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Band Structure, Spin Splitting, and Spin-Wave Effective Mass in Nickelt
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We have applied a modified form of the combined interpolation (tight-binding plus pseudopotential)
method to the calculation of energy bands in ferromagnetic nickel. A procedure has been developed to
enable calculation of the reciprocal spin-wave effective mass in a multiband system in the t-matrix approxi-
mation. This has been used in conjunction with the calculated band structure. Matrix elements of the
electron interaction are treated as parameters. A by-product of the calculation is an estimate, also in the
t-matrix approximation, of the energy difference between majority and minority spin states in the highest
d band. Moderately good results for the spin-wave effective mass are obtained for reasonable values of the
electron interaction parameters; however, a discrepancy is found in regard to the spin splitting, which

appears to be too large.

I. INTRODUCTION

~~~NE of the outstanding prob1erns in the theory of
ferromagnetism in metals is that of calculating

the energies of spin waves. In order to do this, .one
requires not only an energy-band calculation for the
particular material, but an adequate theory of spin
waves from a many-body point of view which relates
the energy of a spin-wave state to the energies of single-

particle states described by the band structure. Neither
of these items is in completely satisfactory shape, but
it is our belief that it is now possible to attempt a
quantitative calculation. Ke have chosen nickel for
this purpose, since its band structure is the best under-
stood of the ferromagnetic transition Inetals. Some
previous calculations of energy bands in nickel are listed
in the references. ' ' A fairly substantial amount of
experimental information is available concerning the
Fermi surface and levels reasonably close to it.""The
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degree of agreement between theory and experiment is
respectable.

The theory of spin waves in metals is not so 6nmly
established as is the band structure. Most work has
been based on the random-phase or equivalent approxi-
mations which yield results which are manifestly wrong
in certain interesting limits, and on a single-band model
Hamiltonian" " The latter, the so-called Hubbard
modeP' is of considerable interest in that it illustrates
certain general principles involved in constructing a
theory of magnetically ordered systems, but is inade-
quate in treating real metals of interest which have a
complex band structure. An attempt has been Inade to
improve this situation in certain respects in this paper.
Other treatments of spin waves in many-band systems,
involving di6erent approximations, have been given by
Mattis, " Thompson, ' Yamada and Shimizu, and
Sokoloff."A previous calculation of spin-wave energies
in nickel employs an effective single-band model, and
treats the exchange splitting of the d bands as an
adjustable parameter. '

This work is based on an adaption of Edwards" pro-
cedure for the calculation of the spin-wave effective
mass. This approach has been previously applied to a
one-band model ferromagnet. " It is supposed that
electrons interact only when they are on the same site,
or more precisely, we retain only those matrix elements
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of the coulomb interaction between Wannier functions
centered on the same lattice site. Terms connecting
different bands are included. In the present state of our
knowledge it is unfortunately necessary to regard these
matrix elements a,s disposable parameters. The other
fundamental approximation of the present calculation
is that the renormalized, effective interaction between
electrons which enters into the spin-wave calculation,
and is essentially the electron self-energy, can be
expressed in terms of t-matrix elements. This procedure
should be reasonably valid for a low density of particles:
In this case we must consider holes. Since the precise
nature of the necessary corrections to this approxima-
tion are not known at present, the accura, cy of the
procedure cannot be assessed in a fundamental way.

In order to enable computation of the spin-wave
effective mass, we have calculated the energy band
structure of ferromagnetic nickel. Our method is closely
allied to that of Hodges, Ehrenreich, and Lang, ' and
of Mueller" in that it combines a tight-binding treat-
ment of d bands with a pseudopotential procedure
appropriate for s-p bands. Our work differs from those
calculations primarily in that the tight-binding portion
of the effective Hamiltonian is treated more adequately
through the inclusion of overlap and three-center
integrals previously neglected. However, we do not
include spin-orbit coupling.

We obtain as a by-product, the exchange splitting
between spin-up and spin-down bands. Essentially, it is
this quantity which enters the spin-wave calculation as
the effective renormalized interaction which stabilizes
the ferromagnetic state. Although this identification is
not correct for all particle densities, it does apply in the
low-density approximation which is used in this work.

The plan of this paper is as follows. In Sec. II, the
theory of spin waves in a many-band ferromagnet is
presented. The energy-band calculation on which spin-
wave calculation is based is described in Sec. III. The
procedures and results of the computation of the spin-
wave effective mass are given in Sec. IV. Some final
remarks in Sec. V conclude this work.

II. SPIN WAVES IN MANY-BAND SYSTEM

It follows from general considerations that the energy
of a long-wavelength spin wave (wave vector q) can be
expressed as

on different sites are included, other (optical) branches
may occur in the spin-wave spectrum'~ "; however,
we will consider only the lowest (acoustic) branch for
which (2.1) is valid.

