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Electrical Conductivity in Pure Type-II Superconductors near H„f
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The electrical conductivity for a pure type-II superconductor in high magnetic Gelds near II,2 is calculated
for frequencies and relaxation times that satisfy the limit car & 1.The conductivity in the absence of fluctua-
tions, i.e., with a static vortex lattice, is calculated in a manner similar to the procedure used by Brandt,
Pesch, and Tewordt to obtain the density of states. This direct approach allows us to bypass an ansatz
made by Maki for the purpose of calculating transport properties of pure type-II superconductors. The
Quctuations of the order parameter are included in the theory by using the calculation by Caroli and Maki
of the conductivity due to fiuctuations. In the Pippard limit, the conductivity is calculated numerically.
From the conductivity, results for the surface resistance are obtained. The theory predicts that, as the
magnetic Geld is lowered below H, 2, a highly frequency-dependent decrease in the surface resistance occurs,
especially for frequencies in the neighborhood of 0.5 GHz. This frequency dependence is not present in the
surface resistance calculated by Caroli and Maki. For frequencies in the megahertz region, where experi-
mental measurements have been made, the theory predicts a sharper decrease in 8,/if„ than is observed
experimentally. It is pointed out, however, that for these frequencies the limit co~&1 is not valid, and
higher-frequency measurements are necessary for direct comparison to the theory. The eGects on the surface
resistance of a smearing-out of the vortex lattice near II,2 are also determined numerically by inserting a
phenomenological delocalization factor.

I. INTRODUCTION

~ 'RANSPORT properties of dirty type-II super-
conductors near the upper critical field H, 2 are

now well understood in terms of gapless superconduc-
tivity. ' They have been extensively studied in the last
few years from both an experimental and theoretical
point of view. Pure type-II superconductors have been
less commonly studied and it has turned out that
theoretical predictions are much more difficult to
obtain. This was first pointed out by Cyrot and Maki'
by showing that the usual expansion in powers of the
order parameter is not valid in the clean limit and leads
to unphysical results for the ultrasonic attenuation. '""'3

Since then two different methods have been employed
to gain a theoretical understanding of pure type-II
superconductors. Maki, studying the different terms in
the nonconverging expansion in powers of the order
parameter, A(r), noticed a similarity with a Bardeen,
Cooper, and Schrieffer (BCS) superconductor carrying
a current, and made an ansatz' based on these simi-
larities. He claimed to sum in this manner the most
divergent terms of the divergent expansion in powers
of A(r). The second attempt to handle this problem
was made by Brandt, Pesch, and Tewordt' (BPT).
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Associe au CNRS, Faculty des Sciences, 91 Orsay, France.' See for example the chapter by K. Maki, in Superconductivity,
edited by R. Parks (Marcell Dekker, Inc. , New York, 1969).

2 M. Cyrot and K. Maki, Phys. Rev. 156, 433 (1967).
s K. Maki, Phys. Rev. 156, 437 (1967).
4U. Brandt, W. Pesch, and L. Tewordt, Z. Physik 201, 209

(1967).
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They did not use an expansion but were able to calcu-
late the Green's function of the system by using the
periodicity of the known solution of the order parameter
in the field region near H, 2. However, in their calcu-
lation they have to neglect the change in amplitude of
the order parameter and only succeed in taking into
account its phase variation.

Both methods have been used to test different kinds
of experiments; both lead to a more complete agree-
ment with experiment. Maki used his technique to
calculate ultrasonic attenuation' and was able to predict
a behavior near H, 2 proportional to the square root of
(H, &

—H) in contrast to the dirty limit' which gives a
linear dependence. This square-root dependence has
been confirmed experimentally but the quantitative
comparison is difficult and, in particular, experimental
results show a dependence on the mean free path'
which is not predicted in the Maki theory. Another
success of the Maki theory is the prediction of the same
square-root dependence in the thermal conductivity. '
All of these square-root dependences in the Maki
calculation occur because of the similarities of the
Maki theory to the BCS theory, with its nonspatially
varying order parameter. , which yields a linear depen-
dence upon D.

For the nuclear magnetic resonance, Maki obtained
the same result that was obtained previously in the
large mean-free-path limit by the Orsay group. ' These
predictions have been confirmed experimentally in a
qualitative way. "Pesch has also calculated the nuclear

' M. Cyrot, Thesis, Orsay (unpublished); K. Maki, Phys. Rev.
148, 370 (1966).

