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Equation of State for the Cooperative Transition of Triglycine Sulfate near T,
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Measurements of polarization versus Geld in the vicinity of the Curie temperature from triglycine sulfate,
both below and cbo7Je T„allow Grst, the determination of a number of critical exponents and second,
the characterization of the ferroelectric equation of state. The relationship, below and above T., between
the "scaled" variables P/LI (T/T, )—g& and 8/L1 —( T/ T)g~' was determined from a log-log plot which
showed clearly a well-defined asymptotic behavior for the small and large "scaled" field. Comparison of
the scaled data with the results from the mean-field theory showed good agreement. A phenomenological
expression for the equation of state which matches all the empirical and homogeneity requirements has
been formulated. Evidence for the validity of this equation of state for other transitions for which accurate
data are available is discussed.

INTRODUCTION

'HE second-order transition in ferroelectric tri-
glycine sulfate (TGS) seems to be a very good

test case for the mean-field theory. Previous work''
has shown that the behavior of the dielectric constant
and the spontaneous polarization is in agreement with
the mean-field predictions. The present investigation,
partially reported in a previous letter, ' aimed at a
more complete analysis of the order-disorder coopera-
tive transition by means of a detailed study of the
variation of polarization with electrical field as w'ell

as with temperature near the critical point. Accurate
data of I' versus E near T, allow the deterxnination of
critical exponents through log-log graphic representa-
tions. In addition, once the two fundamental parameters
P and 8, defined by (P,)~ ~,——const&($1 —(T/T, )g~ and
(P)r r.=const&&E'I', are determined, the way is open
for the search of a "law of corresponding states" in
terms of the properly "scaled" variables.

EXPEMMENTAL

The sample preparation and experimental procredure
were described' ~ in previous communications. The
determination of the Curie temperature was done in
two different ways. First, a plot of the squared spon-
taneous polarization (P,') versus temperature was made
which showed an almost perfect linear behavior yield-
ing T, by extrapolation to I','=0. Alternatively, the
xnethod described by Kouvel and Fisher4 was used,
yielding the same result within experimental accuracy.
It has been noted by Reese' that corrections due to the

* Operated by the Vniversity of Puerto Rico for the V. S.Atomic
Energy Commission.

1 J. A. Gonzalo, Phys. Rev. 144, 662 (1966).
2 P. P. Craig, Phys. Letters 20, 140 {1966).' J. A. Gonzalo, Phys. Rev. Letters 21, 749 (1968).
4 J. S. Kouvel and M. E. Fisher, Phys. Rev. 136, A1626 (1964).' W. Reese (private communication). It should be noted that

precisely because of the method we have used to determine T„
in spite of the fact that the corrections due to the electrocaloric
effect can affect the absolute value of T, the associate correction
in (T,—T) should go to zero as one approaches T,, the temperature
at which the hysteresis loops are recorded to practically disappear.
Recently, very accurate experiments by E. 5akamura et al. ,
LProceedings of the Second International Meeting on Ferro-
electricity, Kyoto, Japan, 1969 (unpublished) j free from electro-
caloric eGects, establish conclusively the classical values pre-

j.

electrocaloric effect should be considered. %hile the
accurate determination of these corrections near T,
is not easy, reasonable estimates indicate that our
results would not be substantially altered by them.
It may also be noted that perfect compensation of the
I'-versus-E hysteres is loops very near T. could not be
fully achieved with the Sawyer-Tower circuit, possibly
due to a field dependence of the conductivity of the
crystal. This behavior actually set limits of AT =T,—T'

at +0.02 and —0.04'C within which a reliable deter-
mination of I' for very small E was not possible.

As is well known, an. increase of the amplitude of the
ac field applied to the sample for displaying the
P-versus-E curve, produces a relatively small increase
of the absolute value of the polarization with respect to
the corresponding values for lower ac amplitude.
However, the relative variation of the polarization as a
function of temperature was checked for various field
amplitudes and it was found to be the same, the
absolute values being different only by a constant
factor. This effect might be attributed to a consistently
partial switching of the ferroelectric domains at low
ac amplitudes. The constant ac field amplitude chosen
in our case, E=190 V/cm, was relatively low, which
helps to keep down the electrocaloric effect in the
vicinity of T,.

