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Condensation of the Rotating Two-Dimensional Ideal Bose Gas*
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The two-dimensional ideal Bose gas in a circular container rotating at fixed rim velocity has some un-
expected and instructive properties. In the thermodynamic limit, the system undergoes a phase transition,
as argued by Widom. We 6nd that the transition is a type of Bose-Einstein condensation, in which, however,

infinitely many one-particle states are macroscopically occupied. The system evades general theorems
forbidding Bose-Einstein condensation in two dimensions, not merely because it is inhomogeneous, as
Widom suggests, but because the equilibrium density is unbounded near the circumference in the thermo-
dynamic limit. We point out that, independently of the particular model, Bose-Einstein condensation into
any single-particle state lor states), spatially uniform or nonuniform, is forbidden in one and two dimensions
provided only that (a) the Hamiltonian is real, and (b) the equilibrium density is everywhere bounded in
the thermodynamic limit.

'HE properties of a two-dimensional ideal Bose
gas, contained in a circular vessel of radius R,

rotating with angular velocity co=s/R have been in-
vestigated by Widom. ' In the thermodynamic limit
R ~ , ~ —+0, e fixed, he has argued that this model
will exhibit Bose-Einstein condensation, a rather un-
expected result in view of the variety of recent theorems
excluding such condensation in two dimensions. ' We
wish to make the following additional points about
the model:

(1) Although there is a gap in Widom's analysis, it.
can be circumvented, and his conclusion that a phase
transition occurs is correct.

(2) The condensate has a most remarkable structure:
3elow 2', infinitely marry single-particle levels are macro-
scopically occupied.

(3) The inapplicability of the general theorems pro-
hibiting condensation in two dimensions can be traced
to the fact that below T, the density of particles near
the rim of the circle becomes unbounded in the thermo-
dynamic limit. Since this concentration of particles
at the rim is clearly an artifact of the ideal gas, there
is no reason to expect condensation in the presence of
interactions, even in homogeneous systems. However,
the model has conceptual value, revealing that a re-
striction of bounded density is an essential part of the
most general arguments forbidding condensation in two
dimensions.

(1) Widom's analysis is based on his evaluation in
the thermodynamic limit of y(f) = Tre ~"

lim Ly(t)/s R )= (M/27rPPt) (e~""' 1)/sMs t (1)— .

(We shall always understand "lim" to mean the limit
R —+ oo, with co=e/R, e fixed. ) Equation (1) is derived
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by constructing the Green's function G, (r,r', t) from an
application of the rotation operator e"~' to the non-

rotating Green's function g, (r,r', t), and evaluating y(t)
from the identity

y (t) =2~ Gs(r, r, t)rdr.

However, in evaluating the thermodynamic limit of

(2), Widom first replaces the nonrotating Green's
function go by the much simpler form it assumes in the
limit E.—+ ~, then evaluates the integral for finite E.,
and finally takes the thermodynamic limit of the re-

maining R and or dependence. This procedure seems

quite reasonable as long as nothing exceptional is

happening near the rim; however, it is easy to show

that all the condensate particles move out to infinity
with the rim of the circle in the thermodynamic limit.
It is, therefore, far from obvious that Eq. (1) is correct
in the thermodynamic limit.

To establish Eq. (1) more rigorously, and to explore
some of the rather remarkable properties of the con-
densate, we must consider the explicit wave functions
and energy levels of the rotating two-dimensional ideal
Bose gas. The single-particle Hamiltonian is

H =P'/2M —toI. , (3)

which, together with the boundary condition that the
wave functions vanish at r=R, leads to the single-

particle stationary states

4 „(r,(p)= J (x „r/R)e' " (4)

and energy levels

E„„=5'x„„'/2MR' —Ams/R, (3)

where x „ is the eth zero of the mth-order Bessel
function J . For large m, the first few zeros are given
by'

x „=m+u„m'Is+0(m "'),
where n& ——1.8558, n2 ——3.2447, n3 ——4.3817, . . ..