6 J.Vinen (private communication).
7 K. Maki, Phys. Rev. 158, 397 (1967).

K. Maki (private communication) and Ref. 1.
Orsay Group of Superconductivity, Phys. Kondensierten

Materie 5, 141 {1966)."M. Cyrot, C. Froidevaux, and D. Rossier, Phys. Rev. Letters
1g, 647 (1967).
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magnetic spin relaxation rate" using the BPT tech-
nique. This calculation has given a quantitative agree-
ment with experiments but discrepancies" still exist
for temperatures close to T„discrepancies which in-

crease with an increasing mean free path.
Caroli and Maki have studied in great detail the

electromagnetic properties. "They showed in particular
that one has to take into account the dynamical Quctua-

tions of the order parameter which are induced by the

fluctuating vector potential. Their calculation is based
on the description of the dynamical fluctuations in the
framework of a simple time-dependent Ginzburg-
Landau theory. In this framework one can show, as
done by Caroli and Maki (CM), that the dynamical
Ructuations are only present when the space-oscillating
vector potential A„ is perpendicular to the static field

Ho. Moreover, the contribution of the fluctuations in

the clean limit completely cancels the reactive part of
the conductivity in this orientation. Due to this
cancellation a simple expression for the ratio of the
normal to superconducting surface resistance may be
obtained in the orientation A„J Hp, and for fields very
near II,2 the surface resistance decreases as the square
root of H, ~ Ho (A„ is the—vector potential of the per-
turbing field and He is the constant magnetic field).
The Caroli-Maki theory also predicts an anisotropy in
the surface impedance if, while A„J Hp, one varies the
propagation vector q from parallel to perpendicular to
the magnetic field.

Using very pure niobium in the mixed superconduct-

ing state, Hibler and Maxfield" measured the surface
resistance as a function of magnetic field in a geometry
where A„ is perpendicular to Hp while varying the
direction of q. For q parallel to Hp they obtained a
magnetic-field dependence of the surface resistance in

qualitative agreement with the CM theory, but the

anisotropy depending on the angle between q and Hp

was opposite to the predicted anisotropy.
Due partially to this experimental discrepancy, but

primarily to the necessity in the CM theory of making
an assumption in order to calculate the response func-

tion, we were led to reexamine the Maki ansatz. While

we adopt the general approach of CM, especially for
the calculation of the dynamical fluctuations, we

believe that the Maki ansatz overemphasizes the BCS
behavior of the excitations parallel to the vortex. As

one varies q from parallel to perpendicular to Hp,
one studies principally excitations perpendicular and

parallel, respectively, to Hp. This could be the reason
for the failure of the Maki ansatz to explain the fine

structure of the anisotropy in this geometry.
Based on this reasoning we recalculated the electro-

magnetic properties using the Brandt, Pesch, and

"W. Pesch, Phys. Letters 28A, 71 (1968).
'2 D. Rossier and D. E. MacLaughlin, Phys. Rev. Letters 22,

1300 (1969).
'" C. Caroli and K. Maki, Phys. Rev. 159, 316 (1967).
'4 W. D. Hibler and B. Maxfield, Phys. Rev. Letters 21, 742

(1968).

Tewordt approximation which does not emphasize so
much the BCS-like behavior of clean type-II super-
conductors. We calculate only the contribution of a
static vortex lattice. For the contributions of the
fluctuations we use the results of Caroli and Maki.
This procedure bypasses the Maki ansatz because the
ansatz is only used by CM to calculate the conductivity
for a static vortex lattice. This calculation has been
only partially successful. More precisely, agreement
with the observed magnetic field dependence is not
obtained unless the order parameter, A(r), is phe-
nomenologically assumed to vary more slowly in space
than is expected from the known Abrikosov GL
solution for A(r). i5 If this is assumed, qualitative agree-
ment with the anisotropy measurements is also obtained.

We note, however, that our theory may not be
relevant to the experimental conditions of Ref. 14.
This is because the experimental measurements of the
surface impedance were made at frequencies in the
megahertz region where the pure limit condition
~7)1 is probably not satisfied even for very pure
niobium, although the limit q/&)1 should be valid.
Current calculations" of the ultrasonic attenuation
indicate that the numerical results for the type of
calculation presented in this paper may be quite
diferent for oir -.1. (r and l are the electron. collision
time and mean free path; q and co are the scales of
space and time variation of the perturbing electro-
magnetic field and q 1/X where X is the penetration
depth. )

On the other hand in the case of the CM theory, the
relevance of the limit cov) 1 is not clear. This is because
of the similarity of the Maki ansatz to the BCS calcu-
lation, as done by Mattis and Bardeen, '~ for example„
and the fact, as noted by Miller, " that if /)10 ' cm,
then one may take l ~~ in the Mattis-Bardeen result.

