0) 8
= —Trop

Bt 8$

»o[~,t ]
0kq, &q;kp+q &qdl(k0&&0)(nkq+q, aq ngq, eq)

k p, o'p

dq(k', e')
X &kp, eg &kq+q, vq V(q) Q (nki ng~+q)

dg(kp, eq)

8
= —TrOp

8$
(36)

—Q V(kq —k')(ng~q. ,—n~ .,)k'

from Eq. (7). We shall not consider operators which are
explicit functions of time. Thus

[dl(k oq) dg(kq ep)]
X

dg(kq, eq)

'bed f—+c.c. (39)
dg(kp, op)

Using Eq. (5),

B(0) Bp
ih =i A TrO—.

Bf

for the case of longitudinal driving Acids, (3), and
(37) analogous expressions for the other cases.

Let us consider now the terms of (38) in p, XB.Using
the procedure of Sec II we have

B(0) e
ik —=Tr0 [BC,p] — P p.XB [r„p]

Bf 26K a=1

+[r P].p XB (38) (D{k}lO)D{

We construct p to be diagonal in a representation built
up from single-particle states as obtained in the last
section. Let D{k}be a determinant of such states. In
terms of plane-wave states D{k},p has large diagonal
elements, p({k},{k}), plus off-diagonal elements

p({k'},{k}),which are of higher order in the b's or d's. In
particular, pkp+q. kp is of first order, where this symbol
means {k'} is formed from {k}by replacing kq with
kp&q. Similarly, pkp+q, kp +q kp kp is of second order, and
so forth; we discard these parts. The operator X, has
diagonal elements in the D{k}coming from the kinetic-
energy parts and part of the interactions; it has
off-diagonal elements of first order in the driving
fields of the form Kkp+q kp and elements of the form
kp+k kp —k; kp, kp from the interaction terms. The opera-
tor 0 may have diagonal elements but as long as we con-
sider only single-particle operators, as in (31)—(35), the
off-diagonal elements of 0 can only be of the form
Okp, kp. Elements of the form Ok, ,k, k, ,k, require 0 to
contain forms r,r, , v,v... v,r... or the like. Thus, when
we evaluate the trace in (38) only those parts of Bp(Bt
which are of the form (Bp/Bt)q, ,q, or are diagonal need
to be considered.

The diagonal elements of t 3C,p] vanish. We can form
"one-particle off-diagonal" elements of this from the
diagonal parts of x, and pk, ~q, k„ from the driving terms
in 3C and diagonal parts of p, or from the "two-particle
off-diagonal" elements of 3C and Pkp~q, kp. In these last,

e 8 cl

g BX(k+k')
2ssc &'e f&' J Bk ak')

kefk)

Xp({k'},{k}) . (40)

The diagonal elements of the second factor are inde-
pendent of the amplitude of the driving field, which
means equal to their equilibrium values. For these ele-
ments, we have

Also,

e 8
BXk —p({k},{k})=0.

mt, kefk) plk

8
3gk —pk, gq, k, =0, if k/kp, kp+g.

8k

(41)

The factor in braces in (40) thus yields

e (8 8
BX (kq+k0 ) '

~
+ IPko', kq ~ (42)

2mc &0'elk'I (Bkq Bkq'3
koe/kJ

Now for pk, ,k„we have

pkq', k d1(k0) (nQ nk )h (ko' —kq —q)
—dg(kp) (ng; —ng, )b(kp' —kq+ q) .
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Then for (40), we obtain

e
dkodko'Ok, ,k BX—(ko'+ko)

mc

X (8/ojp, ).„.But
8 Bp

Tr 8(r —r )—=0,
8p, ,~ Bt

(50)

/ ~ ~ so that onlyp, survives in Oi. If we form 0&;;,+ Pk, ,k,
EBkp Bkp Oog ——-',m'(p„v„+v,p„)5(r—r,), (51)

Ke perform the indicated diBerentiations to obtain

-', (ko'+ko)
~

kak, ' '