' E. Jahnke and F. Emde, Tables of tiunctjons (Dover Publica-
tions, Inc. , New York, 1945), p. 143; Royal Society Mathematical
Tables, edited by F. W. J. Olver (Cambridge University Press,
London, 1960), Vol. 7, Part III.
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We write y(t) as follows:

~ (() e
—&me&

lim =lim P—
wR' ~~ mR'

lm Q 8semt/B

m=—~

J„'(z)ds
knz2—t(2MR2 (7)

1 J„(s)2s'iR'

=1.389 and since n„ increases with m, states with
radial quantum numbers greater than unity will con-
tribute terms of at most 0(R 41') to the density.

We conclude that at densities p above the critical
density p, all states with radial quantum number m=1
and finite m —m~ are macroscopically occupied. The
contribution p & of each such state to the density p is
given for large R by

=lim
J~„'(R&) d$

~Ave t ~
—A2$2t/2M

J~„(R() 2~'i
p~q ~ (2MksT/eh )1/[(m —my) +aj (14)

where C is a contour surrounding the positive zeros of

J~„(R&) in a counterclockwise sense. In the Appendix,
it is shown that this contour can be so placed that
except in regions where the contribution to the integral
is negligible, the asymptotic evaluation

may be used, leading in the thermodynamic limit to

. v(t)
lim

xR2
d~~Au ttt g

—A2)2t/2M ] 9
t')

To this we wish to add the observation that condensa-

tion occurs not only into the lowest one-particle state,
but into iefilitely many one-particle states. To see

this, we expand the energy E „about its minimum

(m=m„, not necessarily an integer) using (6):

E „=So+(u„—n, ) (h'Mv4)'I'/R"+ (A'/2MB')

&(((m—m„)'—(m, —[m,j)'}+0(R-' ), (11)

where

Eo———23K'+ng(A'M v')'~'/R"'

+ (A'/2MR') (mq —[mq j)'+0 (R 81') (12)

and [m„) is the nearest integer to m„.
The contribution to the number density from the

one-particle state with energy E „is

—(1/s.R2) 1/(gP (Em+ y) 1) — (13)

Therefore, when E0—P, =O(1/R2), the contribution of
the lowest one-particle state (x=1, m= [m~)) does not
vanish for large R. Furthermore, it follows from (11)
that t,'eery one-particle state with radial quantum
number e= 1 and nz —m~ finite makes a nonvanishing

contribution to the density. Since, however, n2 —0.&

Equation (1) follows from a direct evaluation of the
integral in Eq. (9).

(2) From Eq. (1), Widom deduces that at any tem-

perature there mill be Bose-Einstein condensation if

the number density exceeds the critical density p, .

t
—sPMe2/2

P.= ---E
Pg2P252 & & $2

sinh (2s.a"')23fkgg T
P Po=E P &=—— . (16)

h'a"' cosh(2s a"')—cos (2vrmg)

Although it is interesting to see so simple a model
displaying condensation into not only more than one,
but infinitely many levels, there is little doubt (see
point 3 below) that none of these levels will remain
macroscopically occupied as soon as any reasonable
interactions are added. Furthermore, it is hard to
imagine, even within the model, any thermodynamic
properties that are dramatically affected by the multi-
tude of condensate levels. One might think, for example,
that the condensate entropy could play a novel and
important role in the thermodynamics; however, it
can be shown that the contribution of the condensate
to the entropy per particle remains vanishingly small
in the thermodynamic limit.

(3) The multiplicity of the condensate levels is an
entertaining curiosity, but the more significant feature
of Widom's model is its bearing on the rigorous
arguments excluding Bose-Einstein condensation in one
and two dimensions. ' It might appear (and Widom
suggests) that there is no inconsistency since the best
known of such arguments, due to Hohenberg, ' only
excludes condensation into the zero-momentum one-
particle level, and the condensate levels in the model
have nonuniform spatial wave functions. Homever,
Chester' has argued that once condensation into the
k=0 state is excluded, there cannot be condensation
into any one-particle state at all. His argument relies
on a criterion for Bose-Einstein condensation established

Note that both a and p~,~+z~, y for axed integral gns oscillate
without approaching unique limits as R —+ ~. Nevertheless,
p [ 1]+Q I is bounded below, so these states are correctly described
as macroscopically occupied.

