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The present results can also be compared with those
of Thompson and Myers. " They assumed a band-
independent exchange splitting, which was adjusted to
yieM the experimental value of D and then computed
the entire spin-wave spectrum. They found that a
band splitting of 0.91 eV was necessary to yield a correct
value of D and (at the same time) 0.6 d holes per atom.
The same difficulty concerning the spin splitting exists
in both calculations.

V. FINAL REMARKS

We have applied a combined tight-binding and
pseudopotential scheme to the calculation of the energy
band structure of nickel. This procedure is different in
some respects from similar procedures employed by
others in that the overlap matrix is not assumed to be
a unit matrix, and in that an attempt is made to
calculate the tight-binding parameters in a more
realistic manner. The resulting band structure is used
in a t-matrix calculation to obtain the spin splitting of
the highest d band and the spin-wave effective mass.

Numerous problems remain. We may not have dealt
adequately with the complex system of overlapping
bands that exist in nickel. For example, we have con-

sidered the bands to be defined strictly in order of
increasing energy, and have not considered the complex
problems which result from the crossing or the close
approach of bands. "We have ignored the existence of
electronlike portions of the Fermi surface, have
neglected bands above the d bands altogether; have
treated the holes in nickel as a low-density system,
although the validity of this is not established; and
have not included spin-orbit coupling or any interaction
between electrons on different lattice sites. The critical
reader will undoubtedly raise additional objections of
his own. However, we recall that the spin-wave recip-
rocal effective mass is the difference of two quantities;
there is no guarantee that one will even obtain D&0
(stability against spin-wave excitations). That the
results are not unreasonable is perhaps an indication
that the most essential features of the problem are
understood. We believe that further work in this 6eld
will be rewarding.
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We have investigated the magnetization as a function of T and II of a spin system with both isotropic
Heisenberg exchange and dipole-dipole interactions for S&~ and a hexagonal crystal structure. The
Green's functions for such a system, recently derived by Seeker, are decoupled in a first-order random-
phase approximation. For both Heisenberg-dipole and simple-dipole crystals, we find a lowering of the
magnetization below saturation at T=0. The Curie-Weiss temperature 8 and the ordering temperature T,
are calculated and compared with experimental values on GdC13. In the limit of zero exchange, we obtain
a condition for the type of lattice and shape of domains which make ferromagnetic ordering possible.

I. INTRODUCTION

HE Heisenberg model has been analyzed with the
technique of double-time thermodynamic Green's

functions (GF) by several authors in various approxima-
tions. In this model, the isotropic exchange interaction
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is assumed to be between nearest magnetic neighbors
only. In most real crystals there are, however, long-
range interactions such as magnetic dipole-dipole
interactions which can inhuence the thermodynamic
properties quite remarkably. An example of such a
system is the ferromagnetic insulator GdC13 where

' For a review of the results see S. V. Tyablikov, 3Iethods in the
Qttuntnm Theory of Magnetism (Plenum Press, Inc. , New York,
1967), p. 247 ff.
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isotropic exchange interactions and dipole-dipole
interactions are of comparable magnitude.

GdC13 has been intensively studied experimentally
and theoretically. Wolf et a/. ' measured the magnetiza-
tion and the static susceptibility as a function of the
applied field II in the temperature region of liquid
helium and nitrogen and found a ferromagnetic phase
transition at T,.=2.20'K. The magnetic specific heat
was determined by Boyd and Wolf' and Clover and
Wolf' using the high-frequency relaxation method.
Because the Gd'+ ions are in orbital s states, crys-
tal field e6ects are unimportant in GdC13. Indeed,
Birgeneau and co-workers' ~ have shown in a series of
papers that the resonance measurements on Gd'+ pairs
in the isomorphic salts I.aC13 and EuC13 can be com-
pletely explained in terms of an isotropic exchange be-
tween nearest and next-nearest neighbors and by
dipole-dipole interactions. The exchange constants ex-
trapolated from these measurements for GdC13 agree
quite well with those derived from bulk measurements
of the high-temperature specific heat of GdC13 by
Clover and Wolf. 4

