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The empirical data necessary to determine all the parameters in the exchange interaction between a pair
of orbitally degenerate ions do not exist for any system. Given this paucity, we have resorted to using the
best available theoretical estimates of the two-center exchange integrals for d electrons which have been
calculated for particular cases of cobalt atoms and ions. With these data we have quantitatively sub-
stantiated the recent assertions made about the importance of anisotropic and higher-degree isotropic-
exchange interactions. We demonstrate that a bilinear scalar spin Hamiltonian is totally inadequate to
describe exchange interactions in systems containing orbitally degenerate ions. The higher-degree isotropic
terms considerably alter the positions of the centers of gravity of the energy levels of exchange-coupled pairs.
We estimate that the exchange interaction accounts for 25% of the discrepancy between the spin-orbit
coupling constant X required to explain the magnon spectra of cobalt in KCoFI and the X for free cobalt ions.
For orbitally degenerate ions in magnetically inequivalent sites, it is shown that antisymmetric exchange is
as large as the symmetric terms.

integrals were calculated by Freeman and Watson, ' who
included the e8ects of nonorthogonality.

The following analysis shows that the anisotropic and
higher-degree isotropic interactions are appreciable
relative to the ordinary bilinear scalar interaction. For
ions with an intra-atomic spin-orbit coupling much
greater than the interatomic exchange interaction, one
consequence of the additiorial terms is the presence of
a new contribution to the constant term in the exchange
Hamiltonian; this contribution changes as we go to
different j manifolds. This introduces shifts in the
centers of gravity of the manifolds for pairs of exchange-
coupled ions which cause significant deviations in the
energy level scheme as predicted by the Lande interval
rule. ~ Another important result demonstrated here is
that for ions in magnetically inequivalent sites there are
antisymmetric components in the exchange interaction, '
which are large compared with the symmetric terms in
the interaction.

Ke have studied the above effects for a pair of ions
containing single 3d electrons, and then extended this
to a pair of interacting cobalt (Co'+) ions, each of which
has seven equivalent 3d electrons in its magnetic shell.
For cobalt in KCoF3 we Gnd that the exchange inter-
action makes appreciable contributions to the effective
spin-orbit coupling parameter. '

EXCHANGE INTERACTIONS BETWEEN
TWO d ELECTRONS

If we have a pair of d electrons on separate sites in a
strong crystal 6eld, we can describe the exchange inter-
actions between them in two different ways. First, we
can Gnd the crystal Geld eigenfunctions for each electron
in terins of its orbital angular momentum (l=2) and

6 A. J. Freeman and R. E. Watson, Phys. Rev. 124, 1439 (1961).
7 P. M. Levy and G. M. Copland, Phys. Rev. 180, 439 (1969).
8 W. J.L. Buyers, R. A. Cowley, T. M. Holden, E. C. Levenson,

M. T. Hutchings, D. Hukin, and R. W. H. Stevenson, in Pro-
ceedings of the Eleventh International Conference on Lorn& Tempera-
tlre Physics, St. Andrews, Scotland, 1968', edited by V. F. Allen,
D. M. Finlayson, and D. M. McCall (University of St. Andrews
Printing Dept. , St. Andrews, Scotland, 1969).
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'HERE has been considerable interest recently,
both experimental' and theoretical, ' in the pos-

sible forms of the Hamiltonian for an exchange inter-
action between two electrons on separate sites, when
both electrons are orbitally degenerate. Ke have de-
veloped a general formalism for this problem' and have
also shown how to transform this into a Hamiltonian
which acts on states of 6ctitious angular momentum
(determined from the multiplicities of crystal-field
states) for those cases where the crystal-field interaction
is much larger than the exchange interaction. 4 In the
treatment given in I the nonorthogonality of the elec-
tron wave functions was neglected in deriving the coeS-
cients FI„I„qof the two-center exchange interactions. We
have made a qualitative study of the effects of non-
orthogonality on the exchange Hamiltonian, ' and the
purpose of this present paper is to make a quantitative
estimate of the relative sizes of anisotropic and higher-
degree isotropic exchange interactions when the e6ects
of the nonorthogonality of the electron wave functions
have been included. The coefficients in the Hamiltonian
representing the anisotropic and higher-degree isotropic
interactions have been estimated by using the integrals
for the direct exchange between d electrons. These
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X(s+2S. So) (1)

For d electrons this would lead to 22 exchange parame-
ters of the form F~,~,q for direct exchange. However, if
the electrons are con6ned to a particular crystal-field
multiplet, there will be relationships between these
parameters. The alternative approach4 is to consider
the electrons to remain within one particular crystal-
field multiplet described by an effective orbital angular
momentum f. The exchange Hamiltonian can then be
expressed in terms of operators which operate on states
of the effective orbital angular momentum. If we have
a crystal-field triplet, [=1, the number of coeScients
in the effective Hamiltonian is 7. In many cases an
effective-Harniltonian approach simpli6es the problem
and demonstrates the basic symmetry properties of the
interaction more directly. " We shall illustrate this
effective-Hamiltonian approach by considering the case
of a pair of single d-state electrons in a cubic crystal
field which is much stronger than the spin-orbit and
exchange interactions.

