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Self-Consistent Moment-Conserving Decoupling Scheme and Its
Application to the Heisenberg Ferromagnet
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A critique of the moment-conserving decoupling (MCD) procedure for linearizing Greens-function
equations of motion is presented. It is shown that in its unembellished form this procedure is equivalent to
an algorithm for constructing the relevant spectral function from the knowledge of its frequency moments.
The nonuniqueness of this algorithm is discussed. Moreover, the limitations of this algorithm for predicting
those frequency-wave-vector-dependent line shapes to which hydrodynamic modes make an important
contribution is noted. To overcome some of these difhculties, the concept of a self-consistent moment-
conserving decoupling procedure (SCMCD) is introduced. The SCMCD is then employed to study the
behavior of the long-range order in a Heisenberg ferromagnet with nearest-neighbor exchange. The results
in three dimensions are found to be similar to those following from the use of the random-phase approxi-
mation (RPA) and the Callen decoupling. In one and two dimensions, the spontaneous magnetization is
found to be vanishing at all Gnite temperatures. For spin ~, the SCMCD turns out to be identical to the
Green's-function decoupling recently proposed by Mubayi and Lange.

1. INTRODUCTION

ECENTLY we proposed a scheme for generating
moment-conserving decoupling approximations

(MCD) for studying the properties of coupled many-
body systems. ' The crucial aspect of the MCD scheme
was that it helped generate an expression for the basic
Green's function such that the corresponding result for
the relevant frequency and wave-vector-dependent
correlation function automatically conserved the de-
sired number of frequency moments. Because the con-
servation of the frequency moments is known' ' to be
useful for predicting the frequency —wave-vector depen-
dence of the correlation function, i.e., its line shape, such
a procedure seemed to oGer possibilities for under-
standing both the static and the time-dependent prop-
erties of statistical systems.

Unfortunately, it now appears that our initial hopes
regarding the MCD were overly optimistic. We 6nd,
for example, that a straightforward application of the
MCD procedure adequately generates only the most
elementary type of line shapes, i.e., those that derive
much of their spectral weight from a collection of highly
peaked regions. The more complicated line shapes, e.g.,
those which incorporate hydrodynamic phenomena,
etc. , are quite possibly not well described by a simple
application of our MCD.

This makes the MCD a relatively inferior procedure
for analyzing situations where hydrodynamic modes,
and possibly other similarly subtle collective modes,
play a significant role. The reasons underlying this in-
adequacy of the MCD are twofold: First, the MCD in
its original, unembellished form does not prescribe how
the frequency moments themselves are to be computed.
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Second, the MCD is at best only an algorithm for con-
structing line shapes, so that they conserve an increasing
number of the frequency moments. Indeed, since it is
possible to have an infinite variety of such algorithms
which are constructed to conserve any arbitrary num-
ber of frequency moments of the given line shape and
yet all of which may differ in an arbitrary manner
within any finite frequency interval from the original
line shape, ' the discovery of any one of these is not a
scientific event. It is therefore clear that for construct-
ing a physically meaningful line shape from the knowl-
edge of frequency moments, more is needed than just
a mathematical algorithm. For example, in situations
where the contribution of such collective modes, such as
can be described in terms of hydrodynamic analogs, is
significant, the method of generalized diffusivity, intro-
duced by Martin and co-workers, ' ~ perhaps offers the
most rewarding theoretical machinery to work with. ' "

It appears to us that the foregoing weaknesses of the
MCD are also shared by another procedure for decou-
pling many-body Green's functions as proposed by
Roth. "

Although the usefulness of the MCD in its original
form' is limited, an extension of the MCD to a self-
consistent form (SCMCD) appears to have some prom-
ise. The philosophy behind the SCMCD is as follows:
Rather than assuming that the frequency moments
(which in themselves are time-independent thermo-
dynamic averages) should be computed in an indepen-
dent calculation, one requires that they be calculated
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within the approximation scheme being used. For this
procedure to be at all meaningful, however, the require-
ments of self-consistency should be completely satisfied.
(For elaboration of this point see Sec. 4.) When these
conditions can be satisfied, the decoupling of the basic
Green's function is completely specified by the SCMCD.

We find that just this sort of a procedure can be used
for studying the properties of Heisenberg spin systems
with isotropic exchange interactions. When the exchange
interactions are anisotropic, the conditions of self-
consistency do not lead to a unique result. In other
words, the SCMCD in its present form is not applicable
to anisotropic spin systems except in the static Ising
limit. '3

The contents of this paper are organized as follows:
In Sec. 2, the nature of the original' MCD is elaborated.
In Sec. 3, we compare our MCD with the procedure sug-
gested by Laura Roth. '2

In Sec. 4, we describe the construction of SCMCD.
From here on, we confine our attention exclusively to
the study of the isotropic Heisenberg ferromagnet. We
find that the application of the SCMCD leads to a
Green's function, which is identical to that proposed by
Mubayi and Lange" for a two dimensional Heisenberg
ferromagnet with spin ~. Section 5 discusses some of the
Inathematical details related to series expansion of some
relevant functions.

In Sec. 6, we discuss the results in three dimensions
following from the use of the SCMCD Green's function
computed in Sec. 5. The quality of these results is similar
to those obtained within the Callen decoupling scheme. "
That is, the spontaneous magnetization contains an
anomalous T' term for spin ~, but for 5& 1, the results
are similar to those obtained within the spin-wave ap-
proximation. " " Just below the Curie temperature,
the spontaneous magnetization has the classical form
common to the molecular field approximation" and the
simple random-phase approximation" (RPA). The be-
havior of the SCMCD results at very high temperature
is also similar to those of the other approximate the-
ories """However, close to the critical temperature,
the zero-field magnetic susceptibility has the classical
divergence for 5= ~, while for S&1 the divergence is the
same as given by other decoupling schemes" "and the
spherical model. "

In two dimensions, the consequences of the SCMCD
are similar to those given by Mubayi and Lange. "The
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dto I' ~n(cv)/(Z —cv), ImZWO (2.2)

where F,„"n(&u) is the frequency Fourier transform of
the anticommutator or the commutator time-correlation
function

([A.(t)» (t )3+)= d~ P AB(cv)s i~(t—t'l (—2 3)

The structure of the Green's function G,~"n(Z), which
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spontaneous magnetization is zero at all nonzero tern-
peratures and therefore is in agreement with the rigorous
predictions of Mermin and Wagner~' that no long-range
order obtains in the absence of an applied field. More-
over, in agreement with the prediction of Stanley and
Kaplan, '4 within the SCMCD, the isotropic two-
dimensional Heisenberg ferromagnet undergoes a sec-
ond-order phase transition at a finite temperature T,. In
contrast to these very reasonable predictions made by
the SCMCD, the usual decoupling schemes, ""in two
dimensions predict no phase transition at nonzero tem-
peratures, whereas the molecular field theory, "which
predicts a phase transition in all dimensions, gives non-
vanishing spontaneous magnetization below T,.

In one dimension, our SCMCD also predicts a phase
transition. The reliability of this result seems to us to
be questionable.

2. MOMENT-CONSERVING DECOUPLING

Let us define the retarded and advanced Green's func-
ions as follows":

((A, (t) B.(t')))"'
=——io(t —t )(LA.(t)».(t )I+),

((A.(t); B.(t')))". 2.1

—=+io(t' —t) (LA g(t),B„(t')]~) .

Here we have used Dirac's units, i.e., 0= 1; the time
dependence is in the Heisenberg representation, the
operators A, and B„refer to lattice positions g and p, the
pointed brackets ( ) denote an ensemble average, and
0' is the Heaviside unit-step function. The choice of
anti-commutator or the commutator, in the right-hand
side of Eq. (2.1), is dictated by convenience.

The energy Fourier transform ((A„B~))i+i of the
retarded (advanced) Green's function can be analyti-
cally continued into the upper (lower) complex energy
plane, i.e.,

((Av; Bv))lz&

=G AB(Z)



SELF—CONSISTENT MOMENT-CONSERVING DECOUPLING ~ ~ ~

is of central interest for studying dynamic properties of
the many-body system, was analyzed in Ref. 1 in terms
of the frequency moments, cv»'"&(AB), of the spectral
function F»»(~).