A formally exact expression for D has been derived by
Edwards, " on which the present work is based. The
specific situation we consider is described by the
Hamiltonian

&=+ e)(k)~t,"(k)«,(k)

+2 P +ijlncipn cjligi cnp~'clyde ~ (2.2)
ill nba 0'

The operators «,t(k), «, (k) create or destroy an
electron in a Bloch state of wave vector k and spin 0.

in band 1. The operators c~„„etc., refer instead to a
Wannier state in band l of spin o. centered on lattice site
R„.Thus, the Hamiltonian contains matrix elements of
the Coulomb interaction between Wannier functions
centered on the same site, but connecting different
bands.

The calculation of the coeKcient D in (2.1) is sorne-
what more dificult when the Hamiltonian contains
terms coupling bands than in the usual case when these
are neglected. In particular, the wave function of the
ferromagnetic state is not known exactly in the present
situation, whereas for the usual Hubbard Hamiltonian
there is no interaction in the ferromagnetic state, and
the wave function is a single determinant of Bloch
functions. We make the approximation here that the
wave function of the ferromagnetic state is still a,

single determinant. The energy of the exact ferromag-
netic state is no longer known exactly, as the electron
interaction is now present. It is also assumed that the
ferromagnetic state is saturated. No electrons of spin
opposite to the majority are present. The restriction to
matrix elements between Wannier functions on the
same lattice site implies that when one transforms to
the Bloch-function basis, the matrix elements of the
interaction are independent of wave vector. It is then
a straightforward matter to follow the procedure of
Edwards and obtain the following expression for D:

1 1
D = —P"' V'«(k) —2 P&'&(/fg/kll lnqlnqT&

nq H —8—g

E=Dq'. (2 1) XV'wet(k) V,e„(q) . (2.3)

We will attempt to calculate D, which is the reciprocal
of the spin-wave effective mass, for nickel. Much pre-
vious work ha, s been restricted to an idealized case in
which only a single energy band is present. This is,
conceptually, a poor approximation in the case of
nickel, and we wish to obtain an expression for D which
can be applied to a many-band situation. In the case of
a many-band system, or if matrix elements of the
Coulorob interaction between Wannier-function states

I/kl«1'& =«~'(k) «t (&) I +r &. (2.4)

The state conjugate to ~/kf/ft'& is (/ft'/kf~. h is the
energy of the ferromagnetic state ~%f& and n is the
number of electrons in the crystal. If E is the number

The states
~
/k), /ft'& are those in which a single spin has

been reversed in band /. We will denote hole states by
German letters.
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of lattice sites, we have e/X= p, the particle density.
The superscript (0) on a summation indicates that only
occupied states are included, and g is a small positive
quantity. Following Edwards' procedure, the matrix
elements of the resolvent can be analyzed diagram-
matically according to the methods of Hugenholtz. "'4

We employ the Hugenholtz methods here to simplify the
expression for D to a practically calculable form.

The main simplification that we introduce is that of
considering only diagonal matrix elements of the
resolvent, thus introducing factors 5„&5(k —q) into
(2.3). Further, we consider only the contribution of
diagonal diagrams (in the sense of Hugenholtz) to
these matrix elements. This means the following: The
states ~/k//ft') defined by (2.4) contain a down-spin
electron and an up-spin hole. We consider only those
processes in which these particles interact with the
medium, for instance, by creating additional up-spin
electron-hole pairs; but we do not consider the inter-
action of these particles with each other: The con-
tribution from nondiagonal diagrams (those in which
the initially excited particles do interact) was investi-
gated in the one-band problem, and found to be
negligible. '2

With these approximations we rewrite (2.3) in the
form

matrix elements of the resolvent for states containing
either a, single down-spin electron or a, single up-spin
hole. The contribution from all diagonal diagrams for
the down-spin electron is

(/k$~ R(s+ &) ~/k$) =1/Lot(k) —s—Gi i(s)]. (2.7)

In the case of the up-spin hole, we have

(«1'IR(s+ &)
I
«t') = 1/L —«(f) —s—Gift(s) j (2 g)

The matrix element of the resolvent operator between
states containing a hole and an electron are found from
(2.7) and (2.8) by convolution. We have

(/ff/kj,
~
R(s) ~/kf/f t) = — (tk$

~

R(s—/) ~
tkJ)

21l Z

X(/ft'~R(8+1)
~

tff)d/. (2.9)

The contour of integration includes all the singularities
of the second factor and none of the first. Finally, we
let s approach 8. Let / o be defined as the solution of the
equation

go+«(f)+Gift (t o) =0.

The final result is

1 t ~

V'«(k) ~'q
D = —Qio'( V'oi(k) —2

6n ij 4 Ut(k) )
(2.5) (/ft'/k)

i R(8)
~
/kJ„/ft)

where

U, (k) = (/ft /kg [ P1/(e —h)j [
/k)/ft)- . (2.6)

(2.11)
Gift (1 o)+Gt iL&i(k)+G&)t Q o)j

We consider the evaluation of Ui(k) according to the
procedure of Hugenholtz described above. A detailed
exposition of the Hugenholtz method is given in Ref. 34.