~ ln this regard, we should mention a second closely related
model of Widom's (see Ref. 1):a one-dimensional ideal Bose gas
in a box of length I. subject to a uniform gravitational field with
a axed potential difference from one end of the box to the other.
Although his analysis there is subject to the same criticism as in
the two-dimensional model, his conclusion that condensation
occurs is again correct. This time, however, there is condensation
into only a single one-particle state.

a = 2MR'(Z —p)/k' —(m, —[m,j)'
The quantity u can be determined at fixed R by the
condition4
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by Penrose and Onsager, ' the derivation of which as-

sumes that the spatial density of the system is every-
where bounded in the thermodynamic limit. In Widom's

model, the maximum spatial density satisfies'

rm g

J„'(x „r/R)
max[o. (r,r)]=max P p „

mn J "(g„)
\I n ri o ~ RB (

J„'(x i')-
&p z—

-J-"(*-i)--=i.,l

=0(~ s»),
Fio. 1. Contour for Eq. (7). The distances X and Y are such that

~

X+r'Y
~
=O(R '&r+') for small positive', and arg(X+fI') (60'.

[where x~t' is the first zero of J '(z)j and, therefore,

diverges as R"' in the thermodynamic limit. This (and
the fact tha, t the Hamiltonian is not real') makes
Chester's argument inapplicable.

Since any system of real bosons will have bounded

density due to the short range repulsion, it seems most
unlikely that the model has any implications for real

systems. It is, however, of conceptual interest, in that
it sets limits to the generality with which Bose-Einstein
condensation can be excluded; i.e., a correct statement
of Chester's theorem is that any system of interacting
bosons in one or two dimensions with a real Hamiltonian
cannot have a condensate unless the density of particles

is somewhere unbounded.

follows that the net contribution from contour I is
0(R—2/s+s)

Along contour II, we can use the Debye asymptotic
expansions of J (z). These give an asymptotic ex-
pansion of J„'(z)/J (z) from which we obtain an
asymptotic expansion for the integral along contour
II." We note that the first term in the expansion of
Ja.'(Rk)/Ja. (R&) is

Ji&,„'(R&)/Jri„(R$) —+ i (1 rp/ p)—'&' tan—hler (18)
R ~oo

where lf =iR[(p—&i')"'—&l cos 'rf/Q —i&r/4. Along the
horizontal portions of contour II,

tanh&&f ~ sgn(Imt) .

jLPPENDIX

It is convenient to calculate Eq. (7) using the

contour in Fig. 1.
We can easily estimate the contribution to (7) from

contour I by converting the integral back to a sum

and noting that Jir„(R)) has fewer than RX zeros

within the contour, ' all of which exceed g. It then

O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1954).
Handbook of Mathematical Functions, edited by M. Abramo-

witz and I. A. Stegun (Dover Publication, Inc. , New York, 1965),
p. 371.

8 We suspect that the lack of time-reversal invariance is not
essential to Chester's argument, but have been unable to gen-
eralize it to complex Hamiltonians. In this respect, the one-
dimensional model of Widom's (Ref. 5) is more clear-cut —there,
the Hamiltonian is real and it is only the failure of the density to
be bounded that makes the condensation possible.

9 This follows from the interlacing theorem and the fact that
all positive zeros of J (s) exceed m. See G. N. Watson, Bessel
tiunctions (Cambridge University Press, London, 1948), p. 479f.

Furthermore, we can choose the contour between
points A and 8 in Fig. 1 so that ~tanhf~ =1. [We
simply maintain 1m/=4&r (rnodulo 2&r).j Then the net
contribution to y(t)/&rR' from the path A & Il can be
shown to be 0(R '+'"'). Similar calculations indicate
that the remaining terms in the asymptotic expansion of
J&t„'(R$)/J~„(R$) give no contribution to limy(f)/~R'.

We conclude that, in -the exact calculation of Eq.
(7), it is sufhcient to replace J&s„'(Rt)/Jg„(R$) by its
asymptotic form

J&i„'(R5)/Jz„(R&) —+ i (1 rf'/—p)'I'—sgn(Im () . (19)

"We use the identity 2J 's) =J~,(s) —J~+,(s)
asymptotic expansions 2J (s)=S &'&(s)+g &'&(s) on p 263 of
Watson (Ref. 9). Term-by-term integration of asymptotic ex-
pansions is shown to be valid by E. T. Whittaker and G. N. Wat-
son, A Course of Modern Analysis (Cambridge University Press,
London, 1965), Chap. VIII. Similarly, division of these asymptotic
expansions is easily justifIed.