~an'"&(AB) = fF.."(~)
(2 4)

=lim i— 3, t, —i-— 8„t'

the hope is that the spectral function F»»(~) can be
constructed from the knowledge of the frequency mo-
ments co,„&"&(AB) Note .that if this hope is realized, it
would be tantamount to expressing the system dynam-
ics in terms of parameters, which in themselves are
time-independent thermodynamic functions.

The procedure of Ref. 1 consists of terminating the
hierarchy of the Green's functions (such a hierarchy is
formed for coupled many-body systems, because the
equation of motion of any Green's function always in-
volves additional Green's functions of a higher order)
at any one given stage by representing the additional
Green's function in terms of all the functions corre-
sponding to the previous stages. However, this termina-
tion is done in such a way that a maximum possible
number of frequency moments of the spectral function
F,~~~(cv) are conserved.

To illustrate these statements schematically let us
suppose the system Hamiltonian is X and the commuta-
tor of A, (t) and%is C,(I), ie.
Then

LA, (t),3'.f = C,(t) . (2.6)

ZG, »(Z) =(1/2~)~ ~'&(AB)+G,„'o(z). (2.7)

It is convenient to work in terms of the inverse-lattice
Fourier transforms,

j.
Yon= 2 ~' '~ '7»' Vuu=~iii " Gun(z) «c. (2.8)

g K

The Green's function Gzc~(Z) is, in general, not ex-
actly expressible in terms of the basic Green's function
Gz»(z) unless the system is noninteracting. However,
if we decided to terminate the hierarchy of the Green's-
function equations of motion /the rest of the hierarchy
would be generated by writing the equation of motion
of Gzc~(Z), and so on) at the very first stage, then the
MCD scheme gives the unique decoupling

Gzc&i(z) ((oz~'&(AB)/(uz&'&(AB) jG»" (Z), (2.9a)

Since these moments are related to equilibrium time-
independent thermodynamic averages, i.e.,

'"+i&(AB)

which gives
1/2s.co»&'& (AB)

Gz»(z) =
Z —cu»"'(AB)/cuz &'& (AB)

This result is easily derived by writing

(2.9b)

Gzc~(z) =aG»»(z) (2.10a)

and inserting it into the Fourier transform of Eq. (2.7)
to get

Gz»(Z) = (1/2&r)(a»&i&(AB)LZ —ixj
—'. (2 10b)

But, according to Eq. (2.2), we also have

+00

Gz" (Z) = — d~ Fz»(~)/(Z —~). (2.10c)
2Ã

ZG,„(Z)=(1/2 ),„'(AB)+G,„(Z), (2.11 )
where

(
dq'

i
~

A, (~) =PC, (t),ref
dhi (2.11b)

=D,(t),
and then carried out the MCD at this second stage, we
would have had the choice of decoupling G» (Z) in
terms of the two lower-order Green's functions, i.e.,
Gz»(z) and Gz~~(z). Such a decoupling, i.e.,

Gz»(Z) = n,G»»(z)+&,Gzo (Z) (2.12)

where both ei and n2 are independent of Z, can at best
be expected to conserve the first four frequency mo-
ments of the spectral function Fz»(M), i.e., cuz&~&(AB)
for @=1, . . ., 4. To see this, insert Eq. (2.12) into the
Fourier transform of Eq. (2.11a) and substitute the
results into the Fourier transform of Eq. (2.7). This
immediately leads to

1 ra»&i&(AB) (Z —n2)+~»&'&(AB)
G AB(Z) (2.13)

2' Z(Z —n2) ni—
Equating the right-hand side of the above to that of Eq.
(2.10c), and comparing coefficients of (Z) " in the large
Z expansion of the two equations, we easily find that
n~ and n2 have to be chosen as follows in order to con-

Here the unknown coefficient n is chosen to conserve the
maximum number of frequency moments ~z'"&(AB).
Moreover, since n is assumed to be independent of Z,
therefore, for all choices of n, the right-hand sides of
Eqs. (2.10b) and (2.10c) are identical to the first order
in (Z) ' in the large Z expansion. Consequently, all Z
independent choices for u will conserve the first fre-
quency moment ~zi'&(AB). To conserve the second fre-
quency moment, i.e., to get the coefficients of the (Z) '
terms to be identical in the large Z expansions of the
right-hand side of Eqs. (2.10b) and (2.10c),n must equal
cozen'&(AB)/o) z&'&(AB).

In the above problem, if we had first written the equa-
tion of motion of the higher-order Green's function
G»c~(z), i.e.,
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n—1 n—1

G»"'(Z) = —2 ~'(Z)'/[Z"+ 2 b'(Z)'1 (2 15)
2~ i=0 g=0

The 2n parameters, a; and b;, can be determined com-

pletely from the knowledge of the first 2n frequency mo-

ments cu»(~'(AB), P=1, . . . , 2n
In the light of the above discussion, it is clear that the

spectral line shapes F»~"(co), generated by such a
procedure, i.e., the MCD, are of a somewhat restricted
variety. For instance, because the spectral function
F»"a(a&) is related to the Green's function G»"a(Z) in

the manner

lim 2iG»"~(cd+i&) =F»~~(~),
c-++0

(2.16)

it is therefore possible for the resultant F»"a(cv) to be
composed of n Dirac c& functions (this would happen
when the polynomial

x"+Q b;x'=0
i=0

has n distinct, real roots).
It is instructive to compare the predictions of the

above MCD procedure for the line shape F»"(~),

1
F zg(~) — Q a

—c» R

2X' R

{[Sa'(t)5o*{0)])8+'"'dt (2.17)

in a Heisenberg paramagnet at elevated temperatures.

(For a complete discussion of this problem see Refs. 3
and 10.) For this case the first few frequency moments

serve the maximum possible number of frequency
moments:

c&ci (cd—»—('& (A B)(v»(c& (A B)—[co» ('& (A B))')
X([cu»'"(AB))'—cu» '&(AB)~»(3&(AB)) ' (2.14a)

a, = [~»"&(AB)cu»('&(AB) —co»"&(AB)~»("(AB))
X([~»('&(AB))'—co»('&(AB)cd»('&(AB)) '. (2.14b)

The above choice leads to an expression for F»" (cd)

which automatically conserves the four frequency mo-
ments ~»("&(AB) for n= 1, . . . , 4.

By induction, the more general statement can now be
made: Whenever the decoupling is made at the nth
stage in the hierarchy of the Green's-function equations
of motion, in such a way that the next order Green's
function is represented in terms of a linear combination
of all the lower-order Green's functions, then the optimal
choice of the coeKcients would be such that the resultant
spectral function of the basic Green's function would

conserve a total ot 2n frequency moments. More
specifically, when the MCD is carried out at the nth
stage, the basic Green's function has the form

a)»("&(«)

(u»("&(«) = dc0 [F»*'((o)/(u](o"do), (2.18)

are known. Moreover, because the function F»"(u)/&o
is even in so [note that Eq. (2.17), unlike Eq. (2.3), only
refers to a commutator correlation), its odd moments,
a&»('"+i&(«), are vanishing and therefore, from Eqs.
(2.13) and (2.16), we readily get

({5,'(t); S„'(t')))(»,gi
—G zz(Z)

1
= —(o»(2'(«)[Z' —(v»(4&(«)/co»"'(«)] ', (2.19a)

2x

F»-(~)
"'(«&&"' ~"'(«&~"'-

GO-
2[cd» '(«))"' cc&»"'(«)

( K"'(«&)"'
b ~+I

ico»('& (aa)
(2.19b)

The result (2.19b) does, of course, conserve the mo
ments ~»("&(«) for n= 1, 2, 3, and 4, but in the light of
what is known about the structure of F»*'(~) (see Refs.
3 and 11), this result is quite meaningless. On the other
hand, the generalized diffusivity formulations, ' " lead
to a much more meaningful result for F»'*(&u) even
though they make use of somewhat similar basic infor-
mation, i.e., the diQusivity formulations' "make use
of ~»("&(«) for n = 0, 1, . . . , 4. [Note that the expression
(2.19b) does not conserve the zeroth frequency mo-
ment a&» "&(ss). Indeed, it suggests that cu»('&(«)
= [~»'"(ss))'/~»"'(«) )

In addition to the aforementioned limitation, the
MCD also possesses the following rather disconcerting
weaknesses: First, it is clear that instead of erst 6nding
G»" (Z) in terms of cu»("&(AB), we can also determine
G,~~~(Z) directly in terms of a&,„("&(AB).In that case,
Eqs. (2.13), (2.14a) (2.14b), and (2.15) still retain the
present form with the difference that the inverse-lattice
label K is everwhere replaced by the real-lattice vector
(g—p). It is clear that the two resultant expressions for
Gg„"~(Z), obtained in these two alternative fashions, jn
general do not agree with each other.