Xdi(ko) &(ko' —ko —q)

n„~
akp i

8
+-', (k '+k )(e., —n~, ) di(»))&(»' —»—q)

~ko

+p(ko'+ko)(+k ' +k )di(ko)

8 8
+

~

6(kp —kp q) (44)
Bkp ojkp'i

plus a similar expression in 6(kp —kp+q). Now kp'

differs from kp by (e/mc)8 Xq. Hence the first two terms

give

O„,k,+, BX(kp+-', q)
saic

Also,

di(kp) (nk pro Nko) —dko ~ (45)
Bkp

(
8 8

+ b(kp —kp'+q) =0,
8ko 8ko

so that (45) is the complete expression. We have also

Ok, ,k, , BX(ko—q/2)

8
~ —do(kp) (eko o

—mko) dkp.
Bkp

Furthermore, the 6 functions in r, are the only r, de-

pendences in 0,

The terms in BXipq in (45) and (47) are some of the
small correction terms not obtained in the semiclassical
approximation. Observe that n~,~~—nj„ is already of
order q/k~. These correction terms are of order (q/k p)'.

Now let us consider the structure of 0 in more detail.
All of the 0's we consider will be densities,

(48)

again we can effectively replace mv, by p; in writing
Oo;;. In fact, if F(v„cr,) is a completely symmetric func-
tion of v „e„„andif

O,„=gF(mv„e, )6(r—r,), (52)

To obtain complete symmetry, we might also consider

O,„t=P 8(r —r,)F(mv„e,), (54)

but this will not be necessary.
Ke expand 0,„as a Fourier transform,

Thus,

dq'O, (q') e'&"0,„(r)=
(2n.)'

O.„(q')=P F(mv„e.)e '&' ".
(55)

dq' Q F(mv, e,)e'&' &'—"&. (57)

To construct a transport equation for O,„(q'), we need

(O,„(q'))k, ,k, , and from (56) we have immediately

O„(ko—ko')k, ,k, =F(&ko,ek, ) . (58)

We now have enough information to write down a
transport equation. We use Eq. (38), (39), (45), and

(58) to obtain

8
dkp F(hko, a'ko)dl(kp)('~kp+o ~ko)

Bt

dko F(&ko ek )di(kp)fiick +.

di(k')
X oko —ok~, —V(q) dk'(ek —ek ~,)—

di(kp)

di(k')
V(kp —k')(~k+, —nk ) — —1 dk'

di(kp)

then we always have

O,„=gF(p„o,)8(r —r,)+terms of vanishing trace. (53)

Oi ——m Q v, 6(r —r,). (49)

We convert 0& to Oz by replacing mv, by p, —(ieBA/2c)

dpe
—imt

di(kp)

e
+ih dkpF(kkp, ek, )—(kp+q/2)

tp1c

XB Vk {dz(ko)L&k+ —&k g}. (59)
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It is clear from its construction that F(hko, o~,) may
be any function of Ako. In particular, we may sum-
marize the result of taking many different F(Ako, o~,),
obtaining transport relations for various currents by
setting

F(hkp, sg,) = b(ko —k) . (60)

We perform the indicated integrations in (59). For
clarity, we define

and write

x)~= dg(k)bing+, —Ngj,

+k +k+c[ +k )

(61)

(62)

lf
h—n„+I ~„—~,+,—ih—B&&(k+q/2) v& ~X)~

zzzc )
=Xgdoe '"'+Q V(kk')(&a Xa—&44 )

—V(q)Xg Q X)g . (63)
~P

If we write X)q in terms of its time I ourier components,
in (63) we can set

8Sk
zk = A%X)g(q&cD) . (64)

coll is iona

(65)

We have &nally, setting co= a&—i(1/r),

e
e~.—e~+, .+h(u —ih B&&(k+q/2) Vg 5)g

mc

=X~,.do —V(q)X~,.p S~,.