RESULTS

The experimental results below T, as described in a
previous letter, ' were shown to yield the value of the
critical exponents 8 and P, along with four other ex-
ponents indicating the field and temperature depend-
ence of both derivatives of the polarization with respect
to field and temperature. The experimental values ob-
tained from log-log plots of the data are given in Table I
and compared with those calculated from the mean-field
model, using the expression'

viously reported for the exponents y and p, the former even at
temperatures as close to T, as T,—T 0.01'C.

6 J. A. Gonzalo and J. R. Lopez-Alonso, J. Phys. Chem. Solids
25, 303 (1964).
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TA'BLE I. Experimental critical exponents from TGS compared with mean-Geld theory predictions.
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where So~4.4X10o V/cm is the saturation internal
field, and iVto~4. 3 ttC/cmo is the saturation polariza-
tion. It is interesting to note that, as it should be
expected (see Appendix), the ratio ot the two critical
exponents relating the same derivative of the free
energy to field and temperature is constant.

In Table II a summary of data for polarization and
field at various temperatures besom and above T, is
given. These data were "scaled" to determine p=P/t~
and e=P/t~o, and plotted using a log-log scale. It can
be seen from Fig. 1 that the scaling of the data is quite
good, giving evidence of the existence of a law of
corresponding states. From this, the sequence of
critical exponents, found directly and reported in the

previous short communication, i results in an automatic
fashion. What is more important, however, is the fact
that this log-log representation, which shows the critical
behavior over a wide range of three decades in the
reduced field e, shows clearly the asymptotic behavior
of the equation of state for both small and large e,
above and below T,. This asymptotic character is in
complete analogy with the observations of Green
et al.~ for liquid-vapor transitions in a good number of
systems. We have also recently examined very accurate
data ~ from ferromagnetic transitions, and the asymp-
totic trend for small and large scaled magnetic held is
seen again to be fully analogous.

The asymptotic behavior can be summarized as

gABLE II. Polarization versus Geld for TGS from hysteresis loops in the vicinity of the Curie temperature, T,~322.50'K.

P (toC/cmo)

0.217
0.217
0.217
0.244
0.244
0.244
0.271
0.271
0.271
0.271
0.298
0.298
0.298
0.298
0.326
0.326
0.326
0.326
0.326

Below Curie temperature
&T(X10 ' 'C)

4.2
10.7
17.1
4.2

10.7
17.1
4.2

10.7
17.1
30.1

4.2
10.7
17.1
30.1
4.2

10.7
17.1
30.1
43.0

E(V/cm)

49.7
27.7
9.3

73.0
46.9
24.5

101.8
72.4
46.4
7.0

137.9
104.5
74.6
25.4

182.7
144.5
104.6
53.8
9.9

0.1085
0.1085
0.1085
0.1085
0.163
0.163
0.163
0.163
0.217
0.217
0.217
0.217
0.298
0.298
0.298
0.298

2.3
8.7

15.2
21.7
2.3
8.7

15.2
21.7
2.3
8.7

15.2
21.7
2.3
8.7

15.2
21.7

Above Curie temperature
P(pC/cmo) nT(X10 ' 'C) Z(V/cm)

12.7
21.1
30.3
40.2
33.1
49.3
60.6

. 71.9
69.8
88.1

104.3
117.7
131.8
148.7
166.4
186.1

M. S. Green, M. Vicentini-Missoni, and J. M. H. Levelt Sengers, Phys. Rev. Letters 18, 1113 (1967).
J. S. Kouvel and J. B. Comly, Phys. Rev. Letters 20, 1237 (1968).
J. T. Ho and J. D. Litster, Phys. Rev. Letters 22, 603 (1969).
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Fxo. 1. Log-log plot of the scaled polarization versus scaled electric Geld for ferroelectric TGS near the Curie temperature. Full line is
renormalized mean-Geld equation of state with m=0.450, m=0. 139.

follows:

Below T, :p const,
e~0

p ~ constXe'~',

Above T, : p constXee~

(1a)

(1b)

(2a)

ing. the coexistence curve, i.e., P, =constXt~; (1b) and
(2b) mean that for S»t&' we are approaching the
critical isotherm, i.e., P= const XE'1~; 6nally, (2a)
means that for 5'«t&~, above T„we are approaching
d,P'/AE=constXt —'r, with —p=p —p8= —y' which in
our case merely expresses the Curie-Weiss law.

