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Critical Spin Relaxation in Anisotropic Ferromagnets*
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The decay times of the spin correlation functions have been calculated for uniaxial anisotropic ferromag-
nets which order in the plane perpendicular to the axis. The self-consistent theory when applied to the
hydrodynamic region just above the critical temperature leads to coupled nonlinear integral equations,
which have been solved numerically. In addition to obtaining a temperature dependence in agreement with
the dynamic scaling laws, our calculation yields absolute values of the decay times that are one or two
orders of magnitude larger than in the conventional theory, which predicts a temperature dependence
inversely proportional to the susceptibility. The dynamic scaling-law behavior is followed over a temper-
ature range of about 0.1(T„—T,)/T„, where T„and T, are the perpendicular and parallel paramagnetic
Curie temperatures, respectively. We have also made a comparison with experimental values of the decay
rates in terbium. The agreement, while not precise, is an order of magnitude better than with the conven-
tional theory.

I. INTRODUCTION
' 'N recent years the dynamical behavior of magnetic
~ - systems in the neighborhood of the ordering tem-
perature has received considerable attention. " Par-
ticular emphasis has been placed on the study of time
dependence of the spin correlations. Halperin and
Hohenberg' suggested that near the critical tempera-
ture, T„ the dynamical behavior fell into three cate-
gories (or regions): spin waves (or hydrodynamic below
T,), transition, and hydrodynamic above T,. They
indicated that there might be connections between the
characteristic frequencies associated with the three
regions. In analogy with the static properties, these
connections were designated dynamical scaling laws.
The nature of the dynamical scaling laws has been
explored in detail by Kawasaki in a recent series of
papers. 4 ' He has indicated criteria that must be met if
the scaling laws are to hold. In particular, he found that
it is necessary that the dynamics of certain "critical
dynamical variables" which exhibit long decay times
be asymptotically closed within themselves. ' These
conditions are met, for example, in isotropic ferro-
magnets and antiferromagnets and in uniaxial aniso-
tropic ferromagnets which order in the plane perpen-
dicular to the axis.

The experimental situation is not completely clear.
There is evidence from neutron scattering work on iron
and nickel' that the dynamics in the spin wave and

*Supported in part by the National Science Foundation and
the Wisconsin Alumni Research Foundation.

t Present address: Department of Physics, Colorado State
University, Fort Collins, Colo. 80521.' P. Heller, Rept. Progr. Phys. 30, 731 (1967).

2 W. Marshall and R. D. Lowde, Rept. Progr. Phys. 31, 705
(1968).

3 B. I. Halperin and P. C. Hohenberg, Phys. Rev. Letters 19,
700 (1967); Phys. Rev. 1'77, 952 (1969).

K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 39, 1133 (1968).' K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 40, 11 (1968).' K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 40, 706 (1968).
7 K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 40, 930 (1968).' M. F. Collins, V. J. Minkiewicz, R. Nathans, L. Passell, and

G. Shirane, Phys. Rev. 179, 417 (1969).
V. J. Minkiewicz, M. F. Collins, R. Nathans, and G. Shirane,

Phys. Rev. 182, 624 (1969).

I

transition regions are connected in the manner pre-
dicted by the dynamic scaling laws. However, the
scaling laws appear to break down when applied to the
hydrodynamic region above T,. It has been suggested
that this breakdown may reflect the metallic nature of
the targets. ' How this comes about is still unclear.

For the most part the theoretical studies that have
been made of the spin dynamics in the critical region
have focused on the temperature and wavelength de-
pendence of the characteristic frequencies. Less atten-
tion has been paid to the magnitude of the frequencies.
This is unfortunate because the neutron studies provide
such information and any complete (albeit approximate)
theory should be able to account for the magnitude as
well as the temperature dependence.

We have recently made a comparison between
theoretical and experimental values of the spin-diffusion
constant of iron" using a self-consistent theory for
isotropic ferromagnets first developed by Bennett and
Martin" and later elaborated by Kawasaki. "The agree-
ment, while not precise, is still one to two orders of
magnitude better than with previous theories. In the
present paper we will extend the self-consistent theory
to anisotropic ferromagnets having an easy plane of
magnetization. '3 We calculate the magnitudes of the
decay rate of spin fluctuations in the hydrodynamic
region above T, as a function of temperature for various
degrees of anisotropy. Although a detailed comparison
with experiment is not possible as in the case of iron,
we do compare our results with recent neutron-scatter-
ing data on terbium which were obtained by Als-Nielsen
et a/. ,' following the suggestion of these authors that
Tb may be treated in the erst approximation as a
uniaxial ferromagnet which orders in the basal plane.