We have not considered here the eBects of collisions with
impurities or of the two-particle scattering events
dropped from the problem by the single-determinant
assumption, made in Sec. III, the "time-dependent
Hartree-Pock" approximation. We may crudely allow
for these eGects by the inclusion of a relaxation-time
term in (63)

+k=+k+@4 +kf (69)

~gz —~a+,z+h~ —zb—BX(k+q/2) Vg ORg
mc

=Xgco+Q V(k, k ) (5Kg~Xg —5RQXQ') ~ (70)

Equations (66), (67), and (70), together with the condi-
tion (22), constitute our results. These equations are
not yet in a form which makes easy the comparison with
the transport equations of Ref. 1.We defer the explicit
comparisons until the following paper in this sequence in
which we consider a specific physical situation and the
eRects of various possible functional forms of V(k, k').
In this way we can show not only the similarities and the
differences, but also the results of the differences.

V. CONCLUSIONS
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APPENDIX A: PROPERTIES OF BASIC
TRANSFORMATION

We have derived transport equations appropriate to
a charged plasma driven by three possible types of
fields. We have as yet made no assumptions about the
form of the interactions.

We have made a self-consistent field approximation,
similar to the Hartree-Pock approximation; we have
made a semiclassical approximation which eliminates
the effects of the Landau-level structure on the states;
and we have made a relaxation-time approximation
appropriate to the case ~r)&1. We have not had to
make assumptions about single-particle wave packets,
Lorentz forces on localized particles, or special gauges.
Our results are in convict with previous results. We have
deferred explorations of the convicts to the following
paper where in the specific case of paramagnetic spin
waves is treated.

For simplicity, we consider only a single particle.
We have been led to consider a modified density

matrix p™obtained from the actual density matrix p by
the transformation

+P V(k —k') (ng, .Xg,.—S~,.X~,.) (66)

Equation (66) applies to the case of longitudinal den-
sity waves. As we have seen, the treatment of transverse
electric driving 6elds requires only the modification of
the driving term,

p= Up)
in which

e
—azA(8/8 py) pgpeayg (g/ gag) py (A2)dp~dp (k+q). (67) and

The manipulations necessary to obtain the analogue
of (66) for the case of longitudinal spin. -density oscilla-
tions are like those we have exhibited. One obtains

Slr~—=b(k) (Ng~, z
—zzgz),

This transformation is interesting because p is much
(6g) closer to the classical joint probability density than p.
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In a plane-wave representation, we write double transforms to obtain pk k,

Then

~= Z Ik»"( (A4) n+P
po exp

16nP

n P—
k k'+ia'k k'

I

8nP J

/' 6) 8
6L~,/)g =2

I
Ik'»), ),.(kI+ Ik'»), k (kI (A5)

EBk, Bk

in which

X16nP(1+16aqnP) i (A15)

6) 6) )'
X +—

I
~'. (kI.

8/), .' Bk, //

(A7)

Integrating by parts yields

// 6) 8
6L*,R= —P Ik')

I + ~'), (kI (A6)
(Bk,' Bk,

Hence
Lyl

ea6u(6/ eu*) o~p
—g =

I
k')

k'y
k,' =S 7

8
(A16)

We need to know the eigenvalues of this transformed p.
These are not the same as the eigenvalues of p because
(A1) is not a similarity transformation.

We proceed by first exhibiting an eigenstate of (A15)
and then constructirig raising and lowering operators to
generate other eigenstates and their associated eigen-
values. It is first convenient, however, to simplify (A15)
by redefining the variables.