The theoretical interest in GdC13 stems from the
fact that various theoretical approximations may be
tested by direct comparison with experiment because
all terms in the Hamiltonian are well known and the
structure is quite simple. Marquard and Stinchcombe'
calculated the unrenormalized spin-wave spectrum
using an extension of the Holstein-Primakoff' trans-
formation theory. Marquard" has given a high-temper-
ature series expansion for the susceptibility and specific
heat of GdC13. Kith the technique of two-time thermo-
dynamic Green's functions, Becker, " henceforth re-
ferred to as I, calculated the frequency and wave-
vector-dependent susceptibilities X„(to,k) and X„,(to,k),
and the spin-wave energies renormalized by the
magnetization and the transverse-spin correlation.

In this paper, we use the random-phase form of the
Green's functions, derived in I, to obtain the static
magnetization M(H, T), the critical temperature T, and
the high-temperature series expansion for the zero-field
susceptibility of GdC13. The random-phase approxima-
tion (RPA) is used as a decoupling scheme for the
two-time Green's functions, ' which gives an over-all
good description of the thermodynamic properties in
the entire temperature region and in the entire external

' W. P. Wolf, M. J.M. Leask, B.Mangum, and A. F. G. Wyatt,
J. Phys. Soc. Japan 17, 481 (1961).' E. L. Boyd and W. P. Wolf, J. Appl. Phys. 36, 1027 (1965).

4 R. B. Clover and W. P. Wolf, Solid State Commum. 6, 331
(1968).' R. J. Birgeneau, M. T. Hutchings, and W. P. Wolf, J. Appl.
Phys. 38, 957 (1967).

'M. T. Hutchings, R. J. Birgeneau, and W. P. Wolf, Phys.
Rev. 168, 1026 (1968).' R. J. Birgeneau, M. T. Hutchings, and W. P. Wolf
(unpublished).

'C. D. Marquard and R. B. Stinchcombe Proc. Phys. Soc.
(London) 92, 665 (1967).'T. Holstein and H. PrimakoB, Phys. Rev. 58, 1098 (1940)."C.D. Marquard, Proc. Phys. Soc. (London) 92, 650 (1967).r' E. Becker Physik Kondensierten Materie 8, 216 (1968).
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FIG. 1. Crystal structure of gadolinium trichloride. The ions 2
and 3 are the nearest neighbors of ion 1, the ions 4—9 are the next-
nearest neighbors of ion 1.

magnetic field region. The high-temperature series ex-
pansion derived from the RPA Green's functions agrees
with the leading terms of the exact expansion. ' How-
ever, it is well known that RPA gives rise to an in-
correct description of the spin-wave interactions at
T«T, leading to a spurious T'& +'~'& term in the
magnetization. Also the spin dynamics in the critical
region are obviously incorrect. Fortunately, for the
high spin value S= ~7 of Gd'+ the spurious term in the
low-temperature magnetization is of the order T" and
the thermodynamic properties at low temperatures are
well described by RPA. Since the high- and low-
temperature properties are correct to a high order it
will be quite interesting to compare the critical tem-
perature T, calculated in RPA with the experimental
value. The calculated thermodynamic properties are
compared with those measured by Wolf et a/. ' For a
crystal with pure dipole-dipole interaction, we calculate
the same properties and also give a simple condition,
valid in this approximation, for the type of lattice and
shape of domains which make ferromagnetic ordering
possible.