In addition to the magnetic-field dependence, the
other important result of our theory is the prediction
of the frequency dependence of the surface impedance.
Either with or without assuming a slowly varying
order parameter our calculation predicts a fairly sharp
decrease in the surface resistance near II,2 as the
frequency increases above a certain cutoR frequency of
order nlrb, where n=1/t~(2eHe)'" and LV=(~d, (r) ~')„.
This sort of frequency dependence is not present in
the CM theory. Moreover, this frequency dependence
would be present in the gigahertz region where we would
expect the limit co7-) 1 to be valid.

This paper will be divided into two sections. In the
first one we calculate the complex conductivity after
the derivation of a general formula for the conductivity
close to H.2. We discuss the imaginary and real parts

"Even though T may not be near T„according to the work of
Helfand and Werthamer A(r) has the form of Abrikosov's GL
solution for IIO near II,2. E. Helfand and N. R. Werthamer, Phys.
Rev. Letters 13, 686 (1964).

r~ A. Houghton (private communication)."D. C. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958).
's P. B. Miller, Phys. Rev. 118, 928 11960).
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of the conductivity. In the second section me give some
numerical results for particular geometries and compare
these results to experiment.

II. COMPLEX CONDUCTIVITY

In this section, we mill calculate the electrical conduc-
tivity in the absence of fluctuations of the order param-
eter by considering a static lattice of vortices produced
by a constant magnetic field near B,2. The contribution
of the fluctuations has already been calculated in the
pure limit by Caroli and Maki and me will utilize their
result for the conductivity due to fluctuations.

In Sec. II A me derive an expression for the response
function of a pure type-II superconductor in magnetic
fields near H, ~. In this derivation certain approxi-
mations are necessary which me show to be equivalent
to the approximations used by Brandt, Pesch and
Temordt in obtaining the density of states. In Sec. II B,
the imaginary part of the conductivity is calculated
from the general response function and combined with
the fluctuations of the order parameter as calculated
by Caroli and Maki. In Sec. II C, the real part of the
electrical conductivity is calculated in the Pippard,
large q, limit. In this limit the integration over mo-
mentum may be carried out analytically leaving a
frequency integral mhich may be evaluated numerically.
We also find that in this calculation the Pippard limit-
ing case is valid as long as X( (2eHp)'"/6' where X is
the penetration depth, 6' the spatial average of the
square of the order parameter, IIO is the magnetic
field, and e the electronic charge. Near 8,2 this limit
is well satisfied (as long as T is not near T,).

Throughout this calculation me take A=c=k~ ——1.

A. Response Function near H, 2

By using linear response theory, " the response of a
small transverse electromagnetic field is described by
introducing a response function Q„„((l,or) which relates
the induced current to the perturbing EM field accord-
ing to

where co„=2xviT and v is an integer. Since we are in the
mixed superconducting state, J„&(x,t) is the current in
the presence of a constant external magnetic field
characterized by the vector potential Ap(x, i):

J„"(x,i) = —
I

(V', —ieAp(x, t))

—(rp2, '+ieAp(x t))]

ei
X P iP, (x',t)P, (x,i) I"-. (3)

2m

The thermal average must be evaluated for the
mixed state of the superconductor in the presence of a
constant magnetic field. So, in order to calculate the
thermal product P„„(xrx'rt) = —i(TJ„"(xlt)J„"(x',0)) by
means of the usual Hartree-Pock-Gorkov factorization,
it is useful to introduce nem Green's functions defined
by the equations

P"(x,,x, , ) = exp (de Ao dl G x2,xg,co, (4)

G'(x —x, ) =exp(de Ao dl G' x2,x~,~ . 5

G(xs,xi,pp) = —i(TQ(x, ,i)f (xi,0)) is the Green's func-
tion for the superconductor in the presence of a constant
magnetic field and Gp(xp, xi,or) is the normal-state
Green's function in the presence of a constant magnetic
field. Ap(x', i) is the vector potential corresponding to
the magnetic Geld applied along the s axis with magni-
tude close to B,2 and the line integral in the exponential
is taken along a straight line connecting x~ and x&.
As shown by Gorkov sp Gp(x& —xi, (d) is the translation-
ally invariant normal state Green's function in the
absence of a magnetic field. G~ is the BPT Green's
function which was shown by BPT to be periodic in
the sum of its spatial variables with respect to the
vortex lattice. This periodicity was proven by BPT by
noting that the usual Gorkov integral equation" for G
could be written in the form

We take Q„„ to be diagonal in momentum because the
scale of q 1/ll and the system may be considered
homogeneous since $p/l), '-. 1 ($p arid lA are the coherence
length and penetration depth of the pure superconduc-
tor). Q„„(x,x',or) is given by the analytic continuation" of

Ne'
K„„(x,x',pp„) =

(TJ„'(x,t)J„"(x',0))s'""dt, (2)

' See, for example, A. A. Abrikosov, L. P. Gorkov, and I. E.
Dzyaloshinski, Methods of Quantum Field Theory in S/atistical
Physics (Prentice Hall, Inc., Englewood Cli6's, X. J., 1963).