Let us consider a d electron in a cubic 6eld which
splits up into a t2, ground triplet and an excited e,
doublet. The field is assumed to be strong enough that
we can treat the triplet as being isolated. We represent
this orbital triplet as an effective orbital angular
momentum 1=1. When we express the crystal field
wave functions for the d electron in terms of the true
angular momentum /=2, as Ifm), and the triplet func-
tions in terms of the eAective angular momentum I=1,
as Ilm), we can make the following equivalence:

IIm)—=P b(m, ns) I™),
I1,1)= I2, —1),
I10)=(1/&2)l-I22) —I2 —2)j

l1, -»=-l2, »
(2)

For this equivalence we obtain the projection of L in
this triplet equal to —j."

We shall consider, initially, the exchange interactions
between two electrons whose coordinate axes are
parallel, with the s axes oriented along the interionic
axis. The polar angles describing this axis are thus
8,o=0', P,o=0'. The form of the exchange interaction

' See Eq. (15) of Ref. 3. We have omitted the negative sign in
that equation throughout this work. The restrictions on the sum-
mation ranges in Eq. (15) of Ref. 3 give k1, k2 as having integer
values from 0 to 4.

"However, like all effective Hamiltonian treatments, it suffers
from the restriction that we are neglecting the presence of higher
orbital states at this level of calculation.

~1 J. Kanamori, Progr. Theoret. Phys. (Kyoto) 17,. 177. (1957).

spin. Then we 6nd the exchange in.teraction for electrons
in specific crystal 6eld states by using an exchange
Hamiltonian written in terms of operators which act
on the crystal 6eld wave functions, '

"sIUl&1](g)XU[&2l(b) XClol)lol

in fictitious angular momentum space has been discussed
by Levy, 4 who shows that it may be written in the form

BC= P L~lo"(a) XA' 'X~"'(b))loi(&+2S. .So) (3a)
p1p2P

The operators 0- I» transform like spherical harmonics"
and act on a space of dimensionality 3. The reduced
matrix elements of o &» are defined here as

(ill~"'llf)=( —1)'*'I ch"'

For the case of direct exchange, which is the only
form of exchange considered here, the angular depen-
dence of the term Ao&'i(pips) can be factored out to
give A„„.C @l'&(Q,o). Then Eq. (3a) can be rewritten
as

K= Q A .Lel»&(a)Xel»l(b)XCl l(Q.o))lol
plp2P

X(-,'+2S. So). (3b)

For a triplet with i=1, the ranks p; can take the values
0, 1, 2 and pi+ps must be even. 'We expand the in-
variant in the above equation and write the operators
in component form using the definitions of Ref. 12. For
convenience we transform the operators 0- ~» into
effective orbital operators I l» whose reduced matrix
elements are defined in Edmonds. " This gives an
effective Hamiltonian BC for Q,y=0', as:

~=(s~ooo+(1/2~3)~110(&u'&o)
+I-1/2(30' ')jAlis(f. fo —3f.*to*)

+L1/3(10"')3~ o (4—3(&.*)'—3(& ')')
+higher terms}( —',+2S, So). (4)

The total number of paranieters A»». for I=1 for
direct exchange is 7, whereas had we worked with the
full /=2 configuration there would be 22 parameters.
Special note should be taken of the single-ion terms in
the expansion of the orbital part of the exchange
Hamiltonian.

Thus far we have ignored the effects of spin-orbit
coupl'ing. For a d electron with spin S= ~, this inter-
action splits the ground orbital triplet into a quartet
and a doublet with effective total angular momentum
j= ~3 and —,', respectively. "The effect of this spin-orbit
interaction on the exchange Hamiltonian can be
accounted for by couplipg the spin and effective orbital
operators to form effective total angular momentum
operators. The case for /= j, S=~ has already been
discussed in some detail, ~ and we shall merely quote the

ron. Smithand J. H. M; Thornley, Proc. Phys. Soc. (London)
89, 779 (1966).

'3 We use the definitions:for the reduced matrix elements from
Eqs. (5.4.2) and (5.5.5} in A. R. Edmonds; Angular Momentumin
Quantum Mechanics (Princeton University Press, Princeton, N. J.,
1957).

'4 We dehne the effective total angular momentum as j=1;+s.
This differs from the projection on the t2g triplet of the total angu-
lar momentum(j)=(1)+s= —1+s.