' D. A. Krueger and D. L. Huber, Solid State Commun. 6, 869
(1968)."H. S. Bennett and P. C. Martin, Phys. Rev. 138, A608 (1965)."K.Kawasaki, J. Phys. Chem. Solids 28, 1277 (1967).

'I A preliminary report of this work has been published [D. L.
Huber, Phys. Letters 28A, 644 (1969)g. There is an important
typographical error in this article. Equation (6) should read:
r, (&) =~,&2(",)»2.

'4 J. Als-Nielsen, O. W. Dietrich, W. Marshall, and P. A.
Lindgard, Solid State Commun. 5, 607 (1967).
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A final word concerns the spirit of this work. We do
not claim that the self-consistent theory we develop is
exact. It is our hope that it incorporates enough of the
features of an exact theory so that its results compare
favorably with experimental data. As indicated in Sec.
IV, there is evidence that this is the case. More experi-
mental work on systems which come close to approxi-
mating the model Hamiltonian is certainly called for.
Until such work is available, however, the usefulness
of the theory is still open to question.

In Sec. II we develop the formal aspects of the theory,
while in Sec. III we report on numerical studies. We
discuss our results in Sec. IV where we make brief
comparison with the Tb data. In the Appendix, we
outline a Green's-function analysis of the system with
emphasis on properties near and below the ordering
temperature.

1
H =—P (-;J(q) (5,+5;yS;5,+)

E
+E'(q)S,*S,*}, (2)

where

S,~=+ e'&'5.»= (5;~)*, p=s, W

S.+=5. wiS.~,

J(q)=g J ee'&' ».

The relaxation time for a disturbance of wave vector
q may be obtained from the normalized relaxation
function

„(g,t) ={S,"(t),S, (0)*}/{S,"(0),S,"(0)*}, (5)

where (A,B}=Joe dX(e"+Ae "~B) t3(A)(B) and (C)—
=Tre ~~C/Tre —~~. Mori" has shown quite generally
that the Laplace transform is given by

where

=..(q,s) = « -"=-.(q, t) =L +~.(q, )]-', (6)

II. FORMULATION

We consider a system of E localized spins governed
by a Hamiltonian

H= —Q {J e(5 *Se*+5 &Se&)+E es *Se'}, (1)

X[K(q—P) —J(P)] dte"

X{5.+(t)5,—.*(t) 5,—,*5;*}/{5,",5;*} (9)

A similar equation holds for p, (q, s). The primes on the
sums are to indicate that only small momenta should
be included. This rejects the assumed dominance of
the long-wavelength fluctuations near the critical
temperature. "

In the spirit of the self-consistent approximation
developed for the isotropic interaction, "we make the
approximation

{Sg+(t)5, g'(t),5, ,'*Sy+*}

= exp{—
I
t

I 9+(»+&*«—k)]}
X{S,+5, , ,5, ,"5,'*}. (1o)

For isotropic systems Kawasaki has shown that apply-
ing the random phase approximation to the equal time
correlation-functions yields the same temperature de-
pendence as would be predicted from an analysis based
on the static scaling laws as long as q, k, and y refer to
the long-wavelength component in the sense implied
in Eq. (9).4 In view of this we will apply the random
phase approximation to the right-hand side of (10),
thus obtaining the result

{Sg+(t)5, g*(t),5, ~"Sp+*}
=2~ ~, ,"p{-ItI[~,( )+~.(q-k)»

X{sg&,sg&"}(Sq g',5~ g*'}. (11)

Equation (11) is the basic approximation of our
calculation. By making such an approximation we
are able to reduce the calculation of the decay constants
to the solution of a coupled set of nonlinear integral
equations, as shown below.

As a further approximation we employ the Qrnstein-
Zernike form for the static susceptibility, I"(k),

slowly varying function of s, then the long time be-
havior of "(t) is an exponential decay.