It is convenient, however, to redraw Hugenholtz's
diagrams in the Goldstone manner. In this way, one
sees that the diagonal diagrams which contribute to the
resolvent are just single-particle self-energy diagrams.
Each diagram has a down-spin electron line and an up-
spin hole line. In the one-band problem usually treated
interactions occur only between particles of opposite
spin; this means that only the down-spin electron line
has a self-energy. This leads to Edwards' result for this
case,

U(k) = —G~(o(k)),

G being a function dered by Hugenholtz, which is the
negative of the self-energy evaluated at an energy o(k)
above the ground state. In the many-band case, both
electron and hole self-energies exist.

According to the procedures of the Hugenholtz
method, the matrix elements of the resolvent involving
the states ~/kf, /ff) are to be found by convolution of

"N. M. Hugenholtz, Physica 23, 481 (1957).
'4N. M. Hugenholtz, in The Many Body Problem, edited by

C. Dewitt and P. Nozieres (John Wiley R Sons, Inc. , New York,
1959).

As it stands, (2.11) is too complicated to be practical.
We will perform the calculation of the G functions only
to first order in the particle density. The diagrams which
contribute to G are just ordinary self-energy diagrams;;
however, one must remember that is is a convention of
the Hugenholtz method that the G function for elec-
trons has an extra minus sign as compared to the G
function for holes, or in other words, that G for elec-
trons is the negative of the usual self-energy, while it
is the self-energy for holes. "Also, our convention for
matrix elements is different from that of Hugenholtz,
as may be seen by comparing our interaction, Eq. (2.2)
with his (Ref. 34, p. 11).We draw the diagrams in the
Goldstone manner, keeping this difference in mind. The
series to be considered are just those which contain the
smallest possible number of internal hole lines (one).
The relevant diagrams are shown in Fig. j.. It should be
noted that there are no exchange diagrams for the down-
spin electron self-energy, since, according to our hypoth-
esis, there are no down-spin electrons in the ground
state. These diagrams are t matrix, or ladder diagrams.

The diagrams of Fig. 1 can be summed following the
standard rules. The results can be expressed as follows:

"Failure to observe this convention has led to an error in some
of my previous discussions of this subject.
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Here

with

«;, i;(s,p)=Z Vi;,j„5,.i;,
2n

(2.16)

IA

(~ ')j-, i'=bji&. '

V,„,z;

E ~ 2e&(k)+s+e;(p) —e, (q) —e„(k+p—q)

(2.17)

(3) Contribution of the series of Fig. 1(c) to Gi~t(s)

IB
——2"' &i* 'i(&,p)E 'I

(2.18)

IC

FgG. 1. Goldstone diagrams important in the calculation of the
spin-wave effective mass: (a) down-spin electron self-energy;
(h) up-spin hole self-energy, direct interaction; (c) exchange
diagrams corresponding to those of (b).

(1) Contribution of series of Fig. 1(a) to Gi&q (s)

1 1
Vi;i; + —

,
Q' Ui;,j„

g 'p Qngq

X Vj,i'+ . .
s+'(p)-;(q)- -(k+p-q)

~l Ziiii, ilPi ~ (2.19)

These formulas are still quite complicated. We make
certain additional approximations to reduce them to a
usable result. These approximations are consistent
with the basic assumption that the electron density is
low. We replace fs by —ei(k), neglecting the presence of
Gtft in (2.10); similarly, set the argument of Gt~l in
(2.11) equal to e&(k). Then in the evaluation of the
integrals over unoccupied states in the functions F and
I', we neglect the energies and momenta of all occupied
states where they occur in the energy denominators.
This has been shown to be an adequate approximation
at low densities in the one-band problem. '2 The
matrices t and t are then equal, and are independent of

p, so that the 6nal summation over occupied states con-
tributes only a factor of p;, the fractional occupancy of
band i (p;= js,/js, where e; is the number of electrons in
band i). Then the combination of Eqs. (2.6), (2.11),
(2.12), (2.15), and (2.18) leads to

1= ——P' t, , ( p)s.
E ~u

(2.12) The t matrix elements here are just constants, the matrix
F ' now being given by

ti;, i;(s,p) =P V&, ,;„&j„,h,
2m

where

(F ')j .i'=~ji&-

(2.13)

iiI' q s+e, (p) —e, (q) —e„(k+p—q)
(2.14)

(2) Contribution of the series of Fig. 1(b) to Gr~t (s)

As before, (0) as a superscript on the sununation in-

dicates that only occupied states are included, whereas

a prime indicates that only unoccupied are included.