DI RECT EXCHANGE BETWEEN d ELECTRONS

TAsrz I. CoeKcients n»»P entering Eq. (5) for various jmanifolds. A220'=3 "'A»o, Aooo'=5 "'A22o,
A 202 (10) "'A ooo, D2220' =3 '"n222, and nllo (30) '"22222.

o'poo

p (A pop+2A11o )
-'(A ooo

—A 11o')
-', (A ooo+ 2A 22o')

/
&110

(2//27) (A ooo+6A110 +20A 22p )
(—2/27) (Aooo 3A220'+2A 222 )
(2/22) (A Doo+ 2A 110 +DA 220 )

(4/9)L —Allo (5/3)A22D +DA2D2 ]
(2/9) L

—A 222'+ 2 A 22o' —(11/15)A oo2']

2 L
—A 22o' —(1/15)A 22p'+ (4/15)A ooo']

leading terms of the resulting Hamiltonians. "
Lnppp+n110 Ja' Jb

+ntt2 (1 Jb —3i «Jb*)+ j cm, (5)

where the coefficients Np p Q are given in Table I. This
form of effective Hamiltonian for a superexchange
interaction between two d electrons has been calculated
by Hartmann-Boutron. "

It will be seen from Table I that the constant term in
the Hamiltonian for each combination of interacting
ions is different. This term gives the position of the
center of gravity of each manifold; therefore the ex-
change interaction shifts the centers of gravity of the
manifolds by different amounts. This center-of-gravity
shift will appear to produce deviations from the Lande
interval rule for pairs of exchange-coupled ions; the
magnitude of the shifts is proportional to the coefficient
A]yp . The over-all center of gravity of the complete set
of manifolds within a Russell-Saunders term (L,,S) is
shifted only by the "constant" term Appp.

In crystals where there are ions on magnetically
inequivalent sites, the possibility for antisymmetric
exchange arises. "Such an inequivalence can arise from
the crystal site symmetry axes being nonparallel as for
the rare-earth sites in the garnet structure. To obtain an
estimate of the relative importance of the antisymmetric
exchange, we have considered a simple situation where
we have two interacting d electrons as above but with
the system of axes for electron 2 being rotated by —,'m.

about the y axis to carry the s axis into the original x
direction and x into —s. As we are still dealing with a
cubic crystal field, the rotation by 2z is a symmetry
operation of the crystal point group and the t&, triplet
remains unchanged. Thus we can still use the projected
Hamiltonian developed above and apply the rotation
operations to the effective angular momenta. Further-
more, if we assume that there is a small tetragonal
distortion of the crystal field, this new arrangement of
axes is physically distinguishable from the original
parallel arrangement. When, as we will assume, the
energy of the spin-orbit coupling is much greater than
the energy of the crystal 6eld distortion, we can form
the effective total angular momentum operators in the
original geometry and rotate these operators to the new

"The reduced matrix elements are dered in this paper as
il~~nI» ~ll = (—1)»Lp]"2. This changes the coefficients in Eq. (5)
from those expected from Eqs. (7) and (8) of Ref. 7."F. Hartmann-Boutron, J. Phys. 29, 212 (1968).

22 P. M. Levy, Phys. Rev. Letters 20, 1366 (1968);R. M. White
and R. L. White, i'. 20, 62 (1968).

, lsl(1 J)yj I&lxjbI&l], I2I+. . . .) (6)
m'

where
F"'(»1)= (1/~3)(n»0'+n»2'),

Fl (1 1) F—2 (1 1) nllp + 2n112

Fpl'l(1, 1)=0,
(1&J) F—2"'(1~1)= 2(n»0'+n»2') 2

Frlpi(1, 1)= —F r&2I(J, J) = ——2nrr2',

Fp (1 1)= 6 (n110 +n112 ) .
The values of n for the possible combination of ), and )q
are tabulated in Table I. By writing out the operators
in the rotated Hamiltonian in terms of their Cartesian
components, we find

BC = (nppp+(1/V3) Fl'l(1, 1)j, jb
+F2 "I(J 1)(i.*ib*—i.*ib*)

+Fp ' (1)1)(J/6' )(1..Jb —31;lb)
+F2"I(»1)(i:ib*+i.*ib')

+F '"(1,1)(i."i."—i.*ib )+" ). (6')

The third term of this equation could equally well be
written in the form D j &(jy bwith D,=D,=O, and
D„=—Fr "l(1,1).This has the form of a Dzyaloshinsky-
Moriya antisymmetric" exchange interaction. This

"See Eqs. (18) and (18') of I.
22 I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (195g);

T. Moriya, Phys. Rev. 120, 91 (1960).

axes. Should the distortion be much greater than the
spin-orbit coupling energy, then one would have to
work with the uncoupled fictitious angular momentum
and spin operators separately. Ke also assume that the
noncubic distortion is greater than the exchange inter-
action and thus, when doing perturbation theory, it is
best to use the axes of quantization which diagonalize
the distortion Hamiltonian.

If the exchange Hamiltonian in the parallel system of
axes, Eq. (5), be written in the form

(nppp+nllp[Ja X Jb

+ (nrr2/5rl )LJ i I)(Jb& I jp&2I+ ~ ~ ) (5')

the effective Hamiltonian in the new nonparallel
coordinate system (rotated by 222r about the y axis) takes
the form"

R 'BCR =(nppp+ F ' (J,J)Lja '& &&jbl'Ij I'I

yP F Irl(J J)gj Irlyjblrlq i2I
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antisymmetric term arises because we have considered
the exchange interaction to be a perturbation on the
crystal field interaction where the ions are on in-
equivalent sites.