II. LATTICE STRUCTURE AND HAMILTONIAN

The lattice structure of GdC13 was determined by
Zachariasen" and is shown in Fig. 1. The lattice is
hexagonal with two Gd'+ ions in. the unit cell. The two
nearest Gd'+ neighbors are placed along the c axis at a
distance c=4.105 4 and interact antiferromagnetically
with the central~ion. ' ~ The six next-nearest neighbors
are at a distance b= 4721A+a dnat an angle 8=64.2'
to the c axis. They interact ferromagnetically with the
central ion. The Hamiltonian of this system is given by

N 1 (Ay)' 1
Z= —ALII Q S;*+/ I@S; S,+

2 4~@0 'i r;

3(r,,—S,) (r,,—S,))XSS;— ~, (1)
r;,s )'

"W.H. Zachariasen, J. Chem. Phys. 16, 254 (1948).
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where H is an external magnetic field parallel to the c
axis, y is the gyromagnetic ratio, r;, is the displacement
vector between ion i and j, po is the vacuum permea-
bility. Using the crystal symmetry of GdC13, Eq. (1)
may be reduced to

N

X= AyH —P S;*——', g (Ags;*5'+B;)5;+5, )

+k 2 (De"5' Si +Dv 5'S~'), (2)

where the coefficients are given in spherical coordinates
r;;, p;;, 8;;by

A v=2(n'~ Ie—) ~

Bv= (~'~+21m—),
1(Ay)' 1

0,'' (3 cos'8;, —1),
2 4&@0 fij

3 (hy)' 1
D sin'0;je '&'&.

4 4xpo r '

(6)lt+ (k) —=Zt (5~+Sr)e"" "=2(s'&4(k),
where the function p(k) is related to the energies

F(k) = hyH+ 3(s')n(0) —(S') I o.(0)—o.(k)j
—2&s'&&1(0)—1'(k)), (7)

E(k) = LF(k)+ (5')D(k) j't'LE(k) —(S')D(k)g"' (8)

by the equation

1/F(k) ) E(k)-1I+
2(E(k) 3 E(k) et' &"l —1

The coefficients n(k), D(k), p(k), and I(k) are the
Fourier transforms of the interaction terms n;, ,
D;; = D,; +D,;, and I;,. g(k) has the form of a quasi-
boson occupation number. If we now introduce

where (5.) is the spin-expectation value for a single ion.
After a transformation to reciprocal space we ob-

tained in I the correlation functions, using (3) in the
folI

The last term in (2) does not commute with the Zeeman
energy. Therefore the eigenstates of the Hamiltonian
are not angular momentum states and the magnetiza-
tion at T=O will be lowered below the full saturation
magnetization.

4.=(1/&) E.~(k),

we get the general relation"

(5 ~.)(1+~o)'"+~o'"'(1+5+~.)
(1+@)2s+1 y 2s+1

(10)

=limi
e~o

der e '"'. (3)
eP(uh

III. GREEN'S FUNCTIONS IN A RPA

The spectral density ((A; B))z„of the two-time
thermodynamic Green's function (GF) of the operators
A and J3 is related to the time-dependent correlation
function (BA(t)) by"

(BA(t))

The set of Fqs. (7)—(11)may be solved self-consistently
to give (5,)(T,H).

The summation in (10) extends over the first Brillouin
zone in the reciprocal lattice. Usually this sum is
carried out over a sphere with the same volume as the
true Brillouin zone. ' However, for the hexagonal lattice
this is a very poor approximation. We approximate the
Brillouin zone by a cylinder of radius 3.82/a and height
4~/C to make the numerical calculations tractable.
Here a= 7.36 A.

The spectral densities follow from their equation of
motion"

IV. HIGH-TEMPERATURE EXPANSION

1
& (&A;B)& - = —&I:A»2+(&I:A 3~'3 B)) -.

2'
For high temperatures, (5'&«1 and therefore

(4) ge))1, which makes an expansion of (11) in powers of

pe ' possible.

