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Theory of the Heisenberg Suyeryaramagnet

ARTVR HAHN

Institut fur Werkstoge der Etektrotechnik, Ruhr Un—iuersitat Bochum, Germany

(Received 15 September 1969)

The concept of uniform bulk magnetization in superparamagnetic particles is examined critically. By a
straightforward idealization of the conditions met in actual superparamagnetic samples, it is shown that
this concept is related to a fundamental problem of the physical statistics of magnetic first-order phase
transitions. Thus, the fact that the concept is applicable to experimental data on superparamagnets has
far-reaching consequences with respect to the nature of the magnetic transition at zero field.

y. INTRODUCTION

' '0 describe superparamagnetic behavior, it is a
reasonable approximation to neglect magnetic

anisotropy and magnetostatic interactions. If this is
done for an assembly of superparamagnetic particles
at elevated temperatures there remain two causes for
deviations from complete alignment of the magnetic
moments parallel to the field direction: excitations of
isotropic and essentially short-range exchange inter-
actions, and excitations of Zeeman levels in the ex-
ternal field.

The first type of excitations is not typical for small
particles only but is equally observed in bulk material
where it reduces the spontaneous magnetization as the
temperature rises. For the following, we call this type
"exchange excitations. "Excitations of the second type
are typical for superparamagnetic behavior and have
no corresponding effect in bulk ferromagnetism. Hence
they may be called "superparamagnetic excitations. "

In calculating the magnetization of a superpara-
magnetic assembly of particles it has been assumed quite
currently that exchange excitations and superpara-
magnetic excitations may be treated independently in
the sense of the following statements:

(1) On account of exchange interaction, for a super-
paramagnetic particle at a given temperature T there
exists a sharply defined value of the particle magnetic
moment ts(T) which is independent of magnetic field
JI as long as B is small compared to the exchange field.
For large particles, tt (T)/v is identical to the spontaneous
magnetization as measured by standard methods on a
bulk sample. e is the particle volume.

(2) Since tt(T) is large on an atomic scale, the super-
paramagnetic excitations may be described in terms of
classical Langevin statistics.

Apparently the first of these statements cannot be
rigorously true in the form given above, since a super-
paramagnetic particle is a finite system, and hence there
must be Quctuations in p. Thus the concept has to be
understood on the basis of the observation that, in
general, a superparamagnetic particle contains a large
number of atoms of order 10' to some 104, and, there-
fore, fluctuations might be expected to be relatively
small. In fact, the rather intuitive view underlying the
above assumption is twofold. First, the particle is
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thought to be large enough to show the "internal"
behavior of a bulk isotropic ferromagnet. In particular,
a spontaneous magnetization is assumed to exist and
to be equal to the thermodynamic equilibrium spon-
taneous magnetization of the bulk. Second, this
magnetization is assumed to be uniform throughout the
particle volume, even so in a small external field which
allows for superparamagnetic excitations out of the
field direction of the particle magnetization as a whole,
and also in zero external field.

It is the purpose of this investigation to find out what
this concept would mean in terms of the Heisenberg
model. On account of its isotropy and the neglect of
magnetostatic interactions this model permits a
straightforward idealization of a large particle by going
to the limit of infinite particle size. When formulated
in this manner the theoretical problem of the "large
superparamagnetic particle" turns out to coincide with
a well-known, yet unsolved, problem of statistical
physics which may be stated in several ways. For
example, one way to put the question is to ask whether
on the phase transition line (T(T„H=O) ' of an
isotropic ferromagnet the root of the squared magnetic
moment of the crystal is an extensive quantity in the
thermodynamic limit E~ ~, the volume density of
which equals the II —+ 0+ limit of the thermodynamic
magnetization. On account of the present efforts in the
theoretical study of phase transitions, it seems of some
special interest to establish and discuss the relationship
between a theoretical problem typical in this field and
a simple interpretation scheme which is often success-
fully employed in the special empirical field of super-
paramagnetism, even if a solution of the theoretical
problem seems not in sight at present.

A careful investigation of the H=O first-order phase
transition for ferromagnetic spin lattices is due to
Griffiths. ' Much of the following discussion is based on
his results. A modification of one of his results on the
limiting behavior of probability distributions for large
crystal size A is given in Sec. 4. It states that for the
Heisenberg model the probability distribution of total
spin absolute value cannot have a minimum of order

The magnetization as a function of field is discontinuous at,B=0 for T+Tc.
2 R. B. GriQiths, Phys. Rev. 152, 260 (1966}.
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e N at low total spin values for large S.The correspond-
ing property for the probability distribution of total
spin s component is trivial for the Heisenberg Inodel
but was shown by GriKths to hold for more general
cases.

Although the result for the Heisenberg model is not
unexpected, the possibility of la formal proof seems of
some interest, independent of„the special superpara-
magnetic problem.

TABLE I. Characteristic energies for superparamagnetic par-
ticles in units k&T, with T equal to room temperature. Le=par-
ticle volume, 1V=number of atoms, I,=saturation magnetization,
E~=first crystal anisotropy constant, A, =saturation magneto-
striction coeScient, r= stress ifor r 100 kp/mm' were adopted),
A =exchange stiGness constant. ]
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O. 16 250

5.1X10 3 5Q

0.14 150
0.64 250

8.7&10 3 20
0.23 60

100

a Numerical data taken from E. Kneller, Perromagnetismus (Springer-
Verlag, Berlin, 1962), Table 27.2.

b Data for A taken from W. Doring, in Handbuch der Physik, edited by
S. Flugge (Springer-Verlag, Berlin, 1966), Vol. 18.2, pp. 341-437, Table 3.

6 Data for hexagonal Co. For cubic Co crystal anisotropy energies are
lower by an order of magnitude roughly PC. P. Bean, J. D. Livingstone,
and D. R. Rodbell, J. Phys. Radium 20, 298 (1959)g.