„(t)= exp( —4'„(q,0) I
t

I }.
Thus the characteristic time is p„(q,0) '. To calculate
this, we return to Eq. (7) and use 8~&=i[H,S,I"] to
obtain (5=1)

@+(q,z) =2(1PP) ' P' [K(q—k) —J(k)]
k;p

4.(q,s) = dte *'(a,S ~(t),a,S,~(0)-*}/
1VX"(k)/g'pg'= (Sg"Sg"'}

=PC„/(k2+z, 2), v= (y, s) (12)

{S,(0),S, (0)*}. P)
As discussed in Ref. 15 8&S(t) is obtained from 8&5(t)
=i[H,S(t)] by removing that part of 5 which corre-
sponds to uniform precessional motion. Above the
Curie point this distinction disappears. If P„(q,s) is a

'~ H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).

where C„ is independent of temperature and 1{.„denotes
the correlation wave vector. It should be noted that
more exact functional forms for (5„",Sq"*} could be
employed (i.e., EC„'(k'+a„') '+&~'). However, in light of
the approximations already made, such refinements
appear unnecessary. Combining (9)—(12) yields two

' K. Kawasaki, Progr. Theoret. Phys. (Kyoto) 39, 285 (1968).
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Going to temperatures very close to the critical
temperature (i.e., a„((~,) we can extract the tempera-
ture dependence by defining p+(q) = (aK„)'i2F(g/~„) and
A=(ag„) 'i'g. Substituting these into (15) and (16)
and approximating the exchange integrals by their
small k values yields

I I I I I l I I l

0 QOI Q02 Q03 004 Q05 Q06 Q07 Q08 Q09 QI

T- Ty /Ty
pa 'E
4C, V ' d'u[E (0)—J(0)7'(1+t ')

(2~)'[5 (u) + (v —u)'8 j(1+u')
(17)

FIG. 1. Decay parameter for the component of spin in the easy
plane of magnetization in the long-wavelength limit versus tem-
perature. The solid curve was calculated from the self-consistent
integral Eqs. (15) and (16).The broken curve is the extrapolation
of the asymptotic forms given by Eqs. (25) and (26). An aniso-
tropic exchange interaction has been used. The arrow indicates
the value at infinite temperature obtained from a moment calcu-
lation, Eq. (32l.

coupled, nonlinear integral equations for p+(q) =p (q)
and tt, (q):

4C.
&+(q) =

[E(q —k) —J(k))'(~„'+q')xE', (»)
~

I 4+(k)+4. (q —k)j( .'+k')L '+(q —k)'j
4C„'

4.(q) =
C,

[J(q —k) —J (k) j'(~,'+q')
xp'

~ [~.( I+~,(q-k)](, +k)[.;+(q-k) j
(14)

These equations determine P(q) if the static properties
~„, a„C„and C, are given. Since we are primarily
interested in the time dependence, these static proper-
ties are assumed to be known. In the presence of anisot-
ropy E(q —k) —J(k) does not vanish as q —+0 so
P~(q=0) 00. However, J(q—k) —J(k) does vanish as

q —+ 0, so g, (q=0) =0. Thus p, (q) exhibits kinematic
slowing down (i.e., q'), whereas p+(q) does not (i.e.,

const). If, on the other hand, the anisotropy vanishes,
then g+(q) will have kinematic slowing down. We are
interested in the long-wavelength fiuctuations so we
take g, (q) =Aq'. Since the functional form of Q+(q)
changes as the anisotropy parameter changes we retain
the general functional form for p+(q). Thus we want
to solve

4C,
0+(q) =

[E(q —k) —J (k)7'(~„'+q')
X

~ [~+(k)+(q-k)2~](,2+k2) [~.+(q-k) 3
'

(15)

C '~,'V ' d'u[J(u —v) —J(u) 1'v '
g =lim — — —,(18)

C,pF (2n.)'2F(u) (1+u')'

where v=q/a„and u=k/~„. The integrals over u are
for IuI &m where m~„ is the cutoff in momentum
marking the boundary between the hydrodynamic and
microscopic regions. Since ~, is a constant we see that
P(v) and b are independent of temperature. Thus the
temperature dependence of P+(0) and A is given by
~„'i' and ~„—'i', respectively. This we will see is in agree-
ment with the dynamic scaling laws, provided the spin-
wave frequencies vanish near the Curie point in the
manner predicted by the Green's-function calculation
outlined in the Appendix. It should also be noted that
Q+(q) is of the form ~„~ times a function of q/~„ in
agreement with a basic assumption of the dynamic
scaling laws.