The second disconcerting inconsistency that the MCD
suffers from is that the two formulations of the problem
obtained by using either a commutator or an anti-
commutator correlation function [see Eqs. (2.3)—(2.15)]
are in general, not mutually equivalent if the decou-
pling is carried out at an arbitrary stage. That this in-
consistency can be quite disturbing is demonstrated by
reanalyzing the problem of the spectral line shape in the
Heisenberg paramagnet at elevated temperatures. In-
stead of using the commutator formulation employed
in Eqs. (2.17)—(2.19b) above, we now use an anticom-
mutator formulation throughout, i.e., beginning with
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the Green's function. In view of the fact that we have
already recorded some of the relevant mathematical
details of the commutator formalism, we shall not
repeat, in the following, the corresponding details for
the anticommutator formulation. The only thing that
need be mentioned here is that if we follow the fore-
going procedure for the anticommutator case also, we
are readily led to an expression for the spectral function
of the anticommutator correlation function. This ex-
pression for the anticommutator spectral function is
such that it automatically conserves its four frequency
moments with n= 1, . . . , 4. At elevated temperatures
the anticornmutator spectral function is very simply
related to the commutator spectral function Fx"(&u)—
it is equal to 2Fx"(~)/Par —and the anticommutator
frequency moments are also similarly simply related to
the commutator frequency moments of one lower
order than themselves —the nth anticommutator fre-
quency moment is equal to (2/P) times the (n —1)th
commutator frequency moment. Therefore, the final
result can be completely recast in terms of the commu-
tator notation used in Eqs. (2.17)—(2.19b). One Qnds
that the final result of the anticornmutator procedure
is quite different from Eq. (2.19b), being of the form

(2) (ss) 1/2-

Fx**((o)=-2'(ux(')(ss)a) 8 (v—
MK SS

(2) (ss) 1/2-

+~ ~+ (2.20)
MK SZ

This result is such that it also conserves a total of four fre-
quency moments of the commutator spectral function
Fx**(cd), but these moments are a&x(")(ss), with n= 0, 1,
2, and 3 rather than with e= 1, . . . , 4 as was the case
for the expression (2.19b).

It should perhaps be emphasized that the above ex-
ample illustrates a point of general validity. Namely,
the basic difference between the commutator and the
anticornmutator formulations is that the frequency
moments being conserved are of different spectral func-
tions. In the classical (or in the infinite temperature)
limit, the two functions are simply related to each
other, and then the commutator and the anticommuta-
tor formulations differ only in providing results which
conserve one different frequency moment, i.e., the com-
mutator formulation conserves the frequency moments
22= 1, . . . , 2P, whereas the anticommutator formulation
conserves the set of frequency moments n=o, 1, . . .,
2p —1, where p is the order of the stage at which the
decoupling is introduced. Moreover, the algorithm gen-
erated by the MCD procedure is such that the two
resultant expressions for the line shape may be very
different from each other.

To conclude this section it should be mentioned that
the two aforementioned inconsistencies can be arbi-
trarily removed by making the following assumptions.
First, the Green's function should always erst be calcu-

lated in the inverse-lattice representation. The second
inconsistency can also be similarly removed by making
the arbitrary stipulation that, for boson operators, only
the commutator formulation should be used, whereas for
fermion operators, the relevant formulation should
obviously be only in terms of the anticommutator
correlation function. However, this stipulation still
leaes the procedure for spin problems undefined be-
cause the spin operators obey neither the Bose nor the
Fermi statistics.

3. ROTE'S ALGORITHM

In Sec. 2 we outlined in detail the various limitations
of the MCD algorithm for constructing the spectral
line shapes from the knowledge of their various lowest-
order frequency moments. It is interesting to note that
another procedure for linearizing many-body equations
of motion in statistical mechanics has also been pro-
pounded. We shall call it Roth's algorithm (RA). This
procedure was originally claimed to be well defined and
to be related to a stationary principle. " However,
recently Young" has noted that the variational aspect
of the RA is nothing but a different definition for con-
structing frequency moment conserving line shapes.
Moreover, Young has noted that when the RA is used
optimally —meaning when the basis set is chosen so as
to conserve the maximum number of frequency mo-
ments of the desired spectral function —then it repro-
duces the results of our MCD procedure.

The above description of the RA is in complete ac-
cord with our understanding. Therefore, it is clear that
even the optimal use of the RA will have all the failings
which we have noted in Sec. 2 with regard to the use of
the MCD.

No general statement about the less than the best use
of the RA can, however, be made since the quality of
the result will then depend upon the choice of the basis
set, used.

4. SCMCD AND HEISENBERG SPIN SYSTEM

In this section the concept of self-consistent moment
conserving decoupling (SCMCD) scheme is introduced.
To illustrate the use of SCMCD, we have chosen to
study a Heisenberg spin system. For the ease of compu-
tation, we assume the spatial range of the exchange
interaction to be limited only to the nearest-neighbor
separation. This is, of course, not an essential limitation
and the same technique can also be applied to systems
with longer-range exchange interactions.

It is instructive to consider first the more general case
of anisotropic exchange interaction. The relevant
Hamiltonian is assumed to have the form

re= —
/ p s, —p I+(f,f,)(s„*s„*ps„s„)

f f1,f2
—p I2(fif2)sr, 'Sr,*. (4.1)

26 R. A. &Dung, Phys. Rev. 184, 601 (1969).
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The assumption of only the nearest-neighbor interac-
tions implies

I(f&f&)=I, when fi and f2 are nearest neighbors (4.2a)

=0, otherwise

n—=+, 0.

(4.2b)

(4.2c)

The first term on the right-hand side of Eq. {4.1) refers
to the Zeeman energy of the spin system in the presence
of a spatially uniform s-directed external field propor-
tional to p. The second and the third terms, respectively,
represent the exchange interaction between the trans-
verse and the longitudinal components of the spins.

Under the Hamiltonian (4.1), the equation of motion
of the retarded and the advanced Green's function
Lsee Eq. (2.1) for the definition of the Green's function)
G,„(f—f'),

Here, we have introduced the notation that for gW f
L"'(gf) = &S.'Sr')
+"'(gf)=(S"S ')=(S 'S.') . (49)

Note that for the case not covered by Eq. (4.9), i.e.,
when g= f, the exchange integrals I (gf) are identically
vanishing. Consequently, the above notation suffices
for the present purposes.

Because the equality (4.8) is to hold for all locations
p, the coefFicients of the linearly independent constraints
represented by B,,„and bf, „must separately be equal on
the two sides of Eq. (4.8). This readily determines the
unknown coefFicients C(gf) and D(gf)
C(gf)

= (1/2o)L2Ie(gf)L (gf)+I+(gf)+t i(gf)$,
D{gf—) (4.10)

= (1/2.) tI.(gf)~"'(gf)+»+(g f)L (gf)~

1s
&(S"(f); S. (f')))=G-(f—f'),

(Z —~)G-(Z)

= ( / )g „+2Q I (gf)((S 'S,+; S, ))...
f

—2 2 I+(gf)((S.*Si'S. ))«&

(4.3) At this juncture it is convenient to postulate the basic
requirement of the erst-order self-consistent MCD. The
moment conserving decoupling given in Eqs. (4.7) and
(4.10) would be a self-consistent MCD if it leads to
self-consistent results for the relevant time-independent
statistical correlation functions which follow directly
from the Green's functions on the two sides of Eq. (4.7).
Clearly, this means that for the functions C(gf) and
D(gf) given in Eq. (4.10) we must have"

where, as usual, the Green's function G,i, (Z) is the
analytic extension of the Fourier transform G,~{oi),

+00

G,„( )= — « '"'((S. (f)'S (0))) (45)
2x

to the complex frequency plane Z, and where

o = (S,'). (4 6)

The right-hand side of Eq. (4.4) contains higher-order
Green's function, and if we carry out the MCD approxi-
mation at the very hrst stage, then we must represent
these Green's functions in terms of a linear combination

of the basic Green's function G,~(Z). The most general

such linear combination with Z-independent parameters

is of the type

C(gf)G,„(Z)+D(gf)Gr (Z). (4.7)

The parameters C(gf) and D(gf) are not linearly inde-

pendent, and they are fixed completely by only one

requirement, namely, the first terms in the large Z
expansion of the left- and the right-hand sides of Kq.
(4.7) must coincide. This condition readily leads to the

equation

L~Ie(gf) L"'(gf)+I+(gf) +"'(gf)1~.,r
LI (gf)+"'(gf-)+2I+(gf)L"'(gf) 3r,.