3 C. P. Bean and J. D. Livingstone, J. Appl. Phys. 30, Suppl. ,
120S (1959).

4 I.S.Jacobs and C. P. Bean, in3IIagnetism, edited by G. T. Rado
and H. Suhl (Academic Press Inc. , New York, 1963), Vol. III,
pp. 271-344.

E. Kneller, in Handbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1966), Vol. 18.2, pp. 438—544.

2. IDEALIZED MODEL OP
SUPERPARAMAGNETISM

Since there exist excellent reviews of the field of
superparamagnetism' ' we only present in a very
cursory manner some orders of magnitude for character-
istic parameters. This discussion is necessary to justify
the neglect of anisotropy and magnetostatic interaction.

In order to adequately idealize the physical situation
met with actual superparamagnetic samples, the ob-
servation is central that magnetostatic interaction and
magnetic anisotropy might be expected to have no
principal influence on magnetization on account of
particle smallness.

In Table I, in terms of macroscopic quantities,
characteristic energies are given related to magneto-
static interaction (column 4), crystal anisotropy
(column 5), and stress anisotropy (column 6). The
energies are given in units of k~T, with k~ Boltzmann's
constant and T equal to room temperature. The assumed
particle sizes indicated in columns 2 and 3 are typical

for experiments in the superparamagnetic range. The
formulas used in the calculation of the energies are
given at the top of the corresponding column and are
familiar from the Stoner-Wohlfarth-5eel'7 theory of
single-domain behavior.

In column 7 a rough estimate is given of the minimum
exchange energy for a state of vanishing net magnetic
moment in terms of classical domain theory. +'v'"A
is the minimum exchange energy of a 180' Bloch wall
in a cube-shaped particle.

The table clearly shows that anisotropy energies
generally are of order k&T or less and that exchange
energy is by far dominant in the superparamagnetic
range: The energy I,eB of interaction with the external
held, too, is characteristically of order k&T for super-
paramagnetic behavior. The same is true for the
magnetostatic interaction energy, with some restric-
tions for the larger particle sizes and the elements with
high saturation magnetization.

Hence for superparamagnetic particles, neither the
external field nor anisotropy is responsible for homo-
geneity of magnetization postulated by the usual
concept. ' Instead, homogeneity over distances com-
parable with particle size must be enforced by the
essentially short-range isotropic exchange interaction.
It is characteristic for the size range of empirical super-
paramagnetism that the secondary magnetic energies
related to the particle as a whole are of order kT or
even smaller, whereas the particle is still rather large
compared with the range of exchange forces usually
adopted. Roughly speaking, the concept of bulk mag-
netization in superparamagnetic particles may be
formulated as the assumption that in strictly vanishing
external fields, short-range isotropic interaction en-
forces Iong-range homogeneity of magnetization, i.e.,
a very strong and special long-range correlation.

We emphasize that there is no possibility of testing
this idea by experience with a macroscopic ferromag-
netic crystal of, say, centimeter size on account of
secondary effects. The reason for this is easily demon-
strated from Table I by the observation that the energies
in columns 4—6 are proportional to the particle volume,
whereas the minimum Bloch wall energy (column 7) is
proportional to the particle linear dimension. Thus,
in order to rule out secondary effects in the actual
measuring process of bulk spontaneous magnetization,
fields have always to be incorporated which are only
small compared to an effective exchange field but in
any case are large enough to enforce homogeneity of
magnetization over macroscopic distances. This argu-
ment remains valid even if there is no external field
incorporated in the measuring process (e.g. , Mossbauer
techniques), since there are always fields resulting from

'E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc.
London A240, 599 (1948).' L. Neel, Compt. Rend. 224, 1488 (1947).

Magnetostatic interaction generally favors states of inhomo-
geneous magnetization.
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the Heisenberg exchange interaction on some finite
spin lattice and

HM= h Q Sgg, (3)

describing the interaction with the external field. p~ is
the Bohr magneton.

The spin operators s; are defined by their well-
known commutation relations and their absolute value
quantum number s. The spins are thought to be
attached to some simple finite lattice (e.g., sc, fcc, or
bcc) with all three dimensions of equal order of mag-
nitude. In the following we think of the lattice type as
specified but consider varying sires of the crystal,
characterized by the number E of lattice sites. The
J;; are assumed equal for equivalent pairs of lattice
sites and of restricted range, i.e., J;; is assumed to be
zero for the distance i —+ j exceeding a given value.
H works on the (2s+1)~-dimensional space of spin
states.

We should emphasize here that the really drastic
simpli6cations introduced by choosing the model
Hamiltonian are rather unimportant for this investiga-
tion which does not intend to give a good theory of
superparamagnetic magnetization but to analyze the
concept of bulk homogeneous magnetization in a large
superparamagnetic particle introduced in Sec. 1. It is
apparent from the discussion given above that, if any,
the Heisenberg model should meet all the requirements
for the concept to hold. Particularly the spatial de-
generacy of the eigenstates guarantees a "natural"
separation of the exchange and superparamagnetic
excitations. Furthermore, the limit of large particle
size (compared to the range of the J';;) may easily be
formulated in the mathematical model by going to the
limit of infinite particle size in vanishing external
6eld.

The experimental procedure' to measure the bulk
magnetization c7 of a macroscopic crystal in finite ex-

9 Here and in the following, symbols are chosen in close analogy
to GrBBths's paper (Ref. 2) in order to simplify reference.

magnetostatic interaction or anisotropy which are
large in the sense in question.

The concept of homogeneous bulk ma~»etization for
a large superparamagnetic particle may be easily
formulated as a well-defined mathematical problem in
terms of the Heisenberg model. By doing this we arrive
at a well-known hitherto unsoluble problem of statis-
tical physics.