NUMERICAL ESTIMATES OF TERMS
IN HAMILTONIAN

TABLE II. CoeKcients P»»z for the exchange interaction be-
tween two d electrons on Co'+ ions 4.7'5 a.u. apart given in cm '.
The coefBcients have been calculated using the exchange integrals
of Freeman and Watson (Ref. 6) (Tables II and III). Whereas
it is necessary, in general, to describe the d-d direct-exchange
interaction by 22 independent coefEcients, we have only 9 co-
efBcients. This is a consequence of only considering the diagonal
elements of the exchange integral J(m, 'mb', m mb).

Frequently the anisotropy of exchange interactions is
described in terms of exchange "integrals" which are
functions of the components of the orbital angular
momentum of the ions involved. The exchange inter-
action is represented by a Hamiltonian of the form

X=J.p(-,'+2S, .Sb)

(h'] l'k k&')

&ooo)
Fppp =445
~11P—
I'22p = 6.6
F33p= 1.4
I'44p= 2.0

kgkgA)

ooo
j.'202 = &'l.o
F132= 8.0
F242 = 7.3
I'4p4 =65.5

and the exchange integrals are defined as the matrix
elements of the operator J,p between orbital states of
the electrons:

J(m, 'mb m mb) =—(f,m, ', lbmb'I ~op I
l,m, lbmb&.

Freeman and Watson' have calculated integrals of
this sort for the direct-exchange interaction between
d electrons including nonorthogonality under various
conditions. However, they only considered those
integrals arising from diagonal terms of the exchange
operator. Ideally we would like also the integrals from
off-diagonal terms to complete the calculation. As the
Freeman and Watson integrals appear to be the best
available, we shall use them and write them as

+(maymb) ~(ma mb j mamb)hm 'm 6mb'mb ~

When calculating the full d-d electron exchange, the
coeKcients l'b, b,b in Eq. (1) are obtained from the
exchange integrals by the relation"

1'„,b,4=[A) p J(m.,mb)(m. mbILUlb" (a)
mamb

)&Ul"'(b) &&clb'(Gab)) "l
I
m, mb)* (g).

From the geometrical arrangement considered by
Freeman and Watson, Q,b=0', and from the fact that
we have integrals only for diagonal matrix elements of
the exchange interaction, we conclude that the only
possible components of the orbital operators are Uot '&.

By using the exchange integrals given by Freeman and
Watson for two d electrons in Co'+ ions separated by
4.75 a.u. , we find the exchange Hamiltonian is written as

oo= {p 1'ppp+ (1/3 )Fitpl 'lb

+ (1/5'") 1'»s(la lb —3/ *lb')+

+1"44pD"'&&1'")p"')(s+2S. Sb) (9)

where the coeKcients I'~,~,g are given in Table II.
Although the coefficients of the terms representing the
orbital anisotropy of the interaction seem small, it
should be realized that their effect is quite appreciable

2 From Kq. (26) of I. The reduced matrix elements of the or-
bital operators are defined in the present paper as (l~)U~bl[[l)
=(—1)biPLkjU4. This accounts for the factors (k;g not being
present in Eq. (g) above.

3(0,0) = —,'LJ(2,2)+J(2, —2)),
3(10) = sI:J(—1,2)+J(—1, —2)),

3(1, —1)=J(—1,1),
3(1,1)=J(—1, —1).

(10)

We now have all the distinct exchange integrals in
the fictitious 1=1 space, and we relate these to the
coefficients A»»& in the eGective Hamiltonian by using
the relationship analogous to Eq. (8)

Hla HTb

&&cl l(Q b))'" Im.mb)*. (11)

Once again Q, b= 0, and we derive the following set of
parameters A»»~.

A pp p
= s L3(0,0)+43 (0 1)+23(1 1)+23' (1 —1))

~»p= sv3I:3(1 1)—3(1 —1)7,
A pp p

= (5 /15) L23 (0,0) —43(0,1) (12)
+3(1,1)+3(1,—1)),

~Ms= s(1o"')L3(0P)+3(0,1)—3(1»)—3(» —1)).

since the magnitude of the orbital angular momentum
is 2. An immediate conclusion we make by looking at
Eq. (9) is that the Harniltonian is far from the form
given by Heisenberg, Dirac, and Van Vleck for S
electrons. Higher-degree isotropic and anisotropic terms
make very appreciable contributions to the exchange
interaction.

To obtain the parameters A»„~ for the effective
Harniltonian, Eq. (3b), we have to form the appropriate
linear combinations of the exchange integrals J(m„mb).
Since we are using integrals diagonal in m, and because
of the simple correspondence between the real and
fictitious crystal-field eigenfunctions, Eq. (2), the
effective exchange integrals take the form

3(m.,m ) =3(m.'m '; m.m )h(m. ',m.)B(m ',m,),
where for typographical reasons we have used p(p, q)—=8„,. By using the relations Fq. (2) between m and
m, we find the following relations between ~~ and J:
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By using the set of equations (10) we now have the
basic parameters for the effective exchange Hamiltonian
between two single d electrons in triplet t2, states ex-
pressed in terms of the exchange integrals of Freeman
and Watson. If we take the set of integrals calculated
in Ref. 6 for two 3d orbitals in Co'+ ions separated by
4.75 a.u. , we find the numerical values for the parame-
ters Ap1p2+ given in Table III. The coefficients of the
various effective exchange Hamiltonians are shown in
Table IV.