We have

1
(F )j&,$i '5j i'5+i + g Vj&, li (2.20)S ~ e, (q)+e„(q)

The integral includes only those wave vectors q lying
within the Brillouin zone such that the states jp and
eq are both empty.

Equations (2.19) and (2.20) are the useful results of
this section. The modidcations necessary to apply them
to the actual band structure of nickel will be described
in Sec. IV.

Before going on, two comments are relevant. First,
we may consider the limit of a very weak. potential in
which t is replaced by V. This is the Hartree-Fock
approximation. Then we have simply

1—2"' «', i'(s,p).
«~ Q«;, 'jp;.

(2.15)
This result is equivalent to that of ramada and



BAND STRUCTURE, SPIN SPLITTI NG, AN D - - ~ 309

Shimizu when their Hamiltonian is reduced to ours."
Second, we note that U~ is the difference in self-energies
of a down-spin electron in band l and an up-spin hole
(or electron) in the same band. We may therefore
interpret U~ as the exchange splitting of band /. This
quantity is of considerable interest in itself. The inter-
pretation we have made is not quite correct in that the
Gng function which appears in (2.11) is not evaluated
at the appropriate energy as is discussed by Edwards in
the one-band problem. " However, in the present ap-
proximation in which the t-matrix elements and Ii

functions are treated as constants, the identification is
legitimate.

C&„(k,r) = 1/Ã P„e'"'y~. (r R„),— (3.1)

where I= 1, . . . , 5 and gq„(r—R„)is an atomic d wave
function centered at R„and (2) plane waves

@(k+ K r) P7+)—1/2ei(k+Ks) ~ r (3.2)

in which K, is a reciprocal-lattice vector. Following the
usual procedures, four reciprocal-lattice vectors are
included:

Kg ——(2s-/a) (0,0,0), K2 ——(2s /a) (—2, 0, 0),
K3——(2s/a)( —1, —1, —1), K4——(2s-/a)( —1, —1, 1).

(3.3)

In the present work, we are concerned with integrals
through the Brillouin zone such as are involved in the
exchange splitting and the spin-wave effective mass. We
do not try to reproduce the Fermi surface in all detail,
and therefore do not include spin-orbit coupling in the
Hamiltonian. However, we noted that all previous
tight-binding plus pseudopotential calculations for
nickel have been based on a possibly inadequate tight-

III. ENERGY-BAND CALCULATION

We will now describe the method and the results of
the energy-band calculation which was used in the com-
putation of the exchange splitting and spin-wave
effective mass. Our method is closely related to the
combination of tight-binding and pseudopotential
procedures of Hodges, Khrenreich, and Lang' and
Mueller. " There are, however, some differences in
detail, particularly in regard to the tight-binding portion
of the calculation.

It has long been supposed that the d bands in nickel,
to the extent that they could be understood in isolation
from overlapping s-p bands, could be adequately
described by the tight-binding method. However, s-d
mixing is not negligible and it is necessary to include
some terms into the wave function to represent a some-
what free electron like s-p band. With these require-
ments in mind it is natural to expand the wave function
in a mixed basis set. The elements of this set are (1)
tight-binding wave functions for the d levels

binding calculation. '' We have attempted to improve
this in several respects. Our objective here is to obtain
as good a tight-binding treatment of the d bands alone
as possible, and then to add to this at least a reasonable
representation of the s-p bands.

First, we note that the basis functions used are not
orthonormal, and we have included the overlap matrix
S. The energy bands are determined by solving the
9X9 (before consideration of exchange splitting) secular
equation

det~H, ,—ZS,, )
=0. (3.4)

The matrix elements of II and S between the d
states (the 5)&5 d-d block) are written as

H„„=P„e'"'" ye„*(r)Hye„(r R„)d'r,—

S =P„e'"'" Pe„*(r)pe„(r—R„)d'r.

(3.5)

ye„*(r)Hyg I r 2a(le+—mj+pk)]d'r (3.6).

These integrals were taken from the work of Tyler,
Norwood, and Fry."The construction of the crystal
potential and the method of evaluation of the integrals
is described in detail in that paper; however, we will
state brieAy some of the essential features here.

The potential consists of a Coulomb and an exchange
part. These are determined from an assumed initial
charge distribution formed by superposing the electron
distribution of free nickel atoms in the configuration
d's'. After superposition, a spherical average of the
charge density was determined. An exchange potential
was constructed from this charge density using the
standard Slater p'~' procedure. The same exchange
potential was used for both majority and minority
spin states in nickel. The exchange splitting of the
bands into majority and minority spin sub-bands was
treated by a procedure like that of Eherenreich and
Hodges, " as will be described subsequently. The
difference in Slater exchange potentials for up- and
down-spin states due to the differing occupancies is
small, but nonetheless, can be made the basis for a

'6 J. C. plater and G. F. Koster, Phys. Rev. 94, 1498 (1954)."J.M. Tyler, T. E. Norwood, and J. L. Fry, preceding paper,
Phys. Rev. 81, 297 (1970).