III. RESULTS

In the previous section we found the characteristic
temperature dependence of the relaxation times for
temperatures very close to the critical temperature. In
the present section we present the results obtained from
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FIG, 2. Decay parameter for the component of spin perpen-
dicular to the easy plane of magnetization in the long-wavelength
limit versus temperature. The solid curve was calculated from the
self-consistent integral Eqs. (15) and (16).The broken curve is the
extrapolation of the asymptotic forms given by Eqs. (25) and (26).
An anisotropic exchange interaction has been used. The arrow
indicates the value at infinite temperature obtained from a
moment calculation, Eq. (33).
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a numerical analysis of Eqs. (13), (14), (17), and (18).
We consider the specific case of a body centered cubic
lattice with nearest neighbor interactions. The coeffi-
cients C„(=C,), a„, C, and a, are obtained from Eqs.
(A20) and (A21) of the Appendix in the limit k ~ 0.
(Note that the coordinate system employed in the
Appendix differs from that used here by a rotation
through —,'m about the y axis. ) (S„S„,S,)a»,„p; ~
(—S„S„,S,)T, p). Thus we have

3xlO-

-s
2xlO

O

y Cl

Ty-Tz -s
= IO

y

C„=(2Ja') '

("a)'= (2X,J) ',
C,=(2Ea') ',

(19a)

(19b)

(20a)

Ol I I I I I I I I . I

0 CLOI 0.02 003 Q04 0.05 OD6 007 QO6 009 O.l

T Ty / Ty

(a,a)' = (2X,E)—', (20b)

where u is the lattice parameter and J and E denote the
exchange integrals for a pair of ions. Ke make use of
the molecular-field model for the susceptibilities X„and
X, (X, and X~~ in the notation of the Appendix).

Fro. 3. Decay parameter for the component of spin in the easy
plane of magnetization in the long-wavelength limit versus
temperature. The solid curve was calculated from the self-
consistent integral Eqs. {15) and (16). The broken curve is the
extrapolation of the asymptotic forms given by Eqs. (25) and (26).
An anisotropic exchange interaction has been used. The arrow
indicates the value at infinite temperature obtained from a moment
calculation, Eq. (32).

S(S+1)x-
3krr(T T„)—

5(5+1)
xg-

3kii(T —T,)

(21)

(22)

tion. We chose the cutoff ns to be 3 corresponding to a
value of 3a„ for the boundary between the hydrody-
namic and microscopic regions. As noted below, P+(0)
is relatively insensitive to increases in es above 2.

We find

where T„(T, in the notation of the Appendix) is
given by

8 =0.102

and the approximate expansions

(29)

k~T„=sS(5+1)J (0) = 165(5+1)J/3 (23)

for the body-centered-cubic lattice. I ikewise we have

ksT. =165(5+1)E/3 (24)

3s' p f(u) (1+u')'

for T, (=T„).
We first consider the numerical value of g~ and g,

near the Curie temperature (i.e., x,))x„").Defining

f(u) and g by

g (lr)(a~ ) ''=F(u)=(E/P)''~, agf( )u, (25)

~ ( )(-)'" -'=a=( /e)"""g (26)

Lwhere P and g are given by (17) and (18), and
u=h/a„$, we find

f(u) = 1.47+0.938u' —0.0488u', (30a)

f(u) = 1.39+1.16u' —0.130u4, (30b)

where (30a) is accurate to 6% for 0&u'&9 and (30b)
is accurate to 1% for 0&u'&1.

At higher temperatures we have solved (15) and (16)
by iteration. Because of the assumed dominance of
small momenta, we have approximated the exchange
integrals by the first two terms of their power-series
expansion. The results are shown in Figs. 1—4 for two
values of the anisotropy which we take to be defined by
(T„T,)/T„. We chose —the value (T„T,)/T„=0.01—
and 0.1.The solid curves are the solutions of the integral
equations. The dotted curves are given by (25) and (26).

Also indicated are the infinite temperature values
calculated by the method of moments assuming an
exponential time dependence with a truncated I,orentz-
ian for the spectral function. '

1+v' u'du
f(v) =

g'4x'
(28)

1+u' i f( )+uu'+v' 2usx— (~s)s i/2

243 (oi')
(31)

's W. Marshall, Natl. Bur. Std. (U. S.) Misc. Publ. No. 2'73
(1965).' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948); see especially
his Eqs. (10) and (21).