(s') =a&H p c,p'.
j=1

In paper I the Green's functions ((5,+;5,+))q„and (5*)=ls(s+1)(4o-'—',~.-'+ "). (»)
((S;+;5; )&q„were calculated from the equation of
motion (4) with the Hamiltonian (2). From the inter- If we retain only terms linear in the applied field H,
action terms in the Hamiltonian higher-order functions we can expand (5') in powers of P
occurred which will be approximated" by

((s,*s,+; s„-))„„&')«s,+ s;)), , (13)

«s, s,—;s„+&)„„&s)((s,—;s„+»,„,
'3 D. N. Zubarev, Soviet Phys. —Usp. 3, 320 {1960).
'4 In I, the GF were decoupled with a technique developed by

H. B. Callen t Phys. Rev. 130, 890 (1963)).The RPA decoupling
in {5) is a special case. In a later paper, the thermodynamic prop-
erties will be calculated using the Callen-decoupling scheme.

In powers of p, we also have

1 F(k)
+ o(p),

1V pE '(k)
"H. B.Callen, Ref. 14.

(14)
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and comparing terms of equal powers of P we have From their high-temperature susceptibility measure-
ments, Clover and Wolf' derived a value

A,.pt= 1.9&0.2 ('K)'. (24)

~ ~ ~

For the zero-field susceptibility

1M 1 AytY
X= lim ——= lim —— (S'),

II~0 ~ + II~0 p

we have therefore

C 4r
x = —1+ +11—— +

T ( 8~s Ts
(&7)

V. CRITICAL TEMPERATURE

In the molecular field theory, the critical temperature
T, is equal to the paramagnetic Curie-Weiss tempera-
ture 8~, but actually T, is much lower. Because ex-
perimentally the critical temperature of GdC13 is known
to an accuracy of 0.01'K," ' it offers a good test of the
theory.

At the critical point we have for II=0 again gs))l,
and we may write for T& T,

(5*)=1T T, 1& P —C.(T, T)". —
n=o

kC=-', 5(5+1)[(tt )'/ $Ã
At II= 0, the energies F(k) and E(k) are proportional to

(18) (5*), and we get from (9) and (10) by expanding in
powers of 6= T„.—T the relation

is the Curie constant. The linear expansion coefficient
8~ is identical with the Curie temperature of the
molecular field theory. '

8sr = C(L'* 1V*)—(4/3k)S—(S+1)(It+3Is) . (19)

/ 1 f(k) -'
kT, =-',5(5+1)1 —Qs ——

k.V e'(k)
(26)

Using the values for the dipole field factors given in
the Appendix and the exchange constants Ig=0.039
k 'K, I2= —0.048 k 'K determined by Clover and Wolf, 4

we calculate from (19) a value 8'——3.17'K. The ex-
perimental value for the corresponding terms in the
high-temperature susceptibility is': 8= (2.96+0.28)'K.
The summation in (20) must be performed numerically,
and we get

6= (2.9&0.3)('K) '.

Mar quar d" has calculated the high-temperature
susceptibility by an expansion of the partition func-
tion and found

x '= (T/C) [1+B/kT+B,/(kT)'+ ] (21)

where

Bt——21[It+3Isf —0.9647+CEe, (22)

Bs= 231[Its+3Issj+6.377Ir —2.723Is+0.4321. (23)

Br is exactly —8sr, whereas Bs= 2.758 ('K) '.

L'* is a dimensionless dipole-Geld factor (see Appen-
dix) and X, is the demagnetization factor. 8sr is shape-
dependent due to E,.

The series (17) deviates from the Curie-Weiss law in
the quadratic term by the factor (1—6/8st'), where

1
~ =[sS(5+&)js—Z. ([~(k)+2I(k)j'+D'( )) (2o)

E

f(k) = I"(k)/(5') = 2[et(0) —I(0)j+n(k)+2I(k),
es(k) = jets(k)/(5~) s= js(k) —D&(k)

The summation in (26) must be performed numerically.
With the dipole sums given in the Appendix and the
exchange constants of Clover and Wolf' we get a
critical temperature"

T,= (2.48&0.12)'K,

if we consider the uncertainties in the values of I» and
Is. The calculated value of T, is still 12% higher than
the measured value, indicating that the RPA is not a
good decoupling for the Green's functions in the critical
region. Another source of error is the approximation of
the Brillouin zone by a cylinder. From (26), we can
also calculate the Curie temperature of a pure dipole
system by taking I&=I2=0. For the same dipole sums
as in the case of GdCls we then get T,=0.88'K. (The
corresponding value of the molecular field theory is
0.96'K.)