In evaluating the matrix elements we considered the
integrals including all orbitals up to third nearest
neighbors. There are 21 independent integrals involved
in II„„and9 in S„„whenthird neighbors are included.
These integrals are denoted (in the notation of Slater
and Roster)"

E„„.(I,m, P)
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calculation of the exchange splitting of the bands in the
ferromagnetic, state, as was done by Connolly. " Our
present procedure can be described as that of grafting
an approximate treatment of a short-range electron-
electron interaction believed to be responsible for ferro-
magnetic ordering upon an ordinary band calculation
for a paramagnetic system. The relation between the
Ehrenreich-Hodges treatment of exchange splittings
and that of Connolly remains to be work. ed out in detail.

The parameters E„„werecomputed separately for
direct and exchange potentials so that a rnultiplicative
factor of A. could be used to adjust the exchange poten-

tiall

to obtain better agreement if necessary with avail-
able experimental information concerning the band
structure. We write

E„„(total)=E (direct)+RE„„(exchange). (3.7)

If A. =1, the Slater exchange potentiaP' occurs, while
A. = —,

' corresponds to the Kohn-Sham-Gaspar" "poten-
tial. We found that X=0.85 appears to give the best
results. Clementi's wave functions for the d's''F state
were used both in the potential and in the evaluation of
integrals. " Since the potentials used are those of a
distribution of spherical charges, crystal field effects may
not be represented adequately. For this reason, the
parameters E„„(l=m= p = 0) were regarded as
adjustable.

The matrix elements of the Hamiltonian between
plane waves are written in the form

(k+ K,
~

H
~

k+ K, )=~(k+ K,)'&„+U (K,—K, ) . (3.8)

38 J. C. Slater, Phys. Rev. 81, 385 (1951).
' W. Kohn and I.. J. Sham, Phys. Rev. 140, A1133 (1965).
0 R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1964).

4' E. Clementi, TaMes of Atomic Functions (IBM Corp. ,
San Jose, 1965).

S„,= Cq„*(k,r)C (k+K, r)d'r. (3.9)

These integrals may be expressed in terms of an angular
part with the symmetry of dm and a form factor. For
example, for the functions of xy symmetry, we have

(60~q'" (k+K,).(k+K,)„
-(Ik+ K.

I ),En i [k+K, /'
(3.&0)

TAal.E I. Parameters used in the energy-band calculation.
All parameters are in a.u. (Energies in Ry.)

V(000)
V(111)
V(200)
8
X

~ u, *u(0,0,0)
+~3z —g 3z —r (0 0 0)

Majority spin

1.175
—1.13

0.28
0.38
0.1
0.85

—0.703
—0.7

Minority spin

1.175
—1.124

0.28
0.38
0.1
0.85

—0.671
—0.716

The parameters n and U(K, —K, ) are regarded as
adjustable: that is, as pseudopotential parameters. We
inserted symmetrizing factors FK(k) given by Ehren-
reich and Hodges" in order to account approximately
for the effect of introducing symmetrized linear com-
binations of plane waves. These factors ensure that
proper band degeneracies are obtained at symmetry
points of the Brillouin zone.

The matrix elements between d functions and plane
waves were treated as follows: Overlap matrix elements
S„,are given by
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where

G(k) = j&(kr)Rsz(r)r'dr, (3.11)

MAJORITY SPIN FERMI SURFACE CROSS SECTION

--- 6 f SPIN SANO

in which R3q is a normalized radial wave function.
The elements II, were represented as proportional

to 5„,
(3.12)

where 8 is another adjustable parameter. There are no
adjustable parameters in 5.

This completes the description of the matrix elements
used in Sec. IV for the calculation of exchange splitting
and spin-wave effective mass. That calculation used the
minority spin bands only. However, we wanted to
determine the extent to which observed Fermi-surface
properties could be described by the tight-binding and
pseudopotential method employed. To this end we
made a band calculation for both spin states in ferro-
magnetic nickel, in which the exchange splitting was
treated in the manner somewhat similar to that of
Ehrenreich and Hodges. "

The s-d exchange term considered by Ehrenreich and
Hodges appears in the band calculation as a difference
in U(0,0,0) in the two spin states. Similarly, the d-d

interaction they use simply gives rise to a difference in
the E„„(0,0,0) for majority and minority spin electrons.
There would be a very small effect on E„„(R)for
nonzero values of E, since the d functions on different
sites are not orthogonal, but this small correction was
neglected. We did not attempt to make a self-consistent
calculation of the exchange splitting parameters as did
Ehrenreich and Hodges; we merely treated the dif-
ferences in U(000) and in the Z„„(000)between the
two spin states as additional adjustable parameters.