Let the Hamiltonian describing the magnetic prop-
erties of a superparamagnetic particle be'

H=Hp+H~
with

Ap —Q JriSg'Sq'

ternal 6eld is described within the model by the thermo-
dynamic limit

o (p,h) = lim t E '(S,)p, s'"'j.
Here,

(O)s s ——Tr LOe- j/Tr "Le- $ (6)

denotes the thermal mean value of an operator 0 at
given temperature p '= h&T, field h, and crystal size X.
5, is the s component of total spin:

S=g s;.
i

The traces on the right side of (6) are taken in the
system with E atoms and the limit in (5) is performed
over a sequence of crystals for which all three linear
dimensions uniformly tend to inlnity. In the following
the limit Ã —+ ~ should always be understood in this
sense. This is a condition quite necessary for all results
in Secs. 3 and 4 and shall not be repeated in each case.
A proof that —with a restriction unimportant at this
instant —the limit (5) exists is due to Griffiths. m The
normalization in (5) is taken so as to obtain o. as the
mean spin s component per lattice site.

The bulk spontaneous magnetization is

o.*(p)= lim o (p, h) .
A~0+

The contribution of the particle of size E to the
superparamagnetic magnetization is obtained in this
model by

(S,)s „(&& (9)

With the use of (1), (2), (3), and (6) we may write
this as

4=2paP '(8/Bh) inTrt~&Le &~j. (10)

Equation (10) may be brought to a form LEq. (18)
belowj in which the eRects of exchange and Zeeman
excitations are separated. To do so we make use of the
well-known proper'ties which follow from the com-
rnutability of the operators A'p, S', S, and from their
symmetry properties under rotations.

Let
i S,rr, 3f)

denote" a complete orthonormal set of common eigen-
states of S', S„and Hp with eigenvalues S(S+1),
M, and Ep(S,n), respectively. The quantum number u
accounts for the remaining high degeneracy if 5 and
M are fixed. The set and the 0. labeling may be chosen
such that, apart from normalization,

~
S,n, M —1)

results from ~S,cr,M) by application of the step-down
operator 8 =S —iS„.

' R. S. GriKths, J. Math. Phys. 5, 1215 (1964)."For convenience in notation we avoid the use of an additional
label E to characterize the states (lt). There is no danger of con-
fusion since these states are used explicitly in developments only
with axed crystal size E.
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The partition function in (10) may be written as

Tr& ice ~~]= P (S,n, M~e e~'~5&n, M)e™ (12)

obtain for (12)

Tr&~&/e e~]=P $&(S,P,h) P G(S,n,P)]. (15)

Here use was made of the commutability of IIO and
II~———h5, . For fixed 5, n the matrix element appearing
in (12)

Instead of the sum over n, appearing on the right of this
equation, it is convenient to introduce the function

G(S,n,P)= (5, nM[e e~'~S,n, M) (13) (25+1)Q.G (5,n,P)
Q&~'(S,p) =

Tr[~ elro]—
(16)

sinhI Ph (5+—',)]
(14)

sinh (-,'Ph)

+S
y(SPh)= g e»~= &Z Q' '(S,P) (25+1) '4(SP, h) (17)

does not depend on M, and hence the summation over
M may be performed. Introducing the "Brillouin Thus (15) takes the form
partition function"

Tr(Ni (e iiH) T—r(N) (e PH p)—

familiar from the theory of ionic paramagnetism, we Combining (10), (14), and (17) we finally arrive at

Pe Q&~&(S,P) (2S+1) 'sinhLPh (S+', )] B„PP—h (5+—',)]
8 =2pgg-

Pe Q'~ (SP) (25+1) 'sinhgh (5+i~)]
(18)

with
B„rx]=cthx —x ',

For later use we give still another representation for
(20) which does not incorporate the special set of states
(11).Let

(21)Q, = P ~S,n, M)(s,n,M~

denote the projection operator onto the subspace
spanned by the eigenstates of S' with fixed eigenvalue

S(S+1).Then we have

Q. (S,W=(Q. ) .."
according to (6), (20), and (21).

In (18) the sup erparamagnetic magnetization is
represented as a weighted mean of Langevin-type con-
tributions with different total spin S. It is just in form
of the weighting factor Q&~&(S,P) that the exchange
excitations enter the problem.

The concept of bulk spontaneous magnetization for
large superparamagnetic particles obtains a clear-cut

the classical Langevin function. In the deduction of
(18), tgh(i2Ph) was replaced by the argument. This is
legitimate for usual fields and temperatures.

The function Q&~'(S,P) introduced above has a
simple meaning: It represents the probability distribu-
tion of total spin S in vanishing external field and at
temperature 1'.This is most easily seen from (16) by
evaluating the trace in the special system (11) and
replacing the factor 2S+1 by a summation over M.
The result is

P,~(S,n,M ~e ~~'~S,n,M)
Q~"&(S,W =

(S,n, M
~

e ePD~S, n,M)—

form in this model. It consists in assuming that the
probability distribution Q~(S,P) of total spin in vanish-
ing external field becomes sharply centered around the
value

5*=% 0*(p) (23)

Independently of their relation to superparamag-
netism, problems closely related to those with which we
are concerned have been extensively studied by
Griffiths. In fact from several of his papers, '"" a
rather comprehensive view may be obtained of the
relation between probability distributions similar to
Q~~'(S,P) for large 2V and the thermodynamic spon-
taneous magnetization defined by (8). As typical for
exact results of statistical physics on problems of some
complexity, the results may be represented by some
inequalities. These are by far too weak to supply a
solution of the physical problem, but instead serve to
mediate a deeper insight into the problem. The problen-.
of, roughly speaking, peakedness" of Q ~» (S,P)
remains unsolved. Instead, the usefulness of the method
lies in the fact that it removes a tempting reasoning of
some intuitive appeal which may be stated as follows:
Apart from secondary effects like magnetostatic inter-
action it is the "nature" of the ferromagnetic state to

~ R. B. GrifBths, J. Math. Phys. 6, 1447 (1965).

for very large A. This condition assumed to hold and
neglecting 2, which is small compared to S*, we imme-
diately arrive at the usual formula for isotropic super-
paramagnetism, namely,

8= 2peS*B„[PhS*].