A. F. G. Wyatt, Ph.D. thesis, Oxford University, 1963
(unpublished)."E.Becker et al. , Phys. Letters 19, 86 (1965).

'8 In the calculation of T, it was assumed that at 1=T, the
crystal forms domains with a demagnetization factor N, =O.
Actually the magnetic transition temperature of GdC13 is in-
dependent of the crystal shape PF. Kuch, Ph. D. thesis, Technische
Hochschule Darmstadt, Germany, 1967 (unpublished) g, supporting
the above assumption. However, there is still the possibility that
the dipole sums n(0) within a ferromagnetic domain are dif-
ferent from the sums of infinitely long thin ellipsoidal sample
used in the evaluation of (26).
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FIG. 2. Calculated magnetization M/2lII0 for a hexagonal crystal
with 8 parallel to the c axis and dipole-dipole interaction only;
lattice spacing as in the case of GdC13.

result is shown in Fig. 2. At T=O the magnetization is
0.99&p for H=O and it drops to zero at T,=O.SS K.

Figure 3 gives the magnetization of the GdCl~
sample. For zero magnetic field the T= 0 magnetization
is 0.995Mp. This is in disagreement with the rneasure-
ments of Wolf et al. ,

' who found a lowering of 18'Pq

below Hap for T —& 0. But the determination of the zero-
field magnetization by the authors is not very accurate.
It is expected that the magnetization measurements for
GdCl~ will be performed again with better samples.
Figures 2 and 3 show also the calculated field depen-
dence of the magnetization. In both cases the magnetic
field is in units of Mp/pp= 8440 Oe and is varied from 0
to 1 in steps of 0.2.
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For a dipole crystal, the condition that yp be real " P
also yields the condition

APPENDIX: DIPOLE SUMS
I zz Lyy Qz) 0

for ordering at T=O to be possible. All cubic crystals
have L *=L""=L"=—,'and in this approximation we

get at best a rnetastable ferromagnetic ground state.

VI. MAGNETIZATION

1.0- A HR0.

08--

0.6--

04

0.2--

T~) 2 2.48 3

FIG. 3. Calculated magnetization 3E/3f 0 for GdC13 with II
parallel to the hexagonal c axis.

The magnetization 3E(H, T) is obtained by self-
consistent numerical solution of the Eqs. (7)—(11) on a
computer. Since the dipole sums are shape-dependent, we
take an infinitely long thin ellipsoidal sample with
E,=O. First, we calculate the magnetization of the
crystal with the exchange interaction turned off. The

The dipole sums n(k) and D(k) are analytically
simple only at k= 0 and for 10/R&k«1/a, where R is
the size of the sample and a is a distance of the order of
magnitude of the lattice constant. We have in these
two regions (see paper I) for S= p7

~(0) = (2C/21)(L- —&*),
n(k) = (2C/21) (L„—cos'Oq), 10/R& k& g

D(0) = (2C/21) (L„„L„+iV„N,)—, —
D(k) = (2C/21) (L» —L„+sinP8q), 10/R& k& g.

Here C is the Curie constant (18), and 8I, is the angle
between the k vector and the s axis. E, A„, E, are the
demagnetization factors. The dipole field factors are
calculated in I:

L, = 0.2669, L„y=0.1601, L = 0.5692.

For the sample used in our calculation, we have

S =Ey= 2, E,=O.

The small region k&10/R in the reciprocal lattice is
unimportant for the thermodynamic properties. In the
region k& 1/a the k dependence of n(k) and D(k) is not
given by the above expressions. Numerical calculations
show that the deviations are small. We therefore, for
k(0, assume the dipole sums in the whole Brillouin
zone to be of the same analytical form as in the region
&0/R& k«1/a.