We expand Xk k in a double Fourier integral: p, =p g 9 g P / g ~P'P (A17)

K), ),= P(,(q q)e
' e '

dq /fq, (A8)
The variables p and p' are obtained from k and k'.

thus obtaining for p

e'aq«*+q")e —' '«+" Ik'»(q'q)
k,ki

Xe'6'' 'e'6'(kIdqdq'. (A9)

)1/6
p' = (k+k')

1+16a' Pjn (A18)

Now
e* & *+ *) ' *' " )Ik')= Ik'+q+q'), (A10)

ll
po

m'(1+ 16a'nP)
where

g~= —Ggg, gg= Cg~. (A11)
8 =a'4(nP) i/'

Therefore

p= g Ik'»(q'q)e'6''"'e'6 ~e '6' q(kIdqdq'. (A12)

Let us consider a family of possible p more or less diago-
nal in the plane-wave representation,

—P(k—k')2 &(k+k —2kp)2
Pk k= PO& (A13)

As P is allowed to become large, the eigenstates of /) ap-
proach plane waves with eigenvalues given by the sec-
ond factor in (A13). As n is allowed to become large, the
ensemble of (A13) approaches a "pure" state described.

by wave vector j 0. We shall let ko be zero for simplicity
and without loss of generality.

The Fourier analysis is straightforward andjyields

K(q'q)
' —qq( +p)/16 ape q'6(aa+p)/16aeeq —6'(a—e)/16ae (A14)

/2gsp, fdp
7

X = (1+16a'nP) '/',

(A19)

Actually, we can anticipate most of the final results
from (A17) and (A18). The parameters /)6" and 8 are all
that determine the eigenvalues of p. 0 is proportional to
a2, hence to H2, and thus we would anticipate that the
semiclassical approximation is valid so long as 8 does
not become too large. Indeed, as 8 —+ 0, the eigenvalues
of (A17) are 1 and 0 by inspection. However, we want P
to become large in order that p shall be diagonal in the
plane-wave representation. To avoid large 0 in this case,
we will have to have n small. But small n means a large
spread of the ensemble state described by /t) from (A13).
Thus to solve our equations of motion of p exactly pro-
duces an infinite spread of states through the plane-wave
space of functions.

An eigenfunction of (A17) is

We substitute into (A12) and compute the inverse with eigenvalue /)6"qr/(1+X).
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From one eigenstate, we can construct the rest by
finding raising and lowering operators. Let us search for
"ladder" operators of the form

Both p and y' have two components giving four equa-
tions in the 0,'s. Setting the determinant of these equa-
tions equal to zero yields

8 8
&1P+&2 +&8p+&4 ~

t9p Bp
(A20)

PI Pp 40

P, p Py 0
(A33)

~(~p)'" ~(~p)'"

Of course, p and p are not independent, but they are from which we obtain
mutually perpendicular:

and therefore,

PC'= PP%'
Pl ll jt' 1

&( P)"' &~'~P
(A34)

OP% =PPO+. or zero at the bottom of the ladders. Also, clearly,

We seek to learn if there exist o.'s such that
Pn/Pn 1=Pl/-PO ~ (A35)

p0%'= pgO+. (A23)

(A24)

&po
(A25)

Of course if we generalize 0 to include p', p&/&p,
g'/gp', p' and there must exist 0 satisfying (A23).
As it develops, however, (A20) is altogether sufhcient.

From (A23) and (A22), we have

We have two independent choices of sign to make. The
eigenvalues of our p are thus arrayed on a two-dimen-
sional net. There are two independent sets of raising and
lowering operators for a total of four operators corre-
sponding to the four possible sign choices in (A34). Some
of the eigenvalues, however, are negative and these
states are "unphysical. " If the magnitudes of these
unphysical eigenvalues can be made to vanish, or nearly
so, our initial p can then' be considered physically
meaningful.

We expand the square root in (A34) about small
820. .

Now pV means J'dp'p(p, p')4'(p') and therefore by
partial integration

8 Bp
p

Bp Bp

so that

(A36)

and making opposite sign choices in the two places, we
obtain

~/~o=+l ( p)"'.
8

POV = iX1P —Cg +GAP —
CX4 P+,

Bp Bp

and since

we can obtain pl/po wltllollt lefelellce to 0'.