= 2 L~(gf) ~..+D{gf)&~,.3. (4.8)

Io(gf)(Sr'S'S. ) I+(gf)(—S:Sr'S. )
=- C(gf)&S.'S. )+D{gf)(S'S. &

)This result follows directly by using the spectral repre-
sentation of the Green's function given in Eqs. (2.2)
and (2.16) into Eq. (4.7).j Because Eq. (4.11) is to hold
for all locations p, it must in particular hold when p= g
and p= f.

While all the essential results of the present paper will
be worked out for the case of general spin, to illustrate
the derivation of a properly self-consistent M CD
scheme, it is convenient 6rst to specialize the following
remarks only to the case of spin 2. The great simplicity
of the spin-~ result arises because in addition to the usual
spin-commutation rules, for the case of spin ~ the kine-
matic conditions are particularly easy to work with, i.e.,

S,+Sg +Sg Sg+=1,
SzS+
Sg+Sg' ——~~~S +.

»r S=
& the consequences of using Eq. (4.]Q) into Eq

(4.11)for the case when p= g are, in general, inconsistent
with those when p= f To see this let u. s First insert Fq.
(4.10) into Eq. (4.11),put p= g, use the kinematic rela-
tions (4.12), and then solve for L«&(gf) in terms of

"Note that the other time-independent relationship, which
also follows directly from Eq. (4.7), i.e., Io(gf) (S~ Sf 'S(I+)

I+(gI)(S~ S,*Sr+)=C (gI) (S—r S&+)+D(gI) (S~ SI+), is not lin-
early independent of Eq. (4.1i) because of our conserving choice
for functions C(gf) and D(gf) given in Eq. (4.10).
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I+(gf) =Ip(gf) =I(gf)— (4 14)

The above illustration provides some insight into an
important limitation of the SCMCD scheme. The re-
requirernent of self-consistency may indeed be used to
determine the unknown frequency moments. However,
unless the system Hamiltonian possesses additional in-
ternal symmetries which ensure that the various pos-
sible such determinations of the unknown moments are
self-consistent within themselves, the SCMCD cannot
be reliably used.

In the light of the above, we shall limit all further
discu'ssion to the case of isotropic exchange interaction
I(gf).Moreover, for convenience the only nonvanishing

I(gf) will be assumed to be between nearest-neighbor
spins, and in order that it lead to a ferromagnetic ground
state this exchange integral I will be assumed to be
positive. It is now convenient to recast Eqs. (4.10) and
(4.11) into the form

C= —D
= (1/2~)(2L'+8) (4.15a)

C= $S(5+1)o L' L' )P' —)P—P)— —
XSL(5+1)—o —M —iPP) '. (4.15b)

Here we have introduced the abbreviated notation

C(b)/I(o) = C

D(S)/I(S) = D,
L'= L")(I)),

P=~("(~),

(4.16a)

(4.16b)

(4.16c)

(4.16d)

I.' = (5, '(S,') ') = (5,'(5, ,') '), (4.16e)

4'=(Sp'Ss Su+2+)=(52+2+52*5g & (4.16f)

3f= ((S,')'). (4.16g)

22 In addition to the case given in Eq. (4.14l, there possibly
exists one other situation where Eqs. (4.13a) and (4.13b) are
self-consistent. This would be the case in the Ising limit I+(gf)~ 0
if the corresponding p('&(g f) went to zero faster than I+(gf). The
resultant L( &(gf) would then be the molecular Geld expression,
i.e.,=0'.

4'(')(gf). This readily leads to the result

L"'(gf)
= LI~(gf)4N'(gf) —2Ip(gf)(4"'(gf))' —2o'Ip(gf))

&& L4I+(gf)+"'(gf) 2I—o(gf)?' (413 )

Now, if we. repeat the same procedure and use the limit
p= f, instead of the limit p = g, we are led to the follow-
ing result:

L"'(gf)
= P.(gf) +"'(gf) 2I+—(gf)(+"'(gf))' 2~'I—+(gf))

&&I:4Io(gf)+"'(gf) 2I+(—gf)) ' (4 13b)

Clearly, the results (4.13a) and (4.13b) are self-incon-
sistent, unless"

Here I) denotes any of the s nearest-neighbor vectors (s
is the coordination number of the lattice). LNote that
because, of all possible I(gf), only I(8) is nonvanishing,
the set of relations (4.15), (4.15b), and (4.16a)—(4.16g)
sufFice for all further discussions. )

The additional complexity of the general spin case is
now clear. Whereas for the simple case of S= ~ the only
unknown parameters entering the Green's function Eq.
of motion were |PP, L', and o, for the general spin case
the additional unknowns L', )P', and M' also appear in
these equations of motion. Before we deal with this com-
plexity it is convenient to write down the result for the
Green's function GK(Z) which follows from Eqs. (4.4),
(4.7), and (4.15a),

G (z) =( /&)I:z —z (5))—',
EK(5) =)a+2CLJ(0)—J(K)),
J(K)=IP s'"'.

(4»)
(4.18)

(4.19)

(S.+5 ) =(2 /It')2 LC'K(5)+1)S""", (4.22)

where

g)K(5) = (sP&z(s) ])
—i

C(5)=1/1VQ CK(5).

(4.23a)

(4.23b)

The implicit dependence of C)K and C on the spin 5
arises because the elementary excitation energy EK is
implicitly dependent upon 5 through its dependence
upon C.

The results (4.17)—(4.23b) are of the same general
form as those obtained within the usual decoupling
schemes such as the RPA" and the Callen" decoupling.
As shown by Callen and Shtrikman, ' an implication of
such a decoupling scheme, or alternatively of the Eqs.
(4.17)—(4.23), is that the average ((S,*)") is related to
C(s), i.e.,

pd"0(x) )
((5, )-)=i-

i dx" j,=,
'

0(x)
Sgz

(4.24a)

(g&(5))2s+le—xs+(1+ @(5))2s~ls(sy1) x

L(C'(5))' +'—(1+4'(5))"+')L(1+~'(5))s' —C'(5))

(4.24b)
' H. B. Callen and 82 5btrikman, Solid State Commun. 3, 5

(1965).

The above results now immediately lead to the
following:

(Sp Sp+) =S(S+1)—o —M=2oc'(5), (4.20)

&'=(2 /I)')2 CI(&)/I(0))C' (5), (4.21)
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Similarly, it can be shown (see the Appendix) that under
a similar assumption the correlations (S,+e*s&*SP) are
related to the correlations (S,+SP) through the
relationships30:

(S,+s.»*SP)= r &+&(x)(S,+SP), (4.25a)

I'&+&(x) = (1/20)(/S, +,e*B~*S,+j ). (4.25b)

[Here we take either all the upper signs or all the lower
signs on the two sides of Eqs. (4.25a) and (4.25b).g

As a result of the relationships (4.24a)—(4.25b), the
additional functions iP' and. M are no longer unknown
but are determined in terms of C(S) and P, i.e.,
M =S'+(1—2S)C (S)+2EC (S)3'

(1+2S)L1+2C'(S)jLC'(S)3"+'
(4.26)

l 1+C(S)3'"'-B(S)3'"'
p' =L3M —0 —S(S+1))A/20. , (4.27)

where

LS—C(S)jL1+C(S)1 + +E1+S+C(S)](C(S)j +

L1+C(SH s+ —jC(S)3 + (4.28)

The only additional function that enters the discus-
sion of the general spin case and is still unspecified, is
L'. In the Appendix we sketch an argument —within
a scheme similar in spirit to the Callen and Shtrikman
algorithm —in which the correlations ((S,*)(S~')") are
all related to the lowest-order longitudinal correlation
(S,*Sr') through the generating function relationship

dQ(x)
(Sr*ebs,*S .)

dx

(Sg'S, ') —0' d'Q(x) dQ(x)
——o. ——. (4.29)

3II—0 2 dS dS

where

(4.33')

y = 0 (p —OM)/(M —0') . (4.33)
The set of equations (4.18), (4.21), (4.23a), (4.23b),

(4.28), (4.31), (4.32a), and (4.32b) lead to a closed
scheme, involving implicit transcendental relationships
from which C'(S), P—and in turn the magnetization 0,
the longitudinal correlation, and the system energy,
etc.—may be calculated.