The values of all the adjustable parameters used are
listed in Table I. Other (nonadjustable) parameters

MINORITY SRN FERMI SURFACE CROSS SECTION

--- y f SPINBANO—5 f SmSANO
6 ) SPIN SANO

FIG. 4. Fermi-surface contours for majority spin electrons.

may be found in the paper of Tyler, Norwood, and

Fry. '~

The band structure which results from these calcula-
tions is shown in Fig. 2. Comparison of these results
with other calculations naturally reveals both simi-
larities and differences. We will not explore these in
great detail here, but certain general comments are in
order. Qualitatively, calculations agree in predicting
that the highest d band is nearly Oat between X and S',
and varies only slowly between 8' and I.. This is,
physically, a consequence of the smallness of second-
neighbor interactions compared to 6rst-neighbor ones
in the tight-binding scheme. If only first-neighbor
interactions are included (even if the two-center approxi-
mation is not made), in a d band (alone) tight-binding
calculation, the energy is independent of wave vector
for one band (wave function of symmetry xs) running
from X to 5'. This band connects the two states X5 and
lV~. When second-neighbor interactions are included,
the band acquires some curvature, but it is so nearly
Rat that a high peak in the density of states is predicted
to occur quite near the top of the d band. This peak in
the density of states is responsible for the occurrence
of ferromagnetism and for stability of the ferromagnetic
state against spin-wave excitation in models employing
a t-matrix treatment of strong short-range inter-
actions. 's ~ 4' Qualitatively, it is the relative weakness
of second-neighbor interactions which makes nickel
ferromagnetic.

While the various band calculations are in general
agreement about the flatness of the topmost d band,
there are differences concerning lower bands. Un-
fortunately, experiments able to probe the lower d-band
structure do not exist. There are, however, quantita-
tive predictions concerning various observed character-
istics of the 1'ermi surface. Calculated Fermi-surface

Fre. 3. Fermi-surface contours for minority spin electrons.
o J. Kanaroori, Progr. Theoret. Phys. (Kyptp) 30, 2/5 (1963)~ J. Callaway, Phys. Rev. 140, A618 (1965).
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FIG. 5. Density of states for ferromagnetic nickel including
both spin directions. The vertical line at E~ indicates the Fermi
level.

TABLE II. Some characteristics of the Fermi surface.

Neck area at L
Cross-sectional area at X

in the UXW plane
in the I"UX plane

Expt. (a.u.)'

0.00716

0.027
0.066

Calculated
(a.u.)

0.00487

0.0206
0.047

& See Ref. 20.

cross sections are shown for two planes for minority and
majority spins in Figs. 3 and 4. A few quantitative
results are listed in Table II. The agreement between
our results and experiment is not bad; but neither is it
outstanding. It has been shown by Ruvalds and
Falicov" and by Zornberg'4 that inclusion of spin-orbit
coupling is necessary to obtain a quantitative accurate
description of the Fermi surface.

The arrangement of majority and minority spin bands
at the L point is consistent with interpretations of opti-
cal measurements. ' ""We note that in the minority
spin band, L3 is above the Fermi energy and L~ below,
giving an optical edge of approximately correct energy.
In the minority spin band, L3 is above L2, and both are
below the Fermi energy. A low-energy transition among
states near these is possible.

The density of states has been calculated based on
a mesh of 24225 points in 1/48 of the Brillouin zone.
It is shown in Fig. 5. Both majority and minority spins
are included. The density of states for the different spins
are similar except that they contain only a single peak
at the top of the band. The presence of two peaks near
E~ is due to the spin splitting. From the separation of
the peaks in the density of states, it is possible to obtain
an over-all estimate of the spin splitting in the most
important band. This is determined to be 0.4 eV, in
good agreement with the estimate of Zornberg based on
analysis of optical-absorption data. However, this
estimate of the spin splitting disagrees with one based

on the t-matrix procedures described in Secs. II and IV,
which give a result twice this, 0.84 eV.

If the computed density of states is examined at the
high-energy end under low resolution, two features
would stand out: A high peak slightly below the Fermi
energy, followed by a valley around 1 eV below, then
followed by a smaller and broader rise, and finally a
gradual decrease. Qualitatively, this is just what is
observed in the photoemission measurements of
Eastman and Krolikowski, ~ although the relation
between the so-called optical density of states and the
actual one is probably quite indirect.

Because the density of states is large and rapidly
varying at the top of the band, it is dificult to obtain
the exact Inagneton number. We obtain 0.635 for this
quantity, which is about 13% larger than the value
0.564 deduced from the observed saturation magnetiza-
tion4' (0.616'~/atom) and the ferromagnetic resonance
g factor (2.18).

We conclude that the general features of the band
structure are probably given with reasonable accuracy.