Bp—= (—p+iop') p,
Bp

Bp—= (—p' —ioP)p,
Bp

(A27)

(A29)

(A30)

(A31)

(A32)

Thus at the bottom of the ladder, we have one large
eigenvalue, and all other eigenvalues are down at least
by a factor 12a(nP) '1'. This parameter must remain small
if our p is to make physical sense. Ke may, therefore,
make P large, thereby diagonalizing p in the plane-wave
representation, only at the cost of making n small and
spreading out the "ensemble" over many plane waves.
The condition we must maintain is

eB 2 2m
1»a(~P) '1'=— = ~iAco,—,(A38)

2cA Akjhk2 h'Aky~k2

jn. which Aki and Ak2 are the rrns "spreads" of the
ensemble about the center, ko. Equation (A38) reads,
"the spread in energy of the states described by p must
exceed the zero-point energy of the lowest Landau
level. "

We could have obtained this result immediately.
Since e, and v„do not commute, there exists an uncer-
tainty relation between them. Their commutator is
proportional to the magnetic 6.eld strength. The'„product
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of the mean dispersions, Av Av„must exceed some con-
stant proportional to the field. Our formalism allows us
to use hk/m for the velocity, but maintains the uncer-
tainty relation between the components. We have shown
here that the uncertainty need not be maintained in
individual wave packets describing "pure" states, but
many find expression in an ensemble" spreading.

APPENDIX 3: DERIVATION OF SELF-CON-
SISTENT SPIN-WAVE FIELD

We seek a solution of the variational equations (18)
or, rather, their reexpression in terms of the b(k, e).
Since the explicit use of determinantal wave functions is
unnecessarily awkward, we shall cast our expressions
into "second quantized" form,

P &», sttk, s
k, o

Thus the kinetic energy becomes

T Q 6k, trk, b2(kt )cktC»+q$ Ckt
k, o

—by*(kf)~»tC»t C»+,i —bi(kJ, )c»~C», t C»i

—bi*(kJ,)~ki Ckt tC»-~t
&k, amk, a

k, o

Q Lb2(k t) &kt+bi*(k+qJ, ) ~»+q4]C»+g4 tCkt

—p! be*(k t) ~kt+bi(k+qJ, )~»+~i]C»t'Ck+qi,

and by using (87)

T=P ~»,.R»,.—P b2(k))(~kt —~k+,i) Ck+,t tC»t
k, o

(810)

k,k', K; r, o'
&(K)C»+x, 'Ck x,"'C», "C»,. —Q bi(kJ, )(~»s —~k—~t) C»—~t tC»i (811)

+c,g e-'"C»+,i tc,t+ e'"Ck, t C»i, (81) The interaction potential energy is found by a similar,
but more arduous procedure,

C= g C, ,.t!0)c-'«,
ke(k)

where

(82)
&(K)C»+x,.tC» -x,.«», .C»,.

k,k;K

&k, o =
2m

+IiBo. ,

ek,.=Ck,.tCk...
C»t'=bi(kf)C»t t+b2(kt')Ckd-, i t

(83)

I'(K)C»+a+xi'C» -x,"'C» ."Cktb2(k+K't)
k k' K &'

&(K)C»,+xt'C» —x,.'C», .Cki bi(k+KJ, )
k,k~, K; oI

V(K) C»+ x,.'C» +xt C» +,i'C», .b2*(k'f)
k,k', 'K; o

=Ckt t+bg(kf)C»+qit, (84)

C, t=b, (kJ, )C, t+b, (kJ)C, ,

The mixing of the states by the rf 6eld must still perserve
their orthogonality'.

&(I)C»+ x,.«» —xi «» —,t Ck, .bi*(k'J) .
k,k', K; o (812)

Finally, the driving terms in (81) are already of first
order in co (hence b).

D =co Q c '"'Ck+,~ tC»t+c'"Ck-, t tC»g. (813)
k

{Ck+,~,C»tt) =0,

from which we obtain

bi*(k+qJ, )+by(kt') =0.

(86)

(87)

The variational equations require us to construct

!

(BC

iixsd k's

The creation and anihilation operators appearing in the
wave functions are diferent from those in the Hamil-
tonian. With about the same amount of difficulty, we
can either convert those in the wave functions or the
energy; we choose to change the Hamiltonian.