3. GRIPPITHS'S RESULT
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yield long range correlation of magnetization, even in
exactly vanishing external field and hence there does
not remain a problem.

The very outcome of GriKths's results and their
modification to be developed in Sec. 4 can be sum-
marized into the following statement: The condition of
a flnite bulk. spontaneous magnetization a*(p) is by far
too weak to imply the special peaked structure of the
probability distribution for large X, which was discussed
in the foregoing. Instead this condition turns out to
be much less restrictive and to be compatible with a
broad variety of possible limiting behavior of Q &~& (S,P).
The very reason why there is such poor correspondence
between the h —+ 0 limit of thermodynamic magnetiza-
tion, and the X—+ ~ limiting behavior of the prob-
ability distribution at the phase transition A;=0 is as
follows: The latter might be influenced by fluctuations
of magnetization direction on a macroscopic scale which
are excluded by the order of taking the limits in (5)
and (8).

For a most general class of spin Hamiltonians includ-
ing the Ising model and the Heisenberg model (2),
Griffiths, in one of his papers, supplies an extensive
study of interrelations between o*(P) defined by (8)
and the probability distribution in vanishing external
field of total spin s component

P&iv) (M P) —(P ) (N) (25)

Here I'~ is the projection operator onto the subspace
spanned by the eigenstates of 5, with eigenvalue M.
Particularly for the Heisenberg model discussed in this
investigation, I'~ may be written in terms of the states
(11) as

P&&r= Q iS,&r,M)(S,&r,Mi. (26)
B,a

M&N (o"if+I )
P&N) (M p) (e 8N—(27)

On account of spatial degeneracy, P~&( )Mp) is
certainly not centered around EfT* for this model.
Instead, it may easily be shown to be monotonically
decreasing with increasing iMi and hence is of little
interest. However, Griffiths's technics may be extended
to obtain the same results on Q&~)(S,p) in the special
case of the Heisenberg model, which, for the more
general Hamiltonian, where derived by him on
P &N& (M,P), namely, ' the following:

(1) The probability at flxed d,)0 for M to exceed
E(&r*+6),with o* given by (8), vanishes exponentially
with size E of the system; i.e., 6 being given there
exists a 5&0 depending on 6 and independent of E
such that

tribution for E—+ ~ is known to exist and to be
identically zero, not even the existence of a limiting
distribution is guaranteed for m(&r*(P). Instead only
the limiting behavior is known of the function"

a &~) (m P) = —P 'X ' 1nP &~& (Xm P) (29)

closely related to P&~&(M,P). In fact for finite 1V we
obtain

P &~& (M,p) = exp[ —plV a &~& (M/g, p)], (30)

and, thus, &r&~&(m,P), in a most direct manner, deter-
mines P&~&(M P). The function a&~) (t&s,P) is defined by
(29) only for 2Ns+1 discrete values of m, with s the
atomic spin as defined in Sec. 2. If the definition is
extended to all real values of m between —Es and
+1Vs by linear interpolation, the following statements
are tlue

(2) The limiting function

&r(m, p) = lim a&"&(m,p) (31)

A &~)
(&r,P) = X'P ' 1nQ &~&—(Eo.,P), (32)

this definition being extended to all real 0. by linear
interpolation, the limiting function

A (o,p) = hm A &N & (o,p) (33)

exists. Moreover,
A. (&r,p) = a(&r,p) (34)

is true. The proof is given in Sec. 4. We conclude this
section with a discussion of the poor consequences on
Q&&v&(S,P) which result from the flat bottom. property
of A (o.,p).

From the inversion of Eq. (32)

exists and is convex downward. Furthermore, a(m, P)
equals a constant within the interval —o*(p) (nz
(o*(p) and exceeds this constant everywhere outside
the interval. Finally, a(m, P) is bounded and hence is
continuous in the interior of the interval —s(.m(. s.

Hence, a(rr&, P) gives full information on o.*(P), which
is determined by the extent of the "Rat bottom" of
a(m, p).' Moreover, as GriKths has shown, a(m, p) is
a thermodynamic free energy which determines the
magnetization at finite fields k too, in complete equiv-
alence with (5).

It can be shown that statements (1) and (2) remain
true if everywhere P&~&(M,P) is replaced by Q&~&(S,P).
Since statement (1) is a consequence of statement (2)
it is sufficient to reformulate the latter. It is possible
to prove the following properties of Q&~&(S,p):

With A &~&(o.,p) defined by

holds for su%ciently large X.Define the relative s com-
ponent of total spin

Q&~&(E&r,P) = exl&[—PS A &~&(o,P)] (35)

rrr =M/E, (2g)

and consider P& r&(M ,P) as a function of m. Wh'ereas
from (27) for m)&r*(p) the limiting probability dis-

~3 Definition (29) differs from GriQiths's by an additive functionf&&v& ()3) independent of m and defined by (47) below. Since
limf&~&(p) is known to exist (Ref. 10), there are no difficulties
in taking the limit (31). Particularly the validity of statement
(2) below remains unaffected.
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it is obvious that the assumption of a finite thermo-
dynamic spontaneous magnetization 0*(P) by no means
implies that Q &~& (1Vo,P) for large 1V tends to a function
with a sharp peak at 0 =a*(p) and vanishing at smaller
values of 0.. This would mean that A'~&(0. p) for large
E should obtain a relative and absolute minimum near
0 =a*(P), i.e., a very special structure of the function
A &~&(O,P). The only implication, however, on A &~&(O,P)
and hence Q&~&(S,P), which can be taken from (8), is
the fact that for o (o*(p) each structure in A &~&(o.,p)
must vanish in the limit. Vice versa any sequence of
functions A&~&(o.,p) tending to a constant for a.(0.*
implies (8) regardless of the structure of A &'v&(o,p) for
finite N.