By inspection of the exchange Hamiltonians Lsee
Eqs. (5), (6'), (9) and Table IV7 we note three im-
portant points:

(1) The exchange interactions are described by a
biharmonic series of orbital operators in which aO
harmonics are important. It would be a rather gross
oversimplification to neglect all harmonics other than
(kt= ks ——A.=O) and assume the interaction is described
by interaction I'000(s+2S, Sb).

(2) For 1 manifolds, the constant term varies, chang-
ing the interval between centers of gravity of different

) manifolds.
(3) For magnetically inequivalent sites, antisym-

metric exchange is large when the spin-orbit coupling is
larger than other perturbations.

The parameters calculated for the effective Hamiltonian
(5) (see Table IV) lead to an interaction which is nearly
Ising in form. This arises from the use of only diagonal
elements of the exchange operator. Similarly, the
dominance of the antisymmetric terms over the isotropic
in the Hamiltonian referred to nonparallel axes Eq. (6')
(see Table IV) arises for the same reason. However it is
reasonable to assume that the inclusion of off-diagonal
elements of the exchange operator will not change the
above conclusions drawn from this work.

CENTER-OF- GRAVITY SHIFTS

The constant terms in the different ) manifolds in
Table IV lead to shifts in the relative positions of the
centers of gravity of the manifolds for each ion. This
has been discussed in detail by Levy and Copland. v The
part of the exchange interaction Lsee Eq. (9) and
Eq. (4)7 which causes the shifts is

(2/V3)I'trp(1. lb)(S. Sb)
= (2/V3)I'up(le So)(lb Sb)+nOnSCalar termS.

TABLE III. Values for A p1pg for exchange between two d elec-
trons in t2~ triplet states on Co'+ ions separated by 4.75 a.u. ,
expressed in cm '.

(k k tt)
Abt&s= (—I)"t tt]Ek]

I . ~A&»&0

l,oo op

ppp = 280
A11p = 242
A g2p = 63.8
A gp2 = —436

TABLE IV. Hamiltonians describing the exchange interaction
between two d electrons on Co'+ ions 4.75 a.u. apart in t2g triplet
states. Without spin-orbit coupling /See Eq. (4)]
X=(93+70I, Ib —70(I, Ib —3I elbe)

—46t 4—3(I *)'—3(ib*)']+ ~ ~ ~ ](-,'+2S Sb) ctn '.

With spin-orbit coupling X„=—XI s Lsee Eq. (3) and Table I]
Ia

3

Ib o'ppo

93
23
58

0'110

125
6.2

37

—124
—6.6

—20

With nonparallel axes and X„)Xp;,t„t;, )X Lace Eq. (6')]

Ia ooo

93
2 23

58

@[Pl

~p
~0

5.6

@1['l po~'l

188 ~0
9.5 ~0

47 3

—186
99

—30

j 2|2l

r 0
r 0

8.4

Here ~;; is an exchange integral for the effective
Hamiltonian with electron a in crystal Geld multiplet i
and electron b in multiplet j.The effect of the exchange
interactions is to shift the single-ion crystal-Geld levels

Within a j manifold the scalar product I S has a
unique value and thereby shifts all levels in the manifold
equally. By using the value of o.ppp in Table IV, it is seen
that for one d electron held in a )=~ manifold, the
exchange interaction causes the separation of the centers
of gravity for the )= 2 and )= ~~ manifolds for the second
d electron to change by 70 cm '. If the first electron is
held in the )=~ state, the change in separation is
35 cm '. The spin-orbit coupling parameter for a 3d'

electron is typically 200 cm ', and thus shifts in the
relative positions of the manifolds for each ion of the
size indicated above have a distinct measurable effect
on the relative separations of the manifolds. For ex-
change interactions of this magnitude it is clear that we
cannot treat 3C as a perturbation on the spin-orbit
interaction, and thus for a correct treatment the two
interactions (spin-orbit coupling and exchange) should
be simultaneously diagonalized.