"Note that this precludes taking the limit K —~ J in Eqs. (19)
and (20).

The functions f(u) and g are seen to be independent of
For It+(0) the moments at infinite temperature have

tions (27) and (28) were solved numerically by itera-
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FIG. 4. Decay parameter for the component of spin perpen-
dicular to the easy plane of magnetization in the long-wavelength
limit versus temperature. The solid curve was calculated from the
self-consistent integral Eqs. (15) and (16). The broken curve is

e extrapolation of the asymptotic forms given by Eqs. (25) and
(26) ~ An anisotropic exchange interaction has been used. The
arrow indicates the value at infinite temperature obtained from a
moment calculation, Eq. (33).

coordination number, s))~ one has

y, (0) ~ S—Z '

JLsS(S+1)lit2 3/6
For P, the moments at infinite temperature have

been calculated by Redfield and Yu." If (J—E)«J
and 2sS(S+1)))1we find

(32)

P.(k) s 2~"' J E—
a'k'J(sS(S+1)J~' 12 7i 2J

33)

A number of comments about the numerical methods
are in order. The iteration was stopped when the avera e
change in g+ in an iteration was less than si% per point
calculated. This took about 10—15 iterations. One calcu-
lation was made requiring less than a 10 '% change
which resulted in a further change in g~ of less than 1%.

nine-point Gaussian quadrature scheme was used.
Using a 27-point integration mesh changed p+ from
that calculated using nine points by less than 1 and
10% for (T—T„)/T„=10 ' and 10 ', respectively.
The cutoff in momenta was varied from ~„ to s~„ for
(T„—T,)/T„=0.1. Increasing k, from z„ to 2a„re-
sulted in p+(0) increasing by up to 50% and in Q,
increasing by a factor of 3. Further increases in k, up
to a„resulted in p+(0) changing by less than about 15%
and in p, increasing by another factor of 3 at most.

us @+~ ~ is fairly insensitive to I, if k, is greater

to the specific case of a body-centered-cubic lattice.
We emphasize that we have used molecular-field model
for the susceptibility. Because of this the temperature
dependence of g+ and g, in the vicinity of the Curie
point may differ somewhat from the dependence that
results from. using more realistic values of the
susceptibility.

First we note that according to (25) and (26) near
the Curie point P~(0) vanishes as ~„'~' while P, diverges
as ~„'~', in agreement with the general analysis of
Sec. II. Such behavior was also found in a simplified
calculation reported previously. '3 However the other
results reported in Ref. 13 are not entirely supported
by our detailed study. Namely, further from the Curie
point it was previously found that P+(0) decreased as
a„'~' and P, as ~„'~'. The P+ behavior is not dissimilar to
that shown in Figs. 1 and 3. However the predicted
decrease in P, is not seen. The reason for the breakdown
is that in the simplified calculation it was assumed that
@+(k) could be approximated by its value at the center
of the zone. Such an approximation is not satisfactory
as is shown in Fig. 5, where P~(k) is plotted against k.
The deviation from the value at k =0 is very noticeable.

With (T„T,)/T„=0.1—, g+(0) decreases monoton-
ically to zero for (T—T„)/T„(0.1.The values of P+(0)
obtained from the asymptotic equation LEq. (25)) are
seen to compare favorably with the computer solutions
only for (T T„)/T„(0—.01. This value is about 0.1
(T„—T,)/T„. It is also worth noting that the value of
g+(0) at (T T„)/T„=0.1 is—nearly six times as large
as the value at T=~ which is obtained from the
moment analysis. This result appears to be a conse-
quence of the anisotropic exchange as opposed to the
single ion anisotropy (see below where P+ at the same
temperature is roughly half the value predicted from
the moments at T= ~). In the absence of any informa-
tion on the accuracy of the moment calculation wh

l0

nw en

app ied to systems with anisotropic exchange we cannot
say whether or not this increase is real.

The behavior of g, for (T„T,)/T„=0.1 is—repro-
duced reasonably well by the asymptotic form apart
from some structure which may be spurious, in the

IV. DISCUSSION AND COMPARISON
WITH TERBIUM DATA

In Sec. III we have reported the results obtained
when the general theory developed in Sec. II is applied

"A. Redfield and W. Yu, Phys. Rev. 169, 443 (j.968); see
especially their Eqs. (22) and (23).