The corresponding discussion, with Q&~&(S,P) re-
placed by I'&~&(M,P), has been given by Grif5ths. '
Perhaps the most instructive illustration of possible
behavior of A &~&(o.,P) for finite 1V is supplied by Fig. I
closely resembling a figure in Griffiths's paper.

Three possible structures of A&~&(O.,P) for large 1V

are indicated. The three curves I, II, and III corre-
spond to probability distributions Q~~& (S,P) with peaks
at S=lVo-*, S=O, and both S=A'0* and S=O, respec-
tively. In any case the structure in A&~&(o.,p) must
vanish in the limit. If, however, this vanishing is weaker
than 1V ', say of order 1V '&', Q&~&(S,P) remains sharply
peaked on account of the factor E in the exponential
in (35).For case III assume that in the limiting sequence
the difference between the amplitudes of the two rela-
tive minima vanishes to lower order than 37 '. Then
essentially only one peak in Q&~&(S,p) remains for
large Ã. As a further possibility assume that all struc-
ture in A &~& (S/1V,p) with 1V —& ~ vanishes faster than
E ' in a finite interval around the minimum. Then for
large 1V the probability Q

'~& (S,P) should become
essentially constant within this interval. Of course, there
exists a variety of other possibilities for A&~&(O,P)

to tend to a constant in the limit including more
pathological ones which, in contrast to those discussed
above, do not lead to a well-defined limiting behavior
«Q' '(S,p)

4. EXTENSION OP GRIFFITHS'8
RESULT TO A(o, g)

The proof that A(o. ,P) defined by the limit (33)
exists and equals 0(o.,p) conveniently is split into two
steps. First, A (O. ,P) may be shown to exist, to be con-
vex downward, and to obtain its minimum" for 0-=0.
From this it is not difficult to prove the identity with

a(O,P). The first property implies that A(O,P) as a
function of 0- is monotonic nondecreasing. In particular
A(o,P) cannot exceed A(O*,P) for o.(a*.This property
is nontrivial in contrast with the corresponding prop-
erty for a(o,p), which simply follows from spatial
degeneracy. However, this property for a(a,P) is easily
seen to have a deeper foundation by observing that
Griffiths's deduction is valid for more general Hamil-
tonians including the Ising model. The central point
entering GriKths's deduction is the observation that
it is always possible to reduce the total spin s component
by introducing a border between two halves of the
crystal which is characterized by an energy of order
X'~' only and hence is not felt in the thermodynamic
limit (31) de&ning the bulk free energy. Thus a, corre-
sponding result inight be expected for A(a,P) in the
Heisenberg model.

The proof may be given directly following Griffiths's
scheme" and thus we can be brief referring to his
paper for all steps except those differing. The modifica-
tions are nontrivial at one special point subsequent to
Eq. (39) below.

In accord with Griffiths we introduce a border divid-
ing the crystal of size 1V into two parts (I) and (2)
containing E~ and 1V2 atoms, respectively, with
1Vi+1V~ 1V. Next the ——exchange Hamiltonian (2) for
the whole crystal is split into

Ho= Ho &'&+8'o &'&+H', (36)

with Hp( ) Hp( ~ and H' those parts of Ho which con-
tain spins of subsystem (1) only, subsystem (2) only,
and of both subsystems, respectively. The inequality

Tr& &)Qee e~'j&e e~~'~ Tr' &(Qse e~ ""+L'"&) (37)

may be shown to hold with arguments exactly resembl-
ing those used by Griffiths in establishing the corre-
sponding relation with Qs replaced by P~." Here
~H'

~
is the largest of the absolute values of the eigen-

values of H'. For (37) to hold it is essential that S'
commutes with each of the operators Hp" ) and Hp(')
and hence with H'=Hp —Hp(') —Hp&'). This, however,

6"(0) s
FIG, 1. Three possible types of the Gnite particle free

energy as a function of total spin.

' For a(o,p) the latter property is a consequence of convexity
and symmetry in 0. A(0.,P), however, is only de6ned for non-
negative 0..

'~ Reference 2, Appendix A.
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is true since each component of S commutes with each
of the Hamiltonians. For example,

[5 H &'&]= [5 &'&+ S &'& II &'&]=0 (38)

holds, with S,") the s component of the total spin
operator S&'& of subsystem (i). Equation (38) may
easily be deduced from the atomic spin commutation
relations, which particularly imply:

[s,„s;]=0, for i'
[s,.+i,„S,s;]=0. (39)

with 6 given by

6(5,5&,5&) = 1 for Si+52~+5+~
~
Si 59~

=0 otherwise.
(43)

The two sums over n; appearing on the right side of
(42) equal

(25~+1) 'Tr& I&[Qe,.e L"], i=1, 2 (44)

with the trace now extended over the space of states of
subsystem (i) only, and Qs,. defined as the projection

'6 For example, E. P. Wigner, Group Theory (Academic Press
Ii&c., New York, 1959), Chap. 18.

In what follows, Griffiths essentially makes use of
the fact that a common eigenstate of 8,(') and &,~2&,

with eigenvalues M~ and 3f~, is an eigenstate of 5, with
eigenvalue Mi+M2. Apparently this is not generally
true for the eigenstates of [S&'&]', [S&'&]', and S'.