MEAN-FIELD MODEL EQUATION OF STATE
p const Xe'~'. (2b)

The implications of these expressions are obvious:
(1a) means that for S(&t&', below T,, we are approach-

The basic expression of the mean-field model for
ferroelectrics can be written as

8+= (1wt) tanh-~(P) —P,
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where t= l1 —(T/T. ) l; the negative sign applies at
T(T, and the positive sign at T& T.. This equation
can be expanded in the following way:

Eq= (P+ ,'P'+--,'P'. )+t(P+ ,'P'+--,'P' ) P-
=wtP+ 'P'+-( 'P'+-. )wt(-'P3+-'P'. )

Putting e=E/t'—/' and p =P/t'/'

e+ =~p+-'p'+tL~ lp'+ lp'(I~t)+
Obviously, if t«1 (for instance, 1.0X10 '~&t&~3.0

X10 ' in our experiment) this expression reduces itself
to

e =p(—',p' —1) for T(T„(3)a

e+ ——p(-', p'+1) for T) T, . (3b)

To check these equations against the experimental
results it has been found necessary to introduce pro-
portionahty factors for e and p in the above equations.
They became

me =)/p( sin, 'p' -1), —
me~ =mp (-',e'p'+1) .

To introduce these proportionality factors is equiv-
alent to modifying the normalization parameters in
such a way that (Np)/// replaces (1V/i), and Eo/nz
replaces Eo. The best fit to the data is obtained with

m =0.450, sz =0.139.

Figure 1 shows a plot of the mean-field equation of
state in scaling form, along with the experimental data.
The agreement is very good except for a few points for
T(T, in the intervening region between small and
large e, which fall slightly above the theoretical curve.
The estima, ted experimental errors go from 5 to 1%
as p increases and from 10 to 2% as e increases.

PHENOMENOLOGICAL EQUATION OF STATE

The realization that the asymptotic behavior speci-
fied by Eqs. (1a)—(2b) is not only characteristic of our
ferroelectric cooperative transition, but also of liquid-

vapor and magnetic cooperative transitions, strongly
suggests the convenience of using it along with Widom's
homogeneity requirements to specify the equation of
state for the system under consideration throughout
T, and in its vicinity.

Since the formulation of the homogeneity assump-
tion" for the free energy of a cooperative system under-

going a second-order phase transition, considerable
progress has been made in the understanding of the
critical phenomena. "GriKths" has studied the problem
of constructing explicit analytic expressions for the
equation of state relating the scaled extensive variable
(polarization, magnetization, volume, etc.) to the
intensive variable (electric field, magnetic field, pres-
sure, etc. , respectively) for the case of rational critical

' B. Widom, J. Chem. Phys. 43, 3898 (1965).
"See, for example, M. F. Fisher, Rept. Progr. Phys. 30, 615

(1967).
'2 R. B. GriQiths, Phys. Rev. 158, 176 (1967}.

exponents. Very recently, several empirical' '3 and
parametric" expressions have been proposed to fit the
equation of state of some real systems. We wish to
construct a compact expression of the free energy in a
simple way, matching the critical exponents sequence
both above T, and below it, as well as the asymptotic
behavior indicated in the preceding paragraph, from
the law of corresponding states.

I.et us assume, following Widom'0 and GriKths, '2 that
the free energy about the critical point can 'be given
simultaneously by

(p) ~t//(6+i) g' —(()p/()g) ~t//(&+i) e&—
f' '= (O'F/8 g'). 0-te "+" 'e'—(5b)

where the "gap" exponents are (1/A) = 1/Pb and

A=PS, respectively.
The last two expressions of (5b) are easily recogniz-

able as the defining equa, tions for the indices p and
—y=P —A, respectively. Let us call Y the partial
derivative of the free energy with respect to the variable
X. Its meaning will be, of course, that of the respective
extensive variable in the various cases (polarization,
magnetization, volume, etc.). From (4a) we obtain

BF t 2

=X"' ai+a~ — +a~ — +.. .
Bg X"~' gi/~'

t 2

+g'/' a2+2a, — — +3a, +.
X"e' g'/~'

X ——,6a

"M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S.
Green, Phys. Rev. Letters 22, 389 {1969).