One further interesting point arising from the
Hamiltonian, Eq. (4), concerns the effect of the constant
term Appp. This term will shift all levels of each single-
ion triplet equally from the position determined by the
crystal field. If we also generate the effective Hamil-
tonians for the exchange interactions between electron a
in the t2, state and electron b in the e, doublet and for
both electrons in the e, doublet states, we can define
the parameters

(Appp)t —t= 0 Q Qtt(m mb),
lamb

(A 000) t e= 0 Q 3te(me&mb) &-
Mamb

(Appp). .=-,' Q 3„(m.,mb).
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t-e

Fxo. 1. Pair spectrum of two d electrons in cubic crystalline field
(a) without exchange, (b) with exchange coupling, n =crystal-6eld
splitting of the doublet e from the triplet t for each electron, and
~ = (~000)d—d.

from the positions given by the crystal-field interaction
only. The exchange interaction for the d electron in no
crystal field will cause a shift of the over-all configura-
tion by a quantity (Appp)d d which is just one-fifth of the
coefficient I'ppp in Eq. (1). The shifts of the individual
multiplets within this configuration are related to
(c4ppp)d d as follows:

(~PPP)t t=(~PPP)d —d t— (~PPP) t—e—O t

(+ppp) tt—t~4(+ ppp) d—d ~

The effect of these terms on the crystal-field levels of a
pair of exchange-coupled ions is shown in Fig. 1. The
Freeman and Watson integrals used above give
(c4 ppp) d d = 89 cm '. It can be seen, then, that these
effects on the single-ion crystal-field spectrum can be
significant in altering the effective splittings between
the crystal-field Inultiplets.

EXCHANGE INTERACTION BETWEEN
COBAI,T IONS

To obtain some idea of the forni of the exchange
Hamiltonian when there is more than one d electron
per ion, we now consider the exchange interactions
between Co'+ ions in a cubic crystal field. The single-ion
problem is treated in a weak-field approximation which
is a reasonable approximation to the situation found in
many divalent cobalt complexes with the high-spin
configuartion (5=—,')."The free-ion ground-state con-
figuration of Co + is F, and under a cubic crystal field
with the s axis defined as a fourfold rotation axis the
orbital degeneracy is decomposed into two triplets and

"C.J. Ballhausen, Introduction to Ligand Field Theory (Mc-
Graw-Hill Book Co., ¹wYork, 1962).

a singlet. In an octahedral cubic crystal field the T&
triplet is the lowest state for Co'+, and its wave func-
tions, "in terms of

I Mr&, where L= 3, are Ai= (ss)'t'
I 1)

+(s)"'I —3&, ~p= —
I o& ~-i= (-')"'I —1&+(-')"'l3&

This triplet can be represented by an e6ective angular
momentum [=1, such that the projection of orbital
angular momentum on the triplet is (L)= —ssl."The
effect of spin-orbit coupling on this triplet (5= p) is to
form, in order of increasing energy, a doublet j = ~, a
quartet j=—,', and a sextet j=-,'. We shall confine our-
selves to a discussion of the exchange interactions
between Co'+ ions in the ground (1= s) and first excited
(I= —,') states.

The principal diRerence between this situation and
that discussed above for one d electron, is that we are
dealing with seven equivalent d electrons coupled to
give the 'F state. We use the exchange integrals of
Freeman and Watson again as a starting point, but now
we have to consider the effect of the coupling together
of the electrons. This is treated in a straightforward
manner by using the fractional-parentage technique. By
using this technique the orbital part of the exchange
integral may be written as

(L,M, 'LpkI p'I J,pl L,M,LpM p&

—=J"'(M,'M p', M.M p)

=tt rtp( —1)~+~'+ ''+~"I L,)LLt,j P l(tr, jltr, ) I

Tax' b

L. / I,.
&&

I (~pjlw p) I

'
3Iamama' M br'/bmb' ~+ Pgz

(
/ L Lp /

&&. m.' —M.' M, m, —M,)

fI p / Lp
Xl

I
J(m.'m, '; m.m, ),

M p mp' Mg'j—
where (s,) tr;) represents the fractional-parentage
coefficient coupling the state I.; to the parent state L;
and J(m, 'mp', m, mb) is an exchange integral between
two d electrons. The remaining terms are Wigner 3j
symbols. For Co'+ n =n =7, I.=-3, l=2, and we have
more than a half-filled shell of d electrons. The exchange
integrals J' P( M,

' M'p, M, M)pmay be evaluated using
the above equation directly, with the appropriate coefFi-
cients and parent states for the configuration d7. How-
ever, a simpler approach is to use the relations between
matrix elements of configurations of n electrons and
those of (4/+2 —m) electrons derived by Racah. "One
must remember that the operator J,~ actually involves
irreducible tensor operators of ranks running from 0
to 2l as seen from the explicit form for these operators
derived in I. The n to (4/+2 —I) correspondence given
by Racah does not hold for operators of rank zero, and
these must be considered separately. We use the

"G. Racah, Phys. Rev. tis, 36'I (1943).
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+(49/25)(9bKO+~K1) P f(&2)f(b)
tnamb

where
XJ(m. 'mp', .mm)p, (15)

qp3
f(2) =I

EM, ' m, ' —m,
' —M, 'i4V, —m, m; —M,i

( 3 2 3 3 2 3

IM, ' —m, ' m, ' —M, ' M; —m; m; —M;i

For a case of a purely isotropic interaction where

J(m, 'mp", ,mm)=pJB;,b; „ this Hamiltonian,
Eq. (14), reduces to

3'.;..=n.npJ(-,'+(2/n np)S. Sp). (14')