Hence the following developments leading to (47)
below diRer in both cases. I.et

~5&,ni, M&, 52,n2, Mg)

denote a complete orthonormal set of common eigen-
states of [S&'&]' S,&'& Ho"& [S"&]' S,&'& and Be&2&

defined completely analogous to (11).The corresponding
eigenvalues of Hp&'& iilay be E o' &(&5', u). Further, let
0 (Si,ni, S2,n~) be the (2Si+ 1)(252+ 1)-dimensional
subspace spanned by the functions in (40) with fixed

S&, n&, S&, n&, and varying 3II&, 352.
As is known from standard applications of group

theory on atomic moments leading to the "vector
model, '"' a new basis can be chosen in Q(5&,n&,52,u2)
which consists of functions

i Si,n&,52,u2,S,M). (41)

diagonalizing S and 5, with eigenvalues S(S+1) and
M. The total spin quantum numbers S range from
(Si—52) to Si+S2.

Evaluating the trace appearing on the right side of

(37) in the system (41), we obtain a sum of non-negative
contributions. Retaining only those with a fixed pair
S~, S2, and with M =S, we obtain the inequality

Tr&N&(Q e
—P&HO(~&+Ho&~&&) )g(5 5 5 )

X Q exp{—p[&o"'(Si,ni)+&o"'(S~,nm)]}, (42)
a1, a2

A &"&(~,P) =A' &(~,P) —i&"&(P),

f&~&(P)=N 'P 'ln Tr[e e~']
(46)

(47)

Now substitute (44) on the right side of (42), combine
(37) and (42), and take the logarithm on both sides of
the resulting inequality. The result of these manipula-
tions may be expressed. in terms of the function A
and 1s

2&~&(N—'( Si+52 ~,p) ~&N
—

'~ 8'
~
+N—'N, A. &"»(N,—'S, ,p)

+N 'NgA& "(1V2 "Sg p)
+N-'P-' ln[(25, +1)(25,+1)] (48~)

for the cases S=Si+52 and 5= ~5&—S, j.
Here the upper sign corresponds to the former, the

lower sign to the latter case, and only these two special
cases are needed in the following. In deducing (48&)
use was made of (43), also.

Apart from the last summand on the right side, (48+)
is the exact equivalent of the "basic inequality" ob-
tained by Griffiths. "In what follows this last summand
is unimportant since it vanishes with increasing iV even
stronger than 1V '&&H'~. The proceeding of the proof is
completely analogous to that given in Ref. 15 and thus
need not be given here. In particular the generalization
of (48+) to the case of more than two subsystems is
possible since the vector model works for this case as
well. The proof proceeds by performing the limit
(N,1Vi,N2) & ~ by a suitable sequence of crystals. The
essential point is that ~H'

~
is bounded by C N"', with

a, constant C depending on the J;, in (2) and on the
special sequence chosen in taking the limit, but inde-
pendent of 1V. Hence 1V '~&H'

~
in (48+) varies likeN '"

and the unimportance of the last term, varying like
E 'lnÃ, becomes evident. Observe that taking the
limit (1V,Ni, N2) —+ ~ in (48+) would imply the con-
vexity of A (o,P) inunediately, if the limits were known
to exist. For the mathematical details of the formal
proof, including the proof of existence, we again refer to
Refs. 15 and 12.The result is that the limiting function

A (o.,p) = lim A &~&
(&r,p)

exists, is convex downward, and is independent of the
special sequence of crystals chosen in taking the limit.

Moreover A. (o-,p) takes its minimum at o.=0. To
prove this property assume in (48—) that N is even and
Ni=N~ ——~N. Then (48—) takes the form

A &&&"&(0 P) (A &&&&~2&(&r P)+N—'~H'~

+2N 'P ' ln[N'2o. +1]. (50)

operator onto states with fixed total spin of the sub-
system. Define the function

A &~&(o- P) = —1V 'P ' ln Tr &~&[Q~.e—e"'] (45)

which, on account of (32), (22), and (6), is related to
A &~&(o,P) by
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From this by going to the limit of infinite particle size
through a sequence of crystals with even T we obtain
the desired result.

The limit N —& ~ for ft~&(P) appearing in (46) and
(47) exists, as was stated before. " Hence At~&(a, P)
also tends to a limiting function A (o,p), which has the
same two properties which were stated for A (o,p) above.

To prove that A(o,p) equals a(o.,p) we make use of
the fact that

holds. Here Eo- and Ep are assumed positive and integer.
Equation (51) is a direct consequence of spatial de-
generacy. Another consequence is

(2S+1) 'Qt~&(S,P)&~P&~&(1Va,P), for S&~1Vo.. (52)

We combine (51) and (52) to obtain

Pt (Na, P) (1 Pt+ (N[o+—p],P)/Pt (Na, P))

(S,p))~& 1V&z max (Q t~&

No &S&N(o +p)

&&N&u(2N+1) Pi~&(Na, P). (53)

Here the maximum Q has to be taken from the S interval
indicated.

Taking the logarithm and dividing by —PN yields

aiN& (a P) N—1P-t

&&1"(1— pL —pN( ' '( + p) —'"'( p))3)

min LA t~&(S/N, p)1—N 'p 'in(Npj
No & S&N(tJ+IJ&, )

&~at~&(a,p) —N—'p-'lnL1Vp(21V+1) j. (54)

In the following the cases o.&~a*(P) and o(o*(P) are
treated separately. First assume o )o*(p).

In this case a(o.,p) is a monotonically increasing func-
tion of 0-. This follows directly from the properties of
the function a given in Sec. 3. Moreover A(o,P) is
Inonotonically nondecreasing in any case. This follows
from the fact, that A(o,P) is convex downward and
assumes its minimum for 0-=0. With the use of these
properties we obtain from (54) by going to the limit
g —+ oo.

a(o.,p) &A (a,p) & a(o,p) . (55)

Thus (34) is true for o.)a*(P).
On account of the continuity of a(a,p) and A(o.,p),

which follows from convexity and boundedness, '
(34) is valid for o =o.*(p) as well.