I

0 I

I I I I I I

7 8 9
*R/

FrG. 5. Decay parameter versus k' for (T—T„)/T„&&1.
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region between (T T„—)/T„=0.01 and (T T„—)/T„
=0.03. It is apparent that for 0.01&(T T—„)/T„&0.1,
p, does not depart significantly from its infinite tempera-
ture value as determined by the moments. Below this
range p, begins to diverge as (T T„)—'~', as predicted
by Eq. (26). Both P~(0) and P, in the region (T T„)/—
T„&0.1 difter greatly from the values predicted by the
conventional theory. In the conventional theory it is
assumed that p+(0) and p, near the Curie point are
related to the infinite-temperature values by the
equations'8

OJ5-

E

QO5

0 QOI Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 0.10

7"Ty/ Ty

FIG. 6. Decay parameter for the component of spin in the easy
plane of magnetization in the long-wavelength limit versus tem-
perature. ——,experimental values of Als-Nielsen et al. —- —-,
values calculated using K„~(T—T„}'"and K ~(T T }'".—

values calculated using lr„~(T T„)"and g,—~(T T,)"norma—l-
ized to agree with experiment at T—T„=0.07T„.

where Xo(T) is the free-ion susceptibility.
For the smaller anisotropy„p+(0) below (T T„)/—

T„=0.1 is seen to go through a maximum at (T T„)/—
T„=0.01 before finally approaching zero. Furthermore
the value at (T T„)/T„=—0.1 is approximately 19
times as large as the infinite temperature limit predicted
from the moments. The function p, at the same tem-
perature has-approximately half its infinite temperature
value, while the divergent behavior does not occur
until (T—T„)/T„&5)&10-s.It is to be noted that for
each of the anisotropies the scaling laws are followed
when (T—T„)&0.1(T„—T,). From Eqs. (19)-(22)
this is seen to correspond to the region ~„'&0.1~,'.

The discussion up to now has been confined to
calculations based on a model Hamiltonian with an
anisotropic exchange interaction. While the self-con-
sistent theory is appealing, there is no reason to prefer
it to the conventional theory until a comparison can
be made with experiment. Although no inelastic neutron
scattering experiments have been reported for systems
which are rigorously described by the Hamiltonian (1),
there are available measurements of a parameter
analogous to @+(0) in terbium. '4 At 226'K, Tb orders
in a spiral array with the magnetization in the basal
plane, while at 216'K it undergoes a second transition
to a fully ferromagnetic structure. As we noted in
Sec. I, Als-Nielsen et a/. have argued that the pitch
angle of the spiral is sufficiently small that Tb may
be treated in the first approximation as a uniaxial
ferromagnet having a single-ion anisotropy of the
form D(S *)' (D)0)."We have undertaken a calcula-
tion of p+(0) using where possible, parameters identical
to those of Tb. That is, we took g pJ s' and D to have
the values given in Ref. 14

ciples" calculations were quite pleasing. At (T T„)/—
T„=0.07 we obtain a value of g+(0) that was within
25% of the measured value. This is to be compared
with the results of the conventional theory which pre-
dicts a value of P+ at this temperature which is approxi-
mately one tenth the measured value.

Because the model calculation was made for a bcc
lattice with nearest neighbor interactions whereas Tb
has a hexagonal structure with long-range interactions
we also display the temperature dependence of g~(0)
after normalizing g+ to the experimental value at
(T T„)/T„=0.07—. Our results, scaled in this way, are
compared with experiment in Fig. 6. It is seen that the
two curves differ by no more than 14 percent over the
entire temperature range. We have also calculated g+(0)
assuming ir„and ir, varied as (T T)'"and (T—T—,)'"
respectively, a functional dependence close to what was
observed for a„ in the experiment. " The agreement
between experiment and theory was somewhat de-
graded. This may indicate that close to T„ the detailed
shape of g~ in Tb may be determined in part by the
anisotropy terms which give rise to the spiral ordering.
These, of course, we have neglected.