The foregoing remarks are applicable to the case of
general spin. It is interesting, however, to ask what
these results look like in the extreme limit of spin ~. I'or
spin 2, the spin kinematics require that

M = ~. p= —'0-

ThereforeTherefore, we get

L' =0M+ (L (r') (p 0M)/—(M 0—') (4.30—)
(4.34)y=0,

and C reduces to the extremely simple form

C= (-'0)L-' —Po) ' for S=—,
' (4.35)

Moreover, Eq. (4.20) also simplifies, and we get

0=(2)L1+2C(-,')j ', for S=-,' (4.36)

The relationships (4.18), (4.21), (4.35), and (4.36) are
identical with those obtained by Mubayi and Lange"
(ML) in their study of the properties of a two-dimen-
sional spin-~ Heisenberg ferromagnet. To the extent
that the present work achieves the same decoupling as
recently derived by MI, it may be considered to be an
extension of their decoupling to general spin values as
well as an extension of their results to one and three
dimensions. However, since the arguments used by ML
were rather different than those presented here, this
paper may also be considered to provide further in-
sights into the decoupling proposed by ML.

where

p=((S ')')
=S'+ (3S—1—3S')C (S)

+6(S—1)LC'(S) 3' —6[C'(S)1'+(2S+1)LC'(S)j"+'
&& {S'+S+1+6C (S)L1+C(S)j}

&«L1+C( )j'"'—
t C(S)j'"'}-' (4»)

The relationships (4.26)—(4.31) are all functions of
only three unknowns L', P', and C (S). However, if we
now equate the right-hand sides of Eqs. (4.15a) and
(4.15b), we get an additional relationship which reduces
the unknowns to only two, i.e., C(S) and P. These
quantities, however, are in turn determined from the
knowledge of Zx(S) [see Eqs. (4.21)—(4.23b)j which
itself depends upon C. Therefore, let us next attend to
the job of expressing C in terms of C (S) and P.

Following the scheme proposed in the preceding
paragraph, i.e., using Eqs. (4.15a), (4.15b), and (4.30)
to eliminate L' and L', we 6nd

5. SERIES EXPANSION SCHEMES

The coupled, implicit relationships involving 0, f,
and L obtained in Sec. 4 cannot in general be solved
analytically. However, since these quantities are them-
selves functions of C(S), it is possible to derive series
expansions for them which are valid in the extreme
limits C'(S)«1 and C'(S)))1."See also, N, E, I,ineS, Phys. Rev. 156, 534 (1967).

0 LS(5+1) M+y j+$8(S+1) 3M+—y)P/2o-
C=

S(S+1)—M —P+y
(4
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First, let us consider the case of 4(5)«1. Here from
Eqs. (4.28), (4.26), and (4.31), we get

0 =S—4 (S)+(2S+1)[4'(5)]'s+'+0,
M =5'+ (1—25)4 (S)+2[4(S)]'

—(1+2$)[4($)]"+'+0,
p =S'+ (35—1—3S')4'(5)+6(5—1)[C'(S)]' (5.1)

+ (25+ 1)(S'+5+1)[4 (S)]'s+'+ 0,
o—=o([c(s)]»+' [4(s)]').

k,T= P-'«4$J(0), (6.1)

where k~ is the Boltzmann constant. Here a straight-
forward iteration procedure, which uses a power expan-
sion in the ratio

8= 3kgT/47rvpSJ(0), (6.2a)

A. Low Temyeratures

The limiting case of 4 (5)(&1 is self-consistently satis-
fied in the limit of low temperatures, "i.e., when

Inserting the above into Eq. (4.32b) we get

y =S(25—1)+(1—65)4'(5)+2S'(2S+ 1)'[4'(S)]'
+ O([4($)]',[4($)]Pa+'). (5.2)

so= 1, for sc lattice
= —,

P (2)'I' bcc
= (2)'" fcc

(6.2b)

where we have used the notation

X=-',$(S+1). (5.5)

Using Eqs. (5.1) and (5.2), Eq. (4.32a), we And the
appropriate result for C:

c=5—4'(5)+4'/25+0(0'4'($), [4'(5)]')
for 4 ($)&(1. (5.3)

For the opposite limiting case of 4 ($)))1, the algebra
is quite tedious. The relevant results are.=XC-'($)[1-!4-'(5)+—'.(3—2X)]4-'(5)]

+o(4- (5)),
BI=Xj—'[4 '(S)]X(4X—1)[1—4 '(S)

—(2/7)(X —3)4' '(5)]+o(4' '(5)) (5 4)

~= kX(3X—1)4' '($)[1—54' '(5)]
—(X/210) 4 '(5) (65'+ 12S'—28$' —34S+9)

+0(4- (5)),

ap =Z(-.'),
ay = ~ÃvpZ (p)

(6.4a)

(6.4b)

(6.4c)

and where 0 in Eqs. (6.3a) and (6.3b) denotes terms of
order 8' or smaller. [These ap and'a~ should not be con-
fused with those occurring in Eq. (2.15)).Now, to begin
the second cycle of iteration we compute the correspond-

is found to be rapidly convergent. The details of this
calculation are in many ways similar to those used relat-
ing to spin-wave theories" "and will not be given here.
For the zeroth-order results we put C= 5 and find:

4($) = ap8'"+a~8'"+0, for 8&&1 (6.3a)

P= 2S[ap8' '——'ag8'~']+0, for 8&&1 (6.3b)

where

C= S—vrvpZ(p) 8P' +0, for 8«1.
Using the above expansions into Eq. (4.32b), we get ing result for C. This gives

y= —',XC '(S){(4X—1)[1—4 '(S)]
+[4' '(S)/420]( —32S4—645'+4765'+508S

—363)}+0(4 '(5)), for 4 ($)))1. (5.6)

(6.5)

The relevant expression for C can now be obtained

C= C(num)/C(denom),

C(num) =4 '($){2X'[1——,'4 '(S)+44 '(S)]
-L(4X—1)/20](1—!4-'(5)
—[4 '(S)/140][(44X—41)Pi}

+0(4- (s)), (5.7)

C(denom) = 2X{1+[4 '(S)/20](4X —1)}—P
+0(4 '(5)).

6. RESULTS IN THREE DIMENSIONS

In the present section the series expansion solutions,
outlined in Sec. 5, will be used to study three-dimen-
sional lattices. For simplicity we shall limit our discus-
sion to lattices of cubic symmetry only.

ap ——~'vp'(opZ(-', ), (6.6b)

cop
——33/32, sc; 281/288, bcc; 15/16, fcc. (6.6c)

Since the accuracy of 4 (5) is now adequate, no further
iteration for calculating P and C is necessary. The cor-

"A point often missed in the literature is that the condition
(6.1) is more stringent than the condition T(&T, (where T, is of
the order of the Curie temperature), especially when S))1.The
reason for this is that T, is essentially proportional to S(S+1)J(0).
As such, for a system of classical spins where the eGective-spin
quantum number is inhnity, 6nite temperatures are not low in the
sense implied by Eq. (6.1). Consequently, for such classical spin
systems, the low-temperature expansions discussed in Sec. 6 are
not applicable and a more careful expansion procedure has to be
devised.

4 (5)= ap8' "+ag8'"+ ap8"'+ (2apag/5) 8'

+0(8'"), for 8«1 (6.6a)
where
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responding result for the magnetization is where

&aT.= (J(0)/10) L(16X+1)+(4X—1)/F(0)], (6.14)

(6.15K)

+(1/20) (4X—1)L(16X+1)F(0)+(4X—1)]
F(0) /

4X—1
+ — (16X+1)I

2X k(16X+1)F(0)+4X—1

~ =S a—oe'/' a—,e /' a—,e'/' (—2aoai/S) 8'

O (89/2)+ (2S+1)(a )28+183 i28+1) /'3

X I 1+(2S+1)(ao/ai) 8+O(8')], for 8«1. (6.7)
B(S)=—,', [4X—1+(16X+1)F'(0)]

The above result is identical (to the order of accuracy
maintained here) to that given by the Callen" decou- F(0)—1 (4X—1)
pling. It, therfore, also suffers from the same deAciency
as Callen's work, i.e., that for spin 2 it contains the
anaomalous 8' term. Similarly, the present result for the
elementary excitation energy is dominantly correct for
all spins

I
To see this insert the C given in Eq. (6.5) into

Eq. (4.18)] just as Callen's result also is.