For o.(a*(p) of the two inequalities in (55) only the
right one can be obtained from (54). Taking account of
the flat bottom property of a(o,P) below o*(P) we may
replace a(o,p) by a(o.*,p) =A(o.*,p) in this inequality.

Pt~&(No, P) Pt~&—(NPo+Iz jP)
&(~+a)—&

(2S+1) 'Q'"'(S,p) (51)

Thus we obtain
A (a.,p) &A (o.*,p) . (56)

But since A(o-,p) is monotonicaily nondecreasing,
only

A (o,P) =A ( *,P) =a (o*,P) =a(o,P)

is possible for 0.(0*.This completes the proof.

S. EMPIRICAL RESULT

~7 Of course, for finite particle size the free energies a&~& (yz,p)
and A('v)(g, p} differ. There is, however, no danger of confusion
since we shall be concerned with A(~) only in the following.

'8 J. J. Seeker, J. Metals, Trans. Am. Inst. Mining Met.
Eng. 209, 59 (1957}.

» A. Knappwost, A. Illenberger, and L N. Nunez, Z. Physik.
Chem. 23, 14S (1960).

As was stated in Sec. 3 and illustrated by the dis-
cussion of Fig. 1 the knowledge to be deduced from a
finite spontaneous magnetization on the probability
distribution Qt~& (S,p) is rather poor, even in the simpli-
fied model. We should emphasize that even this knowl-
edge, summarized into the Oat bottom property for
A (o.,p) is developed from the assumption of a nonvanish-
ing spontaneous magnetization o.*(p) and not from a
knowledge of this property, which has never been proved
for the Heisenberg model. Moreover there is no chance
to obtain a meaningful result from existing approximate
theories on, say, quantities like Q'+&(O,P)/Qt~&(S*,P)
for large X.

This is most obvious, and has been extensively dis-
cussed, ' for the molecular field theory which is known
to yield a hump in the thermodynamic free energy
A(o. ,p) at a=O, in complete disagreement with the
exact result. It is a natural consequence of this situa-
tion of the theory to look for an empirical solution.

As was stated in Sec. 2 the experimental field of
superparamagnetism may serve as a tool to obtain
results on the probability distribution Qt~&, and hence
flnite crystal free energy'r A'~&(o.,P) at least for par-
ticles of size X ranging up to some 10'. We should
emphasize that this is a type of experimental informa-
tion which is completely inaccessible by numerical
calculations on the model, the relevant matrices of
Hamiltonian and spin operators in the mathematical
model being of order (2s+1)~ by (2s+1)~.

The experimental results are rather distinct and
greatly support the existence of a finite particle free
energy of type I illustrated in Fig. 1. Qn account of
the importance for the fundamental statistical problem
we briefly present some of the known experimental
results. We mainly restrict the discussion to the three
ferromagnetic transition elements and even doing so,
do not intend completeness but refer to the exhaustive
reviews existing in this field. ' '

There is experimental evidence for the probability
distribution being centered at total spin values closely
resembling the bulk spontaneous magnetization for
small cobalt precipitates in copper"" with particle
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sizes ranging from 10 to 30 A, for small cobalt particles
in mercury, ' for nickel particles deposited onto silica
gel catalysts s' " ranging in size from 30 to 85 A, for
very small nickel clusters in Ni-Cu alloys, " and for
iron precipitates in p-brass roughly 20 A in diam. '4

In all these cases the superparamagnetic "superposi-
tion principle"' "holds well, indicating that the particle
moment is practically unique in all states which make
an appreciable contribution to the distribution. In
terms of the symbols introduced in Sec. 2 the super-
position principle states that the reduced plot of the
experimentally accessible quantities g/o*(p) versus
Pho*(P) yields a unique curve for different temperatures

p '. This behavior is an immediate consequence of
Eqs. (23) and (24) which hold for a narrow probability
distribution centered at 1'.*(P).

There are a few comments necessary on the above
statements. First, in most of the cases above experi-
ments were restricted to room temperature and lower
temperatures. Exceptions are those referenced under
Refs. 19, 21, and 22. For nickel, results are given at
temperatures up to the Curie temperature. If inter-
preted in terms of a spontaneous magnetization, these
results"" show a somewhat stronger drop of o.*(P)
with temperature as compared to the bulk spontaneous
magnetization. The deviations, however, are small and
of order of magnitude proposed by approximate
theories on account of particle smallness. A special
spin-wave theoretical account for the author's results
on Ni particles'' -has been given by Abbel. "There is no
indication of a more fundamental effect related to a
probability distribution deviating appreciably from the
type usually assumed.

A second observation is rather essential, which

strongly confirms the relatively unimportant role of
anisotropy effects stated in Sec. 2:The superposition of
experimental data in the reduced plot in most cases
works well not only in a restricted low-field region, but
over the whole range of fields. The linear portion of the
magnetization curve in low fields is independent of
anisotropy for general theoretical reasons. "However,
the superposition principle should not hold over the
whole field range if anisotropy were essential. This ex-
perimental finding rules out the possibility of large
anisotropy as a source of long range homogeneity of
magnetization. Hence, the special peaked probability
distribution of total spin must be caused by exchange
energy. This result from experiment is rather essential
since the estimates of characteristic anisotropy energies

E. Vogt, W. Henning, and A. Hahn, Berichte der Arbeitsge-
meinschraft Ferromagnetismus 1958, 44, Riederer Stuttgart,
1959 (unpublished).

"C. R. Abeledo and P. W. Selwood, J. Appl. Phys. 32, 229
(1961).

A. Hahn, Ann. Physik (Leipzig) 11, 277 (1963).
"H. C. van Elst, B. Lubach, and G. J. van den Berg, Physica

28, 1297 (1962)..4 A. E. Berkowitz and P. J. Flanders, Acta Met. 8, 823 (1960)."R.Abbel, Z. Angew. Phys. 20, 212 (1966).
"A. Hahn, Z. Angew. Phys. 13, 165 (1961).

reported in Sec. 2 are based on bulk magnetic properties
and hence are not necessarily relevant for small particles
too. Particularly there might be spin pinning at the
particle surface. Apparently such effects are small.