"P. Schofield, Phys. Rev. Letters 22, 606 (1969).

t /' t
F(X,t) =X('+'»' a,+a2 +aal +

g i/ps (gi/e/

f()r ga/P)))t (T(T ) (4a)

X X~'
F(g,t)=te('+') b, +b2 —+b, —l+ . .

te'

for te'))X (T(T.) . (4b)

Here X=X/Xo is the reduced intensive variable, and
t=1—(T/T, ) the reduced temperature. I It may be
noted that while the expansion (4b) is very familiar

in the literature since the introduction of the homo-

geneity assumption, relatively less attention has been

paid to the complementary expansion (4a); Ho and
Litster have made use of the latter in their recent work
oil C)8)g.f

These expansions ensure a sequence of critical
exponents of the expected form

(p) g ((t+i)/8 g —(()p/()t) g(5+))/5 —(i/e5)

g —(()2P/(It2) g(&+i)/& 2(i///&). . . — (5a)
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ap — tg'~ g' 2

=t' fis+2&sl —~+3fi4 —+
aS

or in other words

y= Y/te=x'~'Pcq+cs(x '~e')+c (sx 'te')'+ ~ )
for x=2/te'»1 (T(T,) (7)

y= Pd&+ds(x)+ds (x)'+ $ for x&(1 (T(T,) . (8)

Our aim is to get a single expression for y which
combines Eqs. (7) and (8) at T& T„approaching each
of them for the limiting cases of x»1 and x«1. One can
write formally

y =x't'i' (x '~e')+iP, (x) for T(T, ,

y xllsip (x iles) for T&T„
(9)

(10)

—1/P$- —P5 (1—»/5)

P, (x
—"e') =A 1+

X»

--(»/P~ ) (1-P)

its(x) =B 1+
X2

(11a)

(11b)

The exponents —pa (1—1/a) in Eq. (11a), and

(1/pa) (1—p) in Fq. (11b), are the simplest ones
which keep the homogeneity of Eq. (9) from x/xq((1

where iraq and its stand for the factors within brackets in
Eqs. (7) and (8). This is our equation of state which
already involves the correct sequence of critical ex-
ponents throughout the series expansion of i' in
powers of x '~e' and of its in powers of x. Below T.,
according to Eqs. (4a) and (4b), iPi (x 'ie') should
predominate for x))1, and its(x) for x&(1. Above T„
it is clear that the spontaneous order ceases to be
nonzero for x =0, so it is reasonable to eliminate the
contribution from its(x). At this point, the empirical
asymptotic behavior indicated in the preceding para-
graph should be incorporated. Below T„ for x«1,
its(x) should approach a constant, and for x))1,
iraq(x 'ie') should also approach a constant, according
to (1a) and (1b), respectively. Above T„ P i( s)xdoes
not exist and pq(x 'te') should approach a value pro-
portional to x» ('/') for x«1, remaining the same as
below' T, for x» 1. One could try diff erent functional
expressions for its and iver, all of them susceptible to
being expanded in the power series of the required
form. In principle, a logarithm, a binomial, or an
exponential would meet this requirement. However,
after testing these three forms against the experimental
data, not only for TGS but for magnetic and liquid-
vapor systems, one comes to the conclusion that the
logarithm changes too slowly with x and the exponen-
tial, on the other hand, too rapidly, in order to satisfy
the asymptotic behavior indicated. On this ground, only
the binomial form is left as a satisfactory one. The
simplest binomial forms one can think of, meeting the
above mentioned requirements, are

to x/xs))1 through the whole range in x. Also, the former
is automatically required by the condition (2b).

As a check of the "phenomenological" equation of
state obtained, the principal critical exponents may be
calculated. Below T„ from Eqs. (6)—(10), one obtains

x«x1, Y=P te=Bte, (12)

x))1, Y—iPgX'" AX"' (13)

x((1 a Y/aX=X"' alga/aXy(1/a)X('"& 'lyly

+teaiPs/aX=Cgte e'=Cg—t 7'. (1—4)

Similarly, above T„
x(&1, Y if''I' 0 (15)

*»1 X=P X'~'=AX' i't (16)

x(&1, a Y/aX =X"'age/aX+ (1/a)X u~'& 'iPg-

=C,t e-e' =C,t-~. (17)

The constants which appear in Eqs. (14) and (17) are
respectively,

C1
g 1—(»/~)

1—p B
and C2 ——

pa xs & 1—(»/&)1

It is interesting to note that p =p', also supported by
available experimental evidence.