B. Just Below Critical Point

Next let us consider the temperature region immedi-
ately below the critical temperature. For convenience
we shall consider the situation here in the absence of an
applied field, i.e., for p, =0. Because in this region we
expect 0. to be small compared with its zero-temperature
saturated value S, therefore it follows from Eq. (5.1)
that here C (S) is large compared with unity. Therefore,
we use the relevant expansion for C given in Eq. (5.7)
and calculate C(S) and P self-consistently from the
relations

F(0)=1.51638, for sc
= 1.39320, for bcc
= 1.34466, for fcc.

(6.16)

It is instructive to compare the structure of the fore-
going result for the limiting cases of S= 2 and S= ~.
For S= ~, X=4, and we get

F(0)X
+ —. (6 15b)

6z

For cubic lattices, the function F(0) is well known, "

C'(S) =F(0)c'(S)F(S)/2&J(0) —
2

+P~(0)C' '( S) /6F( S) +o,
0'= I:X/P~(0)]L1—24' '(S)+ 5C' '(S)(2 —X)]

XLF(0) —1]F(S)—P~(0)/3s]LX/F (S)]
XC' '(S)+0,

A/f T,/J(0) = —,', for 5= -',

(6 8) g 3g i/2 T ff i/2

(a+1)F(0) T.j
(6.V)

(6.17a)

where 0 stands for terms of higher order in the powers
of C '(S) than those retained. Here we have used the

For S—&~, X))1, and we get

F(0)=(1/»') 2 I 0+1—~%)/J(0)?' (6 1o)

Also, F(S) is defined as

P(S)= C '(S)/C, (6.11)

and s is the coordination number given by the relation

o /35 "' 4F(0)+1

S E 3 28F'(0) —4F(0)+1
1/2 T

1—— 0 1——,for S=~. 6.18b
T. T.

'

s '= —2 L~(&)/J(0)]'.
Q K

(6.12)

(A(S)kifT. "' T T

) (1——
) +O(1——), f6.13)

The set of relations (6.8)—(6.11) can now be simul-
taneously solved to derive self-consistent power series
expansions in powers of C '(S) or, alternatively, in
powers of 0.. The details are quite tedious, and only the
final results are quoted below. One finds that for T(T,
and (T,—T)«T„

It is amusing to note that in the above equations the
dimensionality of the lattice enters through only two
parameters, namely, F(0) and s. Therefore, the form of
the corresponding results in other dimensionalities may
be guessed by simply making an appropriate choice for
F(0) and s. Now, in one and two dimensions F(0) —&of),

while s shows no dramatic behavior. Therefore, as the
temperature is decreased below the corresponding criti-
cal temperature, the spontaneous magnetization 0. may
be expected to continue to remain zero in one and two
dimensions. In the following sections, where we carry
"G. Q. Watson, Quart. J. Math. IO, 266 (1939).
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where
&x(S)=~[1+Q 'n(K)], (6.19)

out more careful analysis of these cases, this guess will
be verihed.

Let us next study the region above the critical tem-
perature, i.e., T& T,. In the presence of a vanishingly
small external field, it is appropriate to recast the energy
Ex [see Eq. (4.18)] into the following form:

use the well-known expansion" for (FQ):

F(e)=F(0)-fQ I + ~

where
b = 3V3/s-v2, for sc
= 2&2/s. , for bcc
=3v3/2', for fcc.

(6.25)

(6.26)

Q=XU/2J(0)x,
Substitution of Eq. (6.25) into Eqs. (6.20)—(6.23) leads

(6.20a) to the following result:

U=[2X—P(0)] (4X—1)'b'(10X)(T/T, —1) '
~[2X'—(1/20)(4X —1)P(0)]-', (6.20b) ' '

J(0)[(16Xy1)Fs(0)+(4X—1)]'
(6.20c)

(6.20d)

(6.20e)

lim (C(S)p/X) =X—'=QF(Q)/PX (6.21)

f (0)= [2X/F(e)][(1+Q)F(e)—1], (6.22)

where F(Q) is as defined in Eq. (6.10). Solving Eqs.
(6.20a)—(6.22) simultaneously and using Eq. (6.14), we
are led to the convenient expression

In the limit of vanishingly small p, Eqs. (4.23) and
(4.21) for C(S) and P lead to the following simple
expressions:

for S)-,'. (6.27)

Therefore, in three dimensions for S~&1, the structure
of the zero-field susceptibility just above the critical
temperature is similar to that predicted by the spherical
model" and the usual Green's-function decoupling
approximations. ""As before it might be guessed that
since the crucial dependence upon the dimensionality in
the above result is through F(0) then in one and two
dimensions the (T/T, —1) ' behavior will be absent,
even for S&~, and that the structure of the susceptibil-
ity will have the classical form' for all spins.

Next let us consider the regime of elevated tempera-
tures where T))T,. Here Q))1 and the following ex-
pansion of F(Q) is therefore the appropriate one:

F(e)=e- [1-e-+(1+1/.)e-]+o(Q-'). (6.28)

Inserting (6.27) into Eqs. (6.20)—(6.23) finally leads to
the results

10',(T-T,)/J(0)
=(16X+1)[(1—pXx ') '—1]

+Q(1—4X)(1—PXx ') i

+(4X—1)[F '(Q)(1—pXx ') ' —F '(0)]. (6.23)
x '=(&nT/X)[1 —

Q '+(1+1/s)e ']
+0(Q '), for T))T, (6.29a,)

(16X+1)(1+1/s)+ (4X—1)

20X

For the particular case of spin ~, the solution of the
above equation is straightforward for all temperatures
T) T,. For this case the terms involving (1—4X) — =Q+
vanish identically, and one readily gets 2J(0)X

X=, for S=—,'. (6.24)

This result is identical to the molecular field theory pre-
diction. We note also that since the above expression
does not involve any parameters which depend upon the
dimensionality, this result is likely to hold also in one
and two dimensions.

For the case of S&2, it is not possible to derive the
result for X in a closed form valid for all paramagnetic
temperatures. Instead, for this general case it is con-
venient to separate the regions (T—T,)((T, and
T&)T',.

In the 6rst region, the susceptibility X is expected to
be large and as such Q may be expected to be a small
parameter [see Eqs. (6.20)—(6.22)]. Therefore, we can

+0(Q ') for T))T,. (6.29b)

Equations (6.28a) and (6.28b) can now be solved simul-
taneously to give

x =pX(1+2pJ(0)X
+4P'J'(0)X'[1 —(4X—1)(20sx)-i]jgo(P4)

for T))T, . (6.30)

The above result relates to all values of the spin. It
agrees with the exact'4 series expansion only to the first
two powers in PJ'(0) much as the results of the other
decoupling theories. ""

'3 See for example, I. Mannari and C. Kawabata, Research
Note No. 15, Okayama University, Okayama, Japan, 1964 (un-
published}."H. A. Brown and J.M. Lnttinger, Phys. Rev. 100, 685 (1955).
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o. '=x ' coth[-', PErr(-', )jdE, (7.1)

PO~
—1 (2~)

—1

where

coth[ —,'PErr(-', )j
X[J(IC)/J(0)/dE, (7.2)

J(X)=2I cosE,

Ex =Ii+4CI(1 —cosK),

C—1 ~—1 2/0~ —1

(7.3a)

(7.3b)

7'. RESULTS IN ONE DIMENSION

The algebraic manipulations necessary for finding
a properly self-consistent solution of the various equa-
tions given in Sec. 4 are, as in three dimensions, a lot
more cumbersome for the general case of 5&—,'than they
are for the simple case of S=—,'. However, in one and two
dimensions, unlike in three dimensions, the structure of
the results for S=—,'and S&—,'is not expected to be so
different from each other. Therefore, for convenience
and brevity, we shall describe in detail only the solution
for the case of S= ~. For the general spin case, only some
results will be quoted.