The exchange integrals calculated by Freeman and
Watson are diagonal in m, and mp, giving J(m„mb)

$~b ~b. For the d7 configuration this leads to
exchange integrals which are diagonal, i.e.,
j&K&(M 'Mp'M MO)

=J&K&(M.,MO) &~.. Or.bpr, . 2r, . (16)

Hy using the one-electron integrals of Freeman and
Watson and the equations above, we derived the
appropriate exchange integrals for the seven electrons
coupled as a 4I" term. The effective-Hamiltonian calcu-
lation for the case of Co'+ in a cubic field with the s axis
defined as a fourfold axis of the cube is very straight-
forward, following exactly the method for one electron.
The final Hamiltonian for exchange between two Co'+
ions, using an effective angular momentuml =1, and
spin-orbit coupling to give an effective total angular
momentum ), has the form

P3 I N+ (1/K3) I 110J
+ (I/V'30) I'112&0"'(II.O) (1. 10—31.*10*)

+(I/&5)1'„,C, & &(n..)(i. I, -1.*1.*)+".3 (17)
"See Kq. (40) of I.
"See Eq. (22) of I.
25 J( ) comes from the matrix element of J,p, and J(') from the

matrix element of J,~SI Sg taken between states of the 'F
configuration.

techniques described in I for writing the one-electron
J(m, 'mp", m, mp) integrals as matrix elements of the
Hamiltonian, Eq. (1), using Eq. (8). We now define
operators acting on the full d configuration" and trans-
form back to coupled exchange operators, J&~).'4 We
find that the full exchange Hamiltonian for the case
of Co'+ ions in the 'F configuration may be written as

K= ('2J&0&+2J&'&Si S2), (14)

where Soperates on the total spin 2 of the configuration. "
It must be stressed that the operators J&K&(X=0,1) are
different and not simply related. The matrix elements
of these operators are

J (M, 'Mp', M,MO) =L4 Q Q J(m, 'mp') m, mp)
SRr2ttbb fag~ Slbr

—(42/5) g J(m, 'mp", m mb)(f(&2)+ f(b))$8KO

where the unit vector r"
b is along the line connecting

the centers of ions a and b. The values of the coe%cients
for both ions in their ground states, ),= )b= ~, are

I'000= 0LAOOO +(25/2)A»0 ' '],
I'110'=—(I/V3) riip

= BD50/3)Ao»'"+A»0"'+(10/3)A220'"'j, (18)
I 112 = (30) I 112

0 L A 110"'+(20/3)A 202 —(5/3)A 220

The parameters A»»I ( ) are related to the exchange
integrals for the fictitious I= 1 state, i.e., 3'&K'(M„Mb),
through relationships identical to those given in Eq. (12)
for the one-electron case. The presence of the superscript
(I&,) does not affect these relations. The effective ex-
change integrals /&K&(M„MO) are related to the
integrals for d'-d' exchange, i.e., J&K&(M.,MO), by the
relations

/&K&(1, 1)= 0'4L9J&K&(1 1)+3QJ&K&(1, —3)
+25J'K'(3,3)j,

3' '(10)=8L3J' '(10)+5J' '(30)j
3&K&(1, —1)= 024(9J &K&(l, —1)+30J&K&(1,3)

+25J K&(3, —3)),
~&K&(0,0) = J&K&(0,0).

(19)

Upon substituting these equations in Eqs. (12) and
the resulting A„»&&K& in Eq. (18) we find the coefFi-

cients for the effective exchange Hamiltonian, Eqs. (17)
and (18), for both ions in i= —', states. A similar set of
coefhcients can be derived for one Co'+ ion in an excited
)= ~ state interacting with the other in its ground (= —,

'
state. The interesting term here is the first term in the
effective Hamiltonian, Eq. (17), I'ppp which determines
the center of gravity of the pair states. This has the
form I'000(2 —2) = 0 (Appp '&+5Aiip'" ).UPon comParing
this coefficient with its homolog in Eq. (18) we note
that the contributions from Appp(') to the shifts in the
centers of gravity when j,=)b=~, and when j,=2 and
jb= —,

' are the same, whereas the contributions from
Ayyp(') vary.

Let us now look at the eigenvalues for the effective
Hamiltonian, Eq. (17). For a pair of Co'+ ions whose
interionic axis is oriented to give 0 b=0' and for

"The values of the nonzero harmonics C ~~~(Q) are, for the
interionic axis lying along the x, y, s axes, respectively,

(~ b, 4 b) co[2] C~2t™

—v's
x=0 0 0

for all directions of the interatomic axes such that
C~i&2&(0~0) =0."The leading terms in the interaction
above can be rearranged into a more familiar form and
written as

~=
t 3I'000+&(I/~3)i'110+(1/30)' 'I'112jia'10

—(3/10)'"I'»2(i. r.p)(ip r.p)+ j (17')
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we find a doublet at (I'000+4I'iio' —ql'ai2'),
a singlet at (I'ooo+41'iio'+I'ii2'), and a singlet at
(I'000 —&I'iio') From a typical set of exchange integrals
as given by Freeman and Watson" for the exchange
between d electrons in clothed Co atoms separated by
4.75 a.u. , we find for the coefficients I', Eq. (18),

Fppp=443 cm, F»»p = 133 cm, I'»y2 = —8 cm

(20)

This leads to the set of eigenvalues: a doublet at
+480cm ', singletat472cm ', andsingletat344cm '.
The center of gravity of this manifold is shifted by
+443 cm ', i.e., by I'Ooo. For the interaction where one
ion is excited to its )= 2 state while the other remains
fixed in the ground state, we have a value for I'ppp of
+433 cm ', which means that the separation of the
centers of gravity of the )=~» and )=~ manifolds is
decreased by 10 crn ' due to the exchange interaction.