We consider first the kinetic-energy terms. Working
only to first order in the b's, we invert (84) and (85),

bb(k) 8$ fi»sd k s

C»t'= C»t' —b2(k't) Ck+,it,
C»gt= C»it —bi(kJ. )C» hatt.

In calculating BCC, however, since we are going to
project onto 54t, only a limited number of the many

(89) different matrix elements of (812) need to be con-
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sidered. To see this, we calculate C:
(iii) k+q+K= k', k —K= kp+q; e'= J, ,

(
84)

Bt ) g.- .~k'.

~bp(k'l)
= —z&4'+Q C~ +oz "Cl, z 4'

~b,(k'l)
Cg. ,zZC|,.z4. (814)

which yields

P V(k' —kp —q)81, zbo(k' —g)Cg,+,zzC~, z

=Q V(k' —kp)8g. ~,zbp(k'f)Cgo+, z Cgoz. (819)
kP

Taking the functional derivative with respect to bp(kp$)

yields two kinds of terms: those of zero order in the b's,

&~ckp+q4 Ckt

ab, (kof)
Cgo+, z ZCgoz 4', (815)

bbo(kpf) Bt

and terms of Grst order in the b's which we discard. Thus
54'/5bp contains only functions of the form

Cs~,ztCs, z4, Cg, ztCg, &4, and 4. (816)

Thus from all the terms in (812), we need keep only
those which fit the patterns of (816).

Consider the first term in (812); it leaves the total
number of spins up and down unchanged. Therefore,
only that part of it need be kept for which either

The fifth term of (812) also turns one spin down, and

we have three possible terms: (i) k+K=k; k' —K
=ko+q~K=O, which we discard, (ii) k+K=k' —q;
0 = f, k' —K= kp+q, yielding

g V(k' k—p q—)8g,z bi*(k'J)C,g~,t tCg, z

=g V(k' —kp)8 zbi*(k'+q/)C~, ,gzC, z, (820)

and (iii) k+K=ko+q; e=J, ;
k' —K=k, yielding

Q V(ko+q —k)8j,zbi*(ko+qJ, )C~o+,zzC~oz

=Q V(ko k—)8, b *(ko+qPC, z&C„, . (821)

We collect (818)—(821) and obtain

Q V(kp —k') [8g.zbp(kog)+8), ~,zbp(k'f)

ol
(i) k+K= k, k' —K= k'

(ii) K+K= k' and o =(r', k' —K= k.

+zzk'tbi (k'+q$)+8k'+pi bi (kp+qf)$Ckp+pzzCkot

=g V(ko —k') [b,(kog) —b, (k'g) j
X[zzk~z zzlt~+ozlCgop, gzCooz. (822)

V(k —k')8g, ,nj. .. (817)

The first possibility gives V(0)8q„8q, which we as-
sume to vanish, cancelling V(0) against a uniform posi-
tive background. The second possibility gives

The third and fourth terms of (812) yield a similar ex-

pression in bi(kJ, ) and Cj„p C|„z.
We gather up the terms from ih84/Bt—, the kinetic,

potential, and driving terms to obtain

+E V(k —k')[(bo(kT) —bp(k'Bl(8~ z
—8'+.z)

The second term of (812) turns one spin down. We bp(kf)(pk+o$ okt)

therefore need only keep terms of the form Ck,+~& Ck,p.

Now we have three possibilities:

(i) k+q+K=kp+q, k' —K=k',

which we discard,

(ii) k+q+K= kp+q, k' —K= k; e'= f,
which yields

Q V(ko —k)8~zbp(koan')C~, p,z«~, z (818)

Bbp(kf) ]+coe '"' i& -—— =0, (823)
Bt

by applying the variational equations (18). A similar

set of manipulations, together with the orthogonality
relation (88) gives another expression in C~ oz C~z

which, however, is identical to (823). These are the
self-con~istent 6eld equations we seek.