For spin —,', we first recast the relevant expressions
given in Sec. 4 into convenient form

Instead, the inequality (7.5b) can be satisfied only if

lim [Cj=np"", e&1.
+=0 T=TG

(7.8)

To fix the value of n, it is necessary to employ at least
one additional term in the series (7.4), i.e., to use the
inequality

coth[ —,'PErr( —', )j&~2/PEx(-', )+0PEx(0) . (7.9)

The consequences of Eqs. (7.3c) and (7.9) are

PI ~& [1 (1+S—IC/p) 'I'j+—'P'IpC-+2P'I'C' (7.10)

At T= T„i.e., PI= 1, the relevant solution of the above
equation is of the form (7.8), with

n=5, n= ', (I) '-" (7.11)

[Note that for C given by Eqs. (7.8) and (7.11), Eq.
(7.10) self-consistently becomes an equality, hence
(7.11) is the correct solution. )

I.et us next examine the structure of the susceptibility
X as a function of the applied field p at the critical point,
i.e., when PI=1. To do this we express Eq. (7.1) into
the form of an equality in a manner similar to that used
for deriving Eq. P.10) from Eq. (7.3c). This gives

lim (& ') =4I(1+SIC//y) "'+lJ,'/3I+4Cy. (7.12)
G

d&(1—cosIf) coth[-,'pox( —',)j (7.3c) Now using Eqs. (7.8) and (7.11), we find

coth[lPE (l)]& I2/PEx( ')I-
renders Eq. P.3c) into the inequality

1 + dE(1 —cosK)
1~&-

2~PI (p/4IC)+(1 —cosIC)

(7.4)

(7.5a)

Knowing that" 0&~0.&&-,' and 0~& ~P~ &~ 2, we gather
that C is non-negative. Moreover, the inequality

lim (X) =const' '~0, for (y ~ 0). (7.13)
T=TG

The behavior of the zero-field susceptibility X just
above the critical point is also analyzed by proceeding
from Eq. (7.1) and taking the limit p, = 0. This leads to
the equality (note that here the temperature T is as-
sumed to be above that of the critical temperature, i.e.,
T~& T,+0, where 0-++0),

X—'= 470IiT(1+SIC/IJ) 'i'. (7.14)
which gives

(1 T,/T) & (1+SIC/—p) '". (7 5b) Under these conditions Eq. (7.5b) is also reduced to an

equality, and therefore we get
Here we have for convenience put

PI = T,/T. (7.6)
lim [Xj= [4kii(T —T,)j ', for T~& T,+0. (7.15)
p,=o

lim C =d(T/T„I)IJ, , for T& T, .
p,=o

(7.7)

This relationship is easily seen to be self-consistently
correct for all T)T, because then Eq. (7.4) is an exact
equality.

It is clear that the solution (7.7) breaks down at the
point T= T„unless we assume d(1,I) to be divergent.

We shall shortly recognize the T„defined by Eq. (7.6),
to be the system's critical temperature.

From the inequality (7.5b) it is clear that for T)T„
the ratio (C/p) must approach a finite limit as p~ 0
(note that we have assumed I to be positive), i.e.,

lim C'~& (T/T, ) (1 T/T, ), —
p=o

P.16)

which proves our assertion.

This is the same result that was derived in the case of
three dimensions [see Eq. (6.24)j.

Let us next examine the behavior of C and o- below
the critical temperature. For simplicity we assume the
absence of the applied field, i.e., p, =0.

For T(T„the parameter C is found to have a finite
value even in the absence of the field. To see this let us
use Eq. (7.3c), the inequality (7.9) and put p=0. In
this fashion we are led to the inequality



SELF-CON SI STENT MOM ENT-CONSERVING DECOUPLI N G ~ ~ 3175

Next let us examine the behavior of the long-range
order parameter 0., i.e., the magnetization, below the
temperature T,. Using Eq. (7.1) and the inequality
(7.4), we readily Gnd that in the limit of a small Geld,
i.e., p,&&I, we have

0. &~ const''i'/T. (7.17)

8. RESULTS IN TWO DIMENSIONS

For spin ~, the results of our SCMCD are identical to
those following from the ML decoupling. "The conse-
quences of this decoupling have been discussed by ML,
and we refer the reader to their paper" for the corre-
sponding details. For the present purposes it is conven-
ient to quote only the results.

The system distributed over a square lattice under-
goes a phase transition at T= T„where

This inequality suggests that except in the trivial limit
of absolute zero temperature, the magnetization 0.

vanishes more rapidly than p,
'~' throughout the tem-

perature range T& T,. Though this inequality is some-
what weaker than the rigorous inequality of Mermin
and Wagner, "it is quite consistent with it.

It is clear that the behavior of the system is charac-
terized largely by whether the system is above or below
the critical point, i.e., whether the system temperature
T is greater than T„equal to T„or less than T,. The
existence of such a critical point signifies the occurrence
of a phase transition at a Gnite temperature.

When we consider the case of general spin, i.e., S)2,
the structure of the foregoing results remains largely
unaltered. The relevant algebra, however, becomes ex-
tremely tedious. Therefore in the following, we quote
only the results for the zero-field susceptibility just
above the critical point.

For general spin the result is

x = [X/(T —T,))[1+2(4X—1)/(16X+ 1)$, (7.18)

where
SksT, =I(16X+1). (7.19)

This result is in complete accord with our conjecture
based upon an extrapolation of the corresponding results
in three dimensions. [Compare Eqs. (6.14) and the
remarks following Eq. (6.26).j

SkgT, =2I(16X+1).

9. DISCUSSION

(8.5)

We have given a critique of the moment conserving
decoupling approximations and shown that they gener-
ate only a limited class of line shapes which may be of
interest when the system properties are well described
in terms of long-lived elementary excitations. The cor-
responding line shape is then made up of peaked regions
at appropriate positions indicating the dispersion ener-
gies of the elementary excitations.

The nonuniqueness of the resultant line shapes has
been noted. A self-consistent MCD procedure, which
reduced some of this nonuniqueness, has been outlined.
The use of this SCMCD—at the first nontrivial stag-
has been discussed in connection with the study of the
long-range order parameter (LRO) in isotropic Heisen-
berg spin system. The results for the LRO are found to
be reasonable in three dimensions. In one and two di-
mensions, they are found to be consistent with the
rigorous inequalities given by Mermin and Wagner. "

Our results have suggested the existence of a phase
transition in all the three dimensionalities studied. For
two and three dimensions, this is not in contradiction
with the accepted notions. In one dimension, however,
the situation is not very clear. According to a recent
conjecture of Dyson, " one expects that an infinite
linear isotropic Heisenberg ferromagnet will have a
phase transition at a 6nite temperature provided that
the range of the exchange interaction I(R) is long
enough, and I(R) is positive and monotonically decreas-
ing, and provided the sums J(0) and Js,

J(0)= g I(na),
n=l

(9.1)

As in one dimension, at nonzero temperature the
spontaneous magnetization is also vanishing in two di-
mensions and is found to follow the inequality

0 ~& (const/T) .1/
~
logy

~

. (8.4)

For general spin, the essential structure of the above
results is expected to be similar. The magnitude of the
critical temperature is

kgT, =—2l, for S=—,'. (8.1) J,= g [log log(m+4) j[e'I(ea)$ ', (9.-2)
n=l

X= const(T —T,) ', for T)T,
= const@ '~' for T= T,. (8.3)

The parameter C has the limiting behavior

C= const', for T& T,
= ( o estn[l gpo~ '")p'" for T= T,
= independent of p, and of the form:

const(T, —T)'~'+ ~, for T(T,. (8.2)

Similarly, the zero-field susceptibility behaves as
follows:

converge. (Here a is the nearest-neighbor distance. ) Un-
fortunately, the Dyson conjecture does not straight-
forwardly refer to the case under study, because here
the range of the exchange interaction is limited only to
the nearest-neighbor distance.
~It should be mentioned here that the results of our
SCMCD for the short-range order phenomena, e.g.,
the system specihc heat, etc., are not as satisfactory as
those for the LRO. To see how this comes about, first

» F. J. Dyson, Commun. Math. Phys. (to be published).
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note that our result for the longitudinal correlation Lo

Lsee Eqs. (4.13a), (4.13b), and (4.14) to 6nd I.' for the
case of spin ~. For general spin, the corresponding 1.0
can be obtained from using Eqs. (4.15a), (4.15b),
(4.25a), (4.25b), and (4.30)), does not attain isotropy at
T~ T, and p —+ 0, i.e.,
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(9.3) APPENDIX

This makes all direct predictions based upon I suspect
and indeed the corresponding results for the specific
heat have the same unsatisfactory features as those ob-
tained in the work of Tahir-Kheli and Callen. 3