"P.R. Roach, Phys. Rev. &'7o, 213 i]968)

COMPARISON WITH EXPERIMENTAL RESULTS

Figure 2 shows that the use of Eqs. (11a) and (11b)
in the equation of state given by (9) and (10), leads
to excellent agreement with the experimental data for
ferroelectric TGS, below T', as well as above T in
this case, y =p (scaled polarization) and x =e (scaled
electric field). Only four dimensionless numerical
parameters have been used, their values being

A =2.12, xq ——eq ——0.907,
B= 1.87, xs ——es ——1.425.

For various liquid-vapor systems, it was earlier
reported by Green et al. ~ that the data suggest a scaling
law asymptotic behavior as that indicated by Eqs.
(1)—(2). Using Green's et al. critical exponents, P =0.35
and 8=5.0, one could try to fit Eqs. (9) and (10) to the
data, given in the chemical potential-density repre-
sentation, in order to determine A, x», 8, and x2. Since
the scattering of the experimental points (collected
from many authors on many different systems and
temperature intervals) is fairly high, it does not seem
to be justi6ed. However, accurate data' for He4 are
available. By using the tabulated data of Roach, '
one can calculate the fundamental critical exponents
in the pressure-volume representation. Since the
transition occurs at very low temperature, it is not
surprising that the asymetry of the experimental data
is considerable. It is convenient to bypass this difhculty
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FzG. 2. Log-log plot of the scaled polarization versus scaled electric Geld for ferroelectric TGS near T,. Full line is
phenomenological equation of state with 3=2.12, 8= 1.87, x1——0.907, @2= 1.425.

by using the following definitions:

(V~,.—Vn~) ~ AT& (along coexistence curve),

V(—hP) —V(+AP) ~ AP' I'

(along critical isotherm), (20)

where V is volume, T is temperature, and I' is pressure.
In this way, a nicely defined straight line for two

decades up to the vicinity of the critical point, is
obtained in the log-log plot, which yields P. The analog
plot for P is only approximately linear in the last decade
up to the vicinity of the critical point and since the

trend suggests an increasing value of g we extrapolate
to the closest value which does not violate GriKth's
inequality, taking n'~0. This results in

P =0.411 and g =3.84. (21)

These numerical values are somewhat different from
those obtained by Roach" and Vicentini-Missoni'I but
it should be taken into account that they used the
density instead of the volume and neglected the asym-
metry. By using the exponents given by Eq. (21) one
can scale the data corresponding to several isotherms
above and below T.. The results are seen in Fig. 3(a)



coo PE RA T I v E T RAN sI TION 0 F T RI GL Yc I NE sU? FA TE N EAR T. 3131.

I60-
50—
4.0—

I

II
l.o-
08 =

0.6;, , I. I.l

lo' lo'
A

p = b P / j i -(T/ Tc )

(a) Liquid —vapor He

IO

~rj~ ) T~T '
I

'
I

' I'I'I'l'T I
'

I
'

I
'

I
'

I I 'I'I'I I
'

I
'

I 'I'I

I-

I

l.0 .—
0.8:
0.6—

= 0.378
/=4

+ (T( Tc)

+(T&Tc)
ouvei et Comly)

0-4

IO
0

n P,
h= H/ i-(T/Tc)

(b) Ferromagnetic Ni .
FIG. 3. Log-logr~lots of scaled quantities for (a) liquid-vaporjHe, volume versus pressure; (b) ferromagnetic ¹,magnetization)versus

magnetic held (averaged data). Full lines are phenomenological equations of state with (a) A =1.92, B=1.83, x& = 7.57, x2 ——11.3; and
(b) A =1.18, J3=1.42, xg ——0.334, x2 ——0.360.

hV/V,
and x=p=

p

hP/P,

t&'

where the phenomenological equation of state is
represented, with

Finally, the accurate data for the ferroparamagnetic
transition in Ni, by Kouvel and Comly, have also
been examined. The result is shown in Fig. 3(b).
Again, the corresponding phenomenological equation
of state is plotted with

where V=14.49cc (per gram), T,=5 193'K, P,=.1710.0
Torr. The equation that best its the data has been
obtained by using the dimensionless parameters

A = 1.92, gt ——pt ——7.57,
J3= 1.83, xs ——ps ——11.3.

and g=h=

where 3IIs=58.6 emu/g, Hs=kT, /ps=15. 2X10' Oe.
The equation that best fits the data is obtained with

An estimate of the experimental errors from Raach's
data indicates that they go from 7 to 2% as u increases,
and from 20 to 4% as p increases.