The agreement between experiment and theory indi-
cated in Fig. 6 is quite good considering the many
approximations that have gone into the calculation.
Because of this we believe that the self-consistent
theory is a significant improvement over the conven-
tional theory. We emphasize, however, that there are
still questions as to the applicability of the model to Tb.
For this reason additional experiments on systems
which are closer to the model Hamiltonian are called
for. It is apparent from Eqs. (12)—(14) that the self-
consistent theory involves only the parameters of the
Hamiltonian, the parallel and perpendicular suscepti-.
bilities, and a„and a,. If this information can be ob=
tained from experiment then a really rigorous test of
the self-copsjstept theory can. be ~ade,

P J.,'=0.1 meV',
P

a=0.2 meV.

We inferred a value for the ratio (T„T,)/T, from the-
paramagnetic Curie temperatures, 239 and 195'K,
given by Hegland et al."The results of this "first-prin-

2' D. E. Hegland, S. Legvold, and F. H. Spedding, Phys. Rev.
131, 158 (1963).
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Finally we want to comment briefly on the question
of dynamic scaling laws. As noted above, Kawasaki'
has concluded that the characteristic frequencies of a
uniaxial ferromagnet with an easy plane of magnetiza-
tion are related. To a certain extent his analysis is
supported by our calculations. If, as predicted by the
Green's function calculations in the Appendix, the spin-
wave frequency behaves as (5,)k, then the scaling law
arguments predict a characteristic frequency propor-
tional to k3)' in the transition region and characteristic
frequencies k'I(.„'~' and ~„')', in the hydrodynamic
region above T„(in this discussion we assume rt=0).
The hydrodynamic behavior is of course in agreement
with Eqs. (25) and (26).It is our feeling that Kawasaki's
analysis is more general than the self-consistent calcu-
lation. We therefore take the view' that agreement with
the dynamic scaling laws is a desirable feature of the
theory, but do not argue that the self-consistent theory
together with the Green s-function analysis justifies the
scaling laws.

APPENDIX

In this appendix we summarize the results obtained
from an analysis of an anisotropic ferromagnet which

was carried out using thermodynamic Green's func-
tions. " We will derive the functional forms for X"(k)
which were used in Sec. III. In addition we will discuss
some of the low temperature properties and the thermo-
dynamic behavior in the critical region. In the interest
of simplicity we consider only the case S=~. Our
Hamiltonian is similar to (1) except that we include the
interaction with an external field perpendicular to the
symmetry axis. We choose a coordinate system such
that the s axis is along the field and the x axis is parallel
to the axis of symmetry. [Note that (S„S„,S,)a»,~d;» ~
(—S„S„,S )T. i.$ We have

&=—g»5(' 2 5-*—& {J-pLS-"5p"+5-*5p'j
a a, P

+E pS *5p ) . (A1)

We introduce the retarded Green's functions

G+-'(t) = —st)(t) {&5+ (t)5-'& —&5-PS+ (t) &) (A2)

G—'(t) = —se(t) {&5- (t)5-'& —&5-PS-"«)))

where 0(t) is the unit step function and the brackets
denote an ensemble average. The equations of motion
for G+ & and G t' follow in a straightforward fashion
from the Hamiltonian (A1). We decouple the equations

by making a random-phase approximation (RPA) in
which the operator S, is replaced by its expectation
value (5, ) in the higher-order Green's functions arising

rs D. N. Zuharev, Usp. Fiz. Nauk 71, 71 (1960) LEnglish transl. :
Soviet Phys. —Usp. 3, 320 (1960)g.

from the commutators of S+ and S with H.'3 In this
way we obtain a set of equations involving only G+
and G t'. After Fourier-transforming these equations
with respect to the space and time variables we obtain
a set of algebraic equations that are readily solved
for the transformed Green's functions g~ (k,oi) and

g (k,re) which are defined by

g+-(k, ~)=-
2Ã

dte'"' Q e '~'i »Gg P(t) . (A4)

J(k)=g J pe"& (AS)

and similarly for E(k).
For a spin-~ system the temperature and magnetic-

field dependence of (S,) is obtained from a solution of
the equation

{2(5,)) '=Ar —'P (Ug/hied, ) coth(-', Photog), (A9)

where
hanoi, ——(UP {(S—g)[J(k) E(k—)g)')'I' (A10)

and p= 1/ksT.
Equation (A9) is a special case of the more general

relationship"

(5 PS a& —+—i P eik ~ (nP)-
k 00

X[g, (k, +.)-g &k,.—',)j, (A»)

d~s{epitru 1)—1

where the limit e —+0+ is understood. More specifi-

cally, (A9) is obtained from (A11) by setting rr=p,
using (A5) for g+ and making use of the result

&5 5 &=-,'-(5,&, (A12)

which holds for S=~.
We first discuss the implications of (A9) for the low-

temperature (spin-wave) region in the limit K=O.