The foregoing shortcoming of our SCMCD is not
unexpected but rather is in accord with the well-known
observation that, in general, any given decoupling ap-
proximation leads to results of differing accuracies for
the longitudinal and the transverse correlations. '~ "

In conclusion it should be Inentioned that the real
usefulness of the SCMCD procedure will not lie in its
application to standard three-dimensional ferromagnets
where the exchange strength along all directions is
nearly equally strong, because for these systems the
accuracy of the SCMCD results is not compellingly
greater than that of the corresponding results obtained
in the usual decoupling approximations. ""Rather, the
great advantage of the SCMCD procedure over the
usual decoupling theories lies in its (possible) applica-
tion to those systems where the intraplanar exchange
interactions are strong and the interplanar interactions
comparatively weak. , e.g. , in CrBr3."' Here the usual
decoupling schemes4' would be expected to give a rela-
tively poor representation of both the LRO param-
eter o and the spin correlation function (5,+5„).The
reason for this is that in the limit of vanishing inter-
planar interaction, the results of the usual decoupling
approximations are known to be drastically inaccurate4'
because they predict no phase transition at nonzero tem-
peratures, and moreover they yield too low a value for
the short-range order parameter, i.e., of the correla-
tlorl lt'

However, for the case of the other interesting limiting
situation where the magnetic structure is dominantly
linear, i.e., where the intrachain exchange is much
greater than the interchain interaction, the present
method affords an inferior description4' as compared to
the usual decoupling procedures. 4'

' R. A. Tahir-Kheli and H. B. Callen, J. Appl. Phys. 35, 946
(1964); Phys. Rev. 135, A679 (1964).

'~ H. S. Bennett, Ann. Phys. {N. Y.) 39, 127 (1966).
3 R. A. Tahir-Kheli, Phys. Rev. 159, 439 (1967).
"A. C. Gossard, V. Jaccarino, and J. P. Remeika, Phys. Rev.

Letters '7, 122 {1961).
4'H. L. Davis and A. Narath, Phys. Rev. 134, A433 (1964).
4 M. E. Lines, J. Appl. Phys. 40, 1352 (1969).~ Indeed, in the limit when the interchain exchange is vanishing,

the result of the SCMCD procedure —namely, that there occurs
a phase transition at 6nite temperature —is quite likely to be in
error, whereas the usual decoupling-procedure result —namely,
that the transition temperature for such a system is O'K—is
physically more reasonable."T.Oguchi, Phys. Rev. 133, A1098 l1964l.

It was stated in Sec. 4 in the text that Eqs. (4.17) and
(4.18)—which are valid for all spins within the first-
order MCD schem- implied that the averages ((5')")
for various n values were implicitly related with each
other through their dependence upon the function C (5).
Similarly, the assertion was made that within a similar
scheme the existence of Eqs. (4.25a), (4.25b), and (4.29)
was also implied. In this Appendix we elaborate upon
the assumptions under which the above assertions are
valid.

The peculiar dependence of ((5')") upon C(S) given
in Eqs. (4.24a) and (4.24b) is based upon the assumption
that the Green's function

((5,'(1);e*'"*"'S.(1')))—=G- (1—1') (A1)

will have the following truncated equation of motion
within the first-order MCD scheme

Gx*(z)LZ —Ex(5)$= I'+(x)/2s. , (A2)

where Ex(5) is again given by Eq. (4.18). Once the
above assertion is made, it can be shown in a manner
analogous to that expounded in Refs. 15, 29, and 30 (for
brevity we do not repeat these arguments here) that
Eqs. (4.24a)—(4.25b) indeed follow.

It should, however, be emphasized that Eq. (A2) is
not quite what the MCD procedure would lead to-
except, of course, when @=0.Indeed the correct equa-
tion of motion of G,~*(Z) for arbitrary x is the following:

G„*(Z)LZ-„j=~, ,„r+(x)/2

+2 g I(gf)((Sf'S,+ S,*Sr+; e*e&—'S~ ))&z~. (A3)
f

where

&K*(5)=P+2C'(5) L~(0) —~(K)j,
C*(5)= He *—1)5(5+1)(Sr+~*e"*)

+(e*"'Sf Sf+ ')+(e +1)(Sr+~'e*"*Sf')
-( —1)(5+ * *"*(5*)'8

&& LS(5+1)(e *—1)Q(x)+ (e +1)(e*ef*Sr')
—( *—1)( *"'(Sr*)')) ' (A6)

In Eq. (A6), 3 as usual denotes the vector separation of

any two neighboring sites in the lattice. Clearly, the
diff erential equations obeyed by the correlations,
(e*sf'Sf—5,+), that we would obtain from the above

Green s functipn are exceedingly glof'c coIDplex than

(A5)

Therefore according to the actual MCD procedure (see
Sec. 4 for the relevant details of the MCD) the above

Eq. (A3) would take the decoupled form

Gx'(Z) Lz —EK*(5)$= I'+(x)/2s-, (A4)
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those solved in Ref. 15. This is caused by the implicit
x dependence that the above Ex*(5) possesses. In con-
trast, the corresponding differential equations obtained
within the usual decoupling approximations"" are
tractable because EK(5), and in turn C (5), are not irn-

plicit functions of x. Indeed, within the usual decoupling
schemes, we always have

Ex*(5)=Ex'(5)=Ex(5—) . (A7)

To make the mathematical manipulations of the
present paper tractable, we have been forced to make
the assumption of the validity of Eq. (A7). We feel that
this is a plausible assumption in view of the fact that
almost the entire elementary excitation spectrum —at
least in the spin-wave regim" -is the one that is gen-
erated by the propagation of a single spin Qip. In other
words, the spin-wave spectrum is determined in large
part by the poles of the Green's function G&'(Z)
=Gx(Z). In other words, while the poles of the more
general Green's function Gx*(Z) are not necessarily
identical to those of GEO(Z) Lbecause the renormaliza-
tion of the spectrum Ex (S) will contain different con-
tributions from the two and higher number of spin-Qip
processes than does Exo(5)] to an approximation which

is possibly not much worse than the one which makes
use of nondecaying elementary excitation energies, we

may assume Ex'(5) to be the same as Ex*(5). And
since the MCD gives only nondecaying elementary
excitations, i.e.,

A*(gp) = (5 '*'"') (A10)

The above solution autoInatically satisfies the boundary
condition that

h.*(gp) = 0, for x= 0 (A12)

because Q(0)=1. A suitable form for the remaining
boundary condition which fixes the unknown function

R(gp) is

g.g z (A13)

The satisfaction of this boundary condition by the
solution (A1) guarantees that

and R(gp) is independent of x. The important point to
note here is that while the actual form of the function
R(gp) is implicitly dependent upon precisely how the
formulation leading to Eq. (A10) is carried out Lcom-
pare Refs. 36 and 38j, the structure of the differential
equation (A9) is invariant for all decoupling procedures
which assume (A7).

The solution of the differential equation (A9) is
clearly

dQ(x)
4 (gp)= Q(x)+ — —Q(x))R(gp). (A11)

dS

ImLZ *(5)$=—0, (AS)
R( p) = ((5;5„') ')gyes '—). —(A14)

the inordinately heavy additional effort necessary for
solving Eqs. (A4)—(A6) is clearly not warranted.

Let us next turn to the veri6cation of Eq. (4.29).
Once the plausible assumption of the validity of Eq.
(A7) has been made, and consequently the interrelation-
ship of ((S')")for various n values has been established
via Eqs. (4.24a) and (4.24b), then we can use the same
algebraic manipulations as given by Tahir-Kheli and
Callen" and Tahir-Kheli38 to derive a differential equa-
tion of the form

d' L1+C (S)]e'+C (S) d
+— ——S(5+1) A*(gp)

dx' 51+I(S)le —4 (S) dx

=I'"( )Ll —C'(5)( —1)r'R(gp), (A9)

Note that the crucial point in the above derivation is
that although the actual magnitude of the function
1.'(gp) is dependent upon how we use the Green's-
function theory for its computation, the interdepen-
dence of functions (S,'(S„')")for n = 1, 2, 3, . . . , is com-
pletely independent of the technique of computation
used. This observation is very close to the spirit of the

argument presented by Callen and Shtrikman" (in
a somewhat different context) and its validity arises
only because of the assumption of quasi-independent
collective excitations Ex(5) with the behavior shown in
Eq. (A7).

Using Eqs. (A10), (A11), and (A14), we readily derive

Eq. (4.29) given in the text.