A = 1.183, xg=hg=0. 334,
8= 1.421, x2 =h2 =0.360.

(23)
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System

Ferroelectric TGS
Liquid-vapor He4
Ferromagnetic Ni
Mean field

0.50
0.41
0.38
0.500

3.0
3.8
4.6
3.00

1.50 2.12
1.57 1.92
1.74 1.18
1.500 1.44

1.87
1.83
1.42
1.73

TABLE III. Comparison of critical exponents and coeScients
(see text) for various real systems and the mean-field model.

~,=(&+1)/B ~(1/PS)

pi+i =P (8+1) BP—B tu—
~

(A1)

derivative of the free energy, F„=B"+F/X"R, are
related in a simple way. Let us call y& and y&+& to the
exponents which define the dependence with X and t,
respectively. They are

(A2)

as obtained by using Eq. (4a) for p& and Eq. (4b) for
Since no tables are given in Ref. 8 we cannot give an y&+&. These exponents define the relationships

estimate of the relative errors. However, they must be
small, given the small scattering of points in the graphs. F „-X» (X»P»~)

In Table III, a comparison is made of the main F „ps i (~Pb&&X)'
critical exponents and coefficients for TGS, He' and
Ni, along with those of the mean-field theory. The ratio is then

SUMMARY AND CONCLUSIONS

The principal conclusions of the present work may
be stated briefly as follows:

(1) The scaled data for P versus E from TGS in the
vicinity and at both sides of T, satisfy very approxi-
mately the mean-field theory predictions.

(2) A phenomenological equa, tion of state has been
constructed, based on the homogeneity assumption,
which is simpler than previous proposals and reflects
in a natural way the different asymptotic behavior for
low- and high-scaled intensive variable (electric field
in the case of TGS).

(3) The application of this phenomenological equa-
tion of state to representative ferroelectric, liquid-

vapor, and ferromagnetic transitions shows fair agree-
ment with the data in all three cases.

In the case of TGS, the agreement is excellent and
improves that of the mean-field theory. All experi-
mental points are within the estimated error limits.
In the case of He4 there is appreciable scattering of
points at low p above T„and at high p below T,.
However, taking into account the experimental un-

certainties, the agreement is fair. In the case of Ni, for
which very accurate data are available, the agreement
is also fair, but some small systematic deviations seem
to be present, especially for T& T,.
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APPENDIX

From inspection of Eqs. (3a) and (3b), it is readily
seen that the two critical exponents from the same

()+1)/B m(1/P—B) n1-
— —= —=const. (A3)

PB(By1)/B ~Ps m — PB

This general equality is quite useful, and is already
implicit in earlier theoretical work (see Fisher's" work
and references therein. ) By using Eq. (A3), one can
easily construct equalities relating triads of critical
exponents. I.et us take, for instance, the four most
commonly used exponents, i.e., B(critical isotherm),
P(coexistence curve), —y' (compressibility versus tem-
perature), and —u' (specific heat versus temperature).
Four triads can be made in the following way:

L(1/&)+13/( —~'+2) = 1/eB,
i.e., a'+P(1+8) =2, (A4)

L(1/~) —13/(-v') = 1/~B,
i.e., +~'+P(1—B) =0, (A5)

and eliminating successively P and B from Eqs. (A4)
and (A5),

u'+28 —y' —b(n'+y') =2,

n'+y'+2P =2.

(A6)

(A7)

The expressions (A4), (A5), and (A7) can be recognized
as the equality form of relationships introduced by
GrifTiths, Widom (also referred to as Kouvei-Rodbell
relation), and Fisher-Rooshbrook. By using (A3), any
desired relationship between three arbitrary critical
exponents may be easily obtained.

The series of experimental exponents available from
TGS enable a direct experimental check on the con-
stancy of the exponent ratio specified by Eqs. (A3).
Table I shows that the critical exponents associated
with Fi,o=P, F2, 0

——BP/BE, and Fi, i=BP/BT satisfy
the expected ratio p~/yI~i