IV. SPIN SPLITTING AND SPIN-WAVE
EFFECTIVE MASS

In this section, we combine the t-matrix formulas of
Sec. II and the band-structure calculation of Sec. III to
obtain the spin splitting and the spin-wave effective
mass at T=O. A previous calculation of the spin-wave
energy spectrum by Thompson and Myers in which the
exchange splitting is regarded as an adjustable param-
eter has been noted previously. "Other relevant calcu-
lations are those of the Harwell group4'4~ concerning
the wave number, frequency, and temperature-depend-
ent response function. Their work uses a less realistic
band model, ignores interband coupling, and introduces
an effective interaction as a parameter, but it covers a
much wider range of variables than the present work,
which is restricted to a determination of the poles of
this function at zero temperature.

Some comments, and some further approximations
are necessary before the formulas of Sec. II can be
applied to nickel. In nickel, the ferromagnetism is
believed to be due to holes in the d band. We ignore
the electrons; this is necessary if we are to apply the
previous results since the existence of only a single type
of carrier was assumed. Attenuation is focused on the
minority spin holes occupying the Qat band above the
Fermi energy in Fig. 2. Possible contribution from
majority spin electrons (near I. for instance) are
ignored. Likewise, we discard the free-electron-like
empty minority spin band (6r).

4'D. E. Eastman and W. F. Krolikowski, Phys. Rev. Letters
21, 623 (1968).

4' H. Danan, A. Herr, and A. J. P. Meyer, J. Appl. Phys. 39,
669 (1968)."G.Allan, W. M. Lomer, R. D. Lowde, and C. G. Windsor,
Phys. Rev. Letters 20, 933 (1968).

4~ C. G. Windsor, R. D. Lowde, and G. Allan, Phys. Rev.
Letters 22, 849 (1969).
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We consider, then, a low-density system of holes.
The Hamiltonian, Eq. (2.2), can be transformed in the
usual way through the introduction of hole operators
b~(k)=cP(k). In effect this changes the sign of the
energy, and we now measure the energy from the highest
d-band state, X5. Additional k-independent terms in the
energy are discarded. The spin splitting of the bands is
ignored in the calculation of t-matrix elements; the
minority spin band being employed for this purpose.

Unfortunately, there are many unknown matrix
elements of the potential in the formalism of Sec. II.
In order to reduce the number of parameters, we decided
to consider only the most important elements of V and
to make all those of a given type equal. For alii, j, we

put
V;;,;;=Vp,

V;j,;j= Vg,

V;j,j;——J.
(4.1)

There are then three unknown parameters in the
problem. The t-matrix elements can then be easily
constructed following methods previously employed. ' '
The relevant elements are

and
f;;,,;=Uo/(1+g;;Vo) (4.2)

where

tij, ji = jWj
(1+g''Ud)2 g. 2J2

(4.3)

g;j =
(2s.)'

d'&Le, (k)+e;(k)]—'.

The integrals include those states occupied by electrons
(unoccupied by holes) and thus lie below the Fermi
energy. They were computed numerically from the
band structure. A small correction to t;;,;; of the order
(J/Vs)' has been neglected. s"

It will be observed that the true exchange matrix
element J enters in a heavily screened form; nonethe-
less, its inclusion appears to be important.

The quantity U& is then evaluated from Eq. (2.19).
This is the spin splitting in band l. Note that although
the t matrix is symmetric, the spin splitting of different
bands is different. This is principally due to unequal
occupancy of the bands. Finally, it is necessary to
carry out the sum (integral) of Eq. (2.5) over occupied
hole states. This was again done numerically, using a
grid with approximately 1500 points in 1/48 of the
Srillouin zone. The Fermi energy was adjusted slightly
in this calculation to give a better magneton number
than obtained in Sec. III (the error in this quantity
was reduced to about 4%). The results are summarized
in Table III for three different and supposedly reason-
able choices of the parameters Vp, Vd, and J which have
been discussed by Lang and Ehrenreich. "

4 J. Callaway and R. K. M. Chow, Phys. Rev. 145, 412 (1966).~ N. D. I,any and H. Khrenreich, Phys. Rev. 168, 604 (1968),

TAnLE III. Spin splitting of the highest d band at T=0 (Us)
and spin-wave effective mass for three diferent choices of potential
matrix elements.

Vs (eV) UD (eV) J (eV) Us (eV) D (Ry @as)

5.0
7.6
3.9

Expt.

3.0
5.0
3.0

1.0
0.6
1.0

0.84
0.94
0.77

0.072
0.044
0.069

0.11%0.01

"M. W. Stringfellow, J. Phys. Cl, 950 (1968).
» R. D. Kaul, Ph.D. thesis, Case Western Reserve University,

1969 (unpublished}.