KCDF3

We have derived the Hamiltonian for a pair of Co'+
ions coupled by an antiferromagnetic exchange inter-
action. Each ion is in a cubic crystal field and the pair
axis is parallel to a fourfold symmetry axis of the
crystal field. Such a situation arises in KCoF3 where
the Co'+ ions form a simple cubic array, and each ion
is subjected to a cubic crystal Geld from the neighboring
ions. The Hamiltonian, Eq. (17), describes the different
exchange interactions between the three types of
nearest-neighbor ions by choosing the polar angles 0 b

appropriate to the interionic bond axes."The over-all

isotropic splittings we find by using the Freeman and
Watson data, Eq. (20), (6&&133cm '), is approximately
3.3 times larger than that indicated by experiment. '
The principal contributions to this discrepancy arise
from the fact that the interionic separation for which
the exchange is calculated is less than that existing
physically in KCoF3 and that superexchange as well as
direct exchange will occur. If we make the assumption
that the dependence of the exchange integrals on the
separation of the ions is similar for all integrals, then
we suggest that the exchange interactions should all be
reduced by approximately 3.3 times. This would lead
to a relative shift in the centers of gravity of the two
lowest exchange-coupled manifolds of 18 cm '. The
free-ion spin-orbit interaction gives a 400 cm separa-
tion between the j=—,'and j= ~ states. The exchange
interaction calculated above reduces this separation by
about 5%, thus giving an effective spin-orbit interaction
which is about 5% less than that of a single isolated ion
in a similar crystal.

Such a shift should be measurable in an optical
study of the spectra of pairs of ions relative to single
ions in a diamagnetic crystal partially doped with Co'+

"SecTable V of Ref. 6.

ions. Evidence for such a reduction of the spacing
between the ) manifolds of exchange-coupled Co'+ ions
has been forwarded by Buyers et al.' from a neutron
scattering study of KCoF3. They have deduced that
the effective spin-orbit interaction is some 20% smaller
than the free-ion value, and that the anisotropy of the
exchange is less than 10% of the isotropic exchange
interaction. From our Hamiltonian, Eq. (17'), the
anisotropy of the exchange is represented by the term
I'ii2 which is about 6% of the isotropic interaction. The
exchange interaction reduces the effective spin-orbit
interaction by about 5%, which is a significant fraction
of the 20% shift observed experimentally.

In conclusion, from the above model calculations
using Freeman and Watson's exchange integrals applied
to the exchange interactions in KCoF3, we predict a
significant change in the effective spin-orbit interaction
parameter of Co'+ ions. The change is in the same
direction as that observed experimentally, and also the
anisotropy of the exchange is of the order of that
observed. While we do not claim that our results
explain all the observed effects, we feel that this example
illustrates the importance of accounting for the orbital
contributions to exchange interactions. The center-of-
gravity shifts described above should be considered,
with other contributions to the shifts, in order to give a
satisfactory explanation of the observed effects in
KCoF3 and other systems with exchange-coupled ions
which have ground states that are orbitally degenerate.

DISCUSSIQN OF RESULTS

We have used the integrals given by Freeman and
Watson to demonstrate that a bilinear scalar spin
Bamiltonian does not adeqlctely describe the takeo-center

dhrect-exchange interaction between ions +hose electrons
are orbitally degenerate. The higher-degree isotropic and
anisotropic terms in the exchange Hamiltonian com-
prise a major portion of the interaction; neglecting them
cannot be justified. Even though it may be quite difficult
to ascertain the magnitude of these terms for a par-
ticular interaction, one must find new ways of estirnat-
ing their strength by using extant data.

Whereas the integrals of Freeman and Watson were
given for free d electrons, we have used them to give
us the exchange integrals for d electrons in cubic Gelds.
These derived integrals are only first-order estimates of
the true exchange integrals; therefore the absolute
magnitudes derived by using them must be viewed as
such. However, it is only the relative size of the terms
in the Hamiltonian which is central to our point. From
the relative magnitude of the higher-degree isotropic
term Ay»p we have unambiguously demonstrated the
sizable shifts in the centers of gravity of the intra-
atomic j levels for exchange-coupled ions, e.g., in
KCoF3. Also we have positively demonstrated the
existence of large antisynrmetric exchange terms for
ions in magnetically inequivalent sites.