~
¹ N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk

SSSR 126, 53 (1959) LEnglish transl. :Soviet Phys. —Doklady 4,
604 (1959)j.

The solutions that are found can be written

h
g+-(k,~)=-

27r

2 (5,)[hie+ Ug]x, (A5)
(h )'—U '+{(5)LJ(k) —E(k)3)'
h

g—(k,~)=-
2Ã

2 (S,)'[E(k)—J(k)jX- (A6)
(h )'—U '+{&5*)[J(k)—E(k)j)'

where

U =gtr BC+(S,&{2J(0)—[J(k)+E(k)j), (A7)

with
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Writing (S,) =-',—(AS,) we find for (AS,)((s

(AS,) =-',X ' Q (Ug —hu&g)/Aa&g

+X ' Q (ep""i —1) 'Ui, /i'giei, . (A13)

is seen to vanish linearly with k, i.e.,'4

Aevi, =s'"(r—u)'"k. (A15)

As a consequence, the magnon contribution to the
specific heat varies as T3 for small T, while the tempera-
ture-dependent term in (AS, ) varies as T'.

The Curie temperature, T„ is obtained from the
limiting behavior of (A9) as (S,) approaches zero in the
absence of a magnetic field. tA'e have

{2(S,)) '=2keT, X 'Q Ui, (hoii, ) ' (A16)

ol

J(k) —E(k)2
1

ksT, S ~ J(0)—J(k) 2(J(0)—J (k)]

J(k) —E(k)
X 1+

J(0)—J(k)
(A17)

which is a straightforward generalization of the result
obtained for the isotropic ferromagnet in the RPA."
A detailed study shows that (S,) varies (T,—T)'i' for

' T. Matsubara and H. Matsuda, Progr. Theoret. Phys.
(Kyoto) 16, 569 (1956).

Equation (13), which is identical to the result obtained
in the linear spin wave analysis (provided (S,) is re-
placed by rs in Us and o~s) shows that the anisotropic fer-
romagnet has a finite zero-point spin deviation. Further-
more, if we write J(k) =r—sk' and E(k) =u —vk' for
small 4 then the magnon energy

Aoii, =2(S,){J(0)'—PJ(k)+E(k)7J(0)+J(k)E(k))'"
(A14)

T&T, in agreement with the behavior found for the
isotropic ferromagnet in the RPA."

In the paramagnetic region we can obtain functional
forms for the transverse (Si&S i&) and longitudinal
correlation functions directly from the Green's functions

by making use of (A11) and similar equations involving
the other Green's functions. Defining the susceptibility
per spin, X&, by

(A18)X,= (S.)/gpaX,

we find, after some calculation,

xS x) le p e—ik. (a-pl(S zS z)

=EkiiT{x '+2$J(0) —E(k)$} ' (A19)

with

X„—'=X,—'+2t J(0)—E(0))
=3k' (T T„)/S(S+1), — (A22)

Ti i
=T sS (S+1)P (—0) E(0)j/k ii ~ (A23)

'5A detailed calculation shows that the susceptibility ob-
tained from the Green's-function formalism (Eq. (A9)jdiverges as
(2'—T,) ' near the Curie point. This is the same functional form
as is obtained for the isotropic ferromagnet PH. Mori and K.
Kawasaki, Progr. Theoret. Phys. (Kyoto) 28, 690 (1962)j.

(S,*S, )=X7 T{X;'+2P(0)—J( )gj-', (A2o)

which is equal to (S~&S i, &) above T,(3!=0). lt should
be noted that these equations are valid for general spin.

Because of the approximate equality

X"(k) =P(S,"S &"),

which holds for small k, we have used the functional
forms (A19) and (A20) in the expressions for X"(k) in
the main text. Rather than values for X which are ob-
tained self-consistently from the Green's functions'"
we have used the molecular field result Eq. (22). Also,
we have written (Si,*S i,*) in the form

(S~*S~*)=cVksT{X„—'+2LE(0) —E(k)7)—' (A21)

where