The results for D quoted are in moderate agreement
with experiment. The most recent neutron diffraction
results are those of Stringfellow, 'P which give, when
extrapolated to T=O, D=O. i2 in atomic units. A
number of other measurements have been reviewed by
Kaul"' (who found D=0.10 from the temperature
dependence of the spontaneous magnetization). The
arithmetic average of six measurements listed by Kaul
plus the extrapolation of Stringfellow's data yield
D=O.ii. If an error of ~0.01 is allowed, all reported
measurements are included.

Our results are somewhat sensitive to the choice of
the parameters Vp, Vd, J. For the moderately large Vp

that we believe to be reasonable, the results depend
substantially on J. Too small a value of J allows a
negative contribution to D from the small number of
holes in the second-highest band. However, we believe
that the dependence on the details of the band structure
is somewhat more significant. This is apparent, both
through the dependence of the g;j on the bandwidth,
and through the presence of derivatives of the band
energy in Eq. (2.5). By altering the parameters which
define the band structure, we find that it is possible to
produce values of D which exceed the experimental
value quoted. This can be done by changing the hybridi-
zation parameter B to —0.5. Clearly, in the present
situation, little meaning would attach to precise
numerical agreement between theory and experiment.
We do believe that the results obtained are reasonably
good, considering the manifold uncertainties still
present in the theory.

A problem arises concerning the value of the spin
splitting. The values obtained by the t-matrix calcula-
tion are larger by a factor of 2 than given by the
Ehrenreich procedure of Sec. III. The present results
are not consistent with estimates of this splitting based
on optical measurements. On the other hand, if U5
were reduced to 0.4 eV, the value obtained in Sec. III,
the value of D would be reduced to 0.03, far below the

experimental value. This discrepancy remains un-
resolved; however, we note from Ref. 3i that Ug for the
spin-wave calculation does not rigorously equal the
spin splitting. It is possible that this difference is
significant for the actual hole density in nickel.
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The present results can also be compared with those
of Thompson and Myers. " They assumed a band-
independent exchange splitting, which was adjusted to
yieM the experimental value of D and then computed
the entire spin-wave spectrum. They found that a
band splitting of 0.91 eV was necessary to yield a correct
value of D and (at the same time) 0.6 d holes per atom.
The same difficulty concerning the spin splitting exists
in both calculations.

V. FINAL REMARKS

We have applied a combined tight-binding and
pseudopotential scheme to the calculation of the energy
band structure of nickel. This procedure is different in
some respects from similar procedures employed by
others in that the overlap matrix is not assumed to be
a unit matrix, and in that an attempt is made to
calculate the tight-binding parameters in a more
realistic manner. The resulting band structure is used
in a t-matrix calculation to obtain the spin splitting of
the highest d band and the spin-wave effective mass.

Numerous problems remain. We may not have dealt
adequately with the complex system of overlapping
bands that exist in nickel. For example, we have con-

sidered the bands to be defined strictly in order of
increasing energy, and have not considered the complex
problems which result from the crossing or the close
approach of bands. "We have ignored the existence of
electronlike portions of the Fermi surface, have
neglected bands above the d bands altogether; have
treated the holes in nickel as a low-density system,
although the validity of this is not established; and
have not included spin-orbit coupling or any interaction
between electrons on different lattice sites. The critical
reader will undoubtedly raise additional objections of
his own. However, we recall that the spin-wave recip-
rocal effective mass is the difference of two quantities;
there is no guarantee that one will even obtain D&0
(stability against spin-wave excitations). That the
results are not unreasonable is perhaps an indication
that the most essential features of the problem are
understood. We believe that further work in this 6eld
will be rewarding.
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We have investigated the magnetization as a function of T and II of a spin system with both isotropic
Heisenberg exchange and dipole-dipole interactions for S&~ and a hexagonal crystal structure. The
Green's functions for such a system, recently derived by Seeker, are decoupled in a first-order random-
phase approximation. For both Heisenberg-dipole and simple-dipole crystals, we find a lowering of the
magnetization below saturation at T=0. The Curie-Weiss temperature 8 and the ordering temperature T,
are calculated and compared with experimental values on GdC13. In the limit of zero exchange, we obtain
a condition for the type of lattice and shape of domains which make ferromagnetic ordering possible.

I. INTRODUCTION

HE Heisenberg model has been analyzed with the
technique of double-time thermodynamic Green's

functions (GF) by several authors in various approxima-
tions. In this model, the isotropic exchange interaction

f Work supported in part by the U. S. Atomic Energy
Commission.

* Present address: Heifer Graduate School of Science, Yeshiva
University, New York, N. Y.

is assumed to be between nearest magnetic neighbors
only. In most real crystals there are, however, long-
range interactions such as magnetic dipole-dipole
interactions which can inhuence the thermodynamic
properties quite remarkably. An example of such a
system is the ferromagnetic insulator GdC13 where

' For a review of the results see S. V. Tyablikov, 3Iethods in the
Qttuntnm Theory of Magnetism (Plenum Press, Inc. , New York,
1967), p. 247 ff.