A few exceptions from the rule of negligible anisotropy
are typical for low temperatures"'~ and can be ac-
counted for by anisotropies of reasonable order of
magnitude. In each of these cases anisotropy causes
lower values of magnetization in the reduced plot, as
compared to the superimposing magnetization curves
at higher temperatures. In these cases a satisfying
explanation is given in terms of a modified description
of the superparamagnetic excitations, the exchange
excitations and the shape of Q

'~& (S,p) as a function of
8 remaining unaffected.

Superparamagnetic investigations have not been
restricted to the pure elements. There are results on
ferromagnetic alloys and compounds well 6tting the
general scheme of a practically unique magnetic
moment for all states appreciably excited. We again
refer to recent reviews of the whole field for detailed
references. 4 '

Finally, we should make mention of a few results,
which at first sight are in striking disagreement with
the general findings dealt with so far. These are results
pn Ni3Mn pn Fe-Ni-Cu alloys 2 and pn small iron
particles in mercury. ""' For the Fe-Ni-Cu alloys the
striking erst results" have found a convincing inter-
pretation in terms of chemical inhomogeneity of the
particle-matrix boundary. ""In Ni3Mn similar metal-
lurigical effects might be expected. Moreover, exchange
interaction in this system seems far from simple""
and leads to a complicated dependence of magnetic
properties on precipitation conditions. Thus the concept
of bulk Ni3Mn properties for small precipitates seems
pversimpli6. ed and deviations from the superposition
principle are of no great significance.

The puzzling behavior of superparamagnetic iron
amalgams has been discussed at length in several

papers including the author' s.' "We do not intend to
repeat this discussion but state the most recent results

by Thomas' and Brown": Magnetostatic interaction
between clustered particles cannot be excluded as a

"Reference 3, Fig. 10.
2' E. Kneller, Z. Physik 152, 574 (1958).
29 E. Kneller, in Proceedings of the International Conference on

Magnetism, Nottingham, 1964, London, 1965, p. 174 (un-
published).

30 E. Kneller and M. Wolff, J. Appl. Phys. 37, 1350 (1966).
3 E. Kneller, M. Wolff, and E. Egger, J. Appl. Phys. 37, 1838

(1966).
3' E. Kneller and G. Trippel, J. Appl. Phys. 38, 993 (1967)."F. E. Luborsky and P. E. Lawrence, J. Appl. Phys. 32, Suppl. ,

231S (1961).
'4 K. Reuter, Physik Kondensierten Materie 3, 150 (1964)."J.S. Kouvel, J. Phys. Chem. Solids 21, 57 (1961)."J.S. Kouvel, J. Appl. Phys. Suppl. 31, 142S (1960).
"A. Hahn, Physik Kondensierten Materie 4, 20, 25 (1965).
38 H. Thomas, Z. Angew. Phys. 21, 13 (1966).
» W. F. Brown, J. Appl. Phys. 38, 1017 (1967).
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source of the strong deviations from superparamagnetic
superposition in this system. We feel that the complete
lack of experimental information on the microscopic
structure of superparamagnetic iron amalgams pre-
vents unequivocal conclusions to be drawn from the
magnetic behavior. On the other hand the results on
iron precipitates in P-brass quoted above" clearly
indicate, that iron is not an exception from the general
behavior of superparamagnetic magnetization.

The general conclusion thus to be drawn from experi-
mental results in the superparamagnetic size range is
as follows:

For ferromagnetic particles containing some hundred
to some 10 000 spins the finite particle free energy as a
function of total spin moment 5 essentially has the
shape indicated by curve I of Fig. 1 and characterized
by a minimum near total spin values corresponding to
bulk spontaneous magnetization. If a second minimum
should happen to exist at lower 5 values this must be
fiatter than the former. These are rather distinct
results from experiment on a problem fundamentally
related to the thermodynamic nature of the ferromag-
netic phase.

6. SUMMARY

The concept of uniform bulk magnetization in the
finite superparamagnetic particles was reexamined.
Arguments are given warranting the neglect of second-

ary energies on account of their smallness. When
adequately idealized in terms of statistical thermo-
dynamics, superpararnagnetic magnetization and bulk
spontaneous magnetization turn out to be related to
substantially different quantities: the zero-field prob-
ability distribution of particle magnetic moment and
the width of the thermodynamic free energy Qat
bottom, respectively. The difference in these quantities
is independent of the effects of particle smallness on the
parameters of approximate theories, say on molecular
field coefficient or, in noninteracting spin-wave theory,

on the spin-wave energy spectrum. It is, instead, related
to a fundamental problem encountered in the theory of
the magnetic first-order phase transition.

The weak implications of the free-energy character-
istics on the finite-particle probability distribution of
superparamagnetic moment are treated in close analogy
to a discussion given by GriKths for a related problem.
An extension to the superparamagnetic case of GriKths's
calculations was found feasible. As a result, a variety of
types of superparamagnetic behavior would be con-
sistent with a given bulk spontaneous magnetization.
At present, it seems not possible to decide between these
possibilities mathematically.

From experiment, however, there is strong evidence
that the probability distribution actually realized
differs markedly from zero only within a narrow interval
around a value of the moment corresponding to the
homogeneous bulk spontaneous magnetization. In
fact, this is the view usually adopted intuitively. The
above consequences of the experimental evidence with
respect to the statistical properties of a spin lattice
with a short-range isotropic interaction seem to have
been overlooked until now. Thus, measurements on
superparamagnets appear to be a tool to obtain in this
field positive results which are theoretically inaccessible.
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