G~ (x,x', (p) =G'(x —x', (p) — d'ld'l'G'(x —1, pp)

XG'(1' —1, —o2)G (1',x',or) U(1,1'), (6)

where U(1,1') is given by

(7)

By using in Eq. (7) the Abrikosov GL expression"
for a(r)

A(r) =p Cze'err expL eH(rp K/2e—H)'j, —(8)

2oL. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 35, 1918 (1959)
(English transl. :Soviet Phys. —JETP 9, 1364 (1959lj.
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b)
/ —C

c

c'

z pfane

Im(z-w„) = 0

Im {z)=0

In Eq. (11), l~=(2l+1)~iT, and the terms corning
from the gradients operating on the magnetic-field
phase factors have been cancelled by the diamagnetic
terms in the current operators proportional to Ao.

The spatial fourier transform is only tractable if we
take G~ to be diagonal in momentum. More precisely,
in the notation of BPT, we will neglect terms containing
Green's functions GB(p,K,i~), with K&0, where p is
the normal fourier transform variable corresponding to
the difference of the coordinates and K= (2')'t'A 'n
is a reciprocal Quxoid lattice vector corresponding to
the transform with respect to the sum of the spatial
variables. [A= (2eEIo) '" and the components of the
vector n are integers. $ The Fourier coefTicient GB(p,KgE)
is explicitly dined by the equation

GB(» x& i. ) P &iO/2)K. (x+x')

X G (p,K,fi)e'p'* *'.
(2')'

FIG. 1. (a) Contour for changing sum over discrete frequency
variables to an integral. (b) Branch cuts of Green's functions.

where E= (4vrdI)'I'u with n an integer, one sees that
V(1,1') has the periodicity of the vortex lattice with
respect to its sum coordinates. Therefore from Eq. (6),
G~ also has this periodicity.

Using these definitions and the Gorkov integral
equations relating the F Green's function to the G
Green's functions

F(xr,xg,a) = —i(Tgt(xg, t)gt, (»g, O))„

ln particular we show in the Appendix that within the
approximations BPT used to calculate G (Bp,O, f~), the
Green's function GB(p,K,t t) with KAO is small com-
pared to G (p,O, t ~). Since this approximation involves
only taking into account V(p, K) for K=O, the approxi-

ation is physically equivalent to taking into account
only the phase variation of the order parameter an
neglecting its variation in amplitude (V(p,K) is the
fourier transform of V(1,1').)

Assuming G~ to be diagonal in momentum and
Fourier transforming we obtain

G'(xg, l,(u)d (1)G(»2, 1, —ar)d'l,

I"(x~,x~,&u) = —i(Tfgt(x&, t)gtt(x2, 0))„

G'(1, x&, —co)rV (1)G(l,»2,co)d'l, (10)

Ee' 2e'
8„,+—Q k„k„T

m m k

XQ GB(k+q, i'(+a) )GB(k„,i ()

Se'
E (xx'or )= — 8 „— (V„—V.,)(V„—„)pVK 0 y V tMV

m 2m

e T

we get, by substituting Eq. (3) into Eq. (2) and by
ma ing ek' th Hartree-Fock-Gorkov factorization, the
following result:

+ du p, (u,Q)GB (k+q, 1 &+~„)

XG (k, t &)G'(k, —|,+2m)

XG'(k+q, —(1 E+ru„—2u)) . (12)

XP [G (x2, »~', f~ co„)G ( —~, xg»~)2
Following Cyrot and Maki we have defined and calcu-
lated a function pp(u, Q):

Go(1', x~', —t ()GB(1',»2', i ()

XG (x2, 1, 1)—a&„)GO(xx, 1, co„ii)— 6'po(u, Q) = dk
U(k, 0)B(2u —v k)

(2m)'
(13)

X V (1,1')d'ld'l' j
Xg MXgeX~ ~X2

LV exp[ —(u/e sin8)'j

x~1'e Sing
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N(~8) =Re;
llzgz 'W'I (5+")n~
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may be obtained by setting d =0 in Eq. (26)]:

Re 0'~)1, (q cop)

~.(qpp) 2' T

vp,
2

dQ vga(v q)
vp

00
0)

de cosh---
2T

1V(p)+p)p, 8)N (p),8)+6' du pp(u, Q)

X1Vi (p&+p)p, u, 8)cV) (p),u,8), (28)

where terms of higher order in p)p/2T&(1 have been
neglected in obtaining this result.

+2 Re

GO

X cosh [Re(2X(p),8) —1)]'
p 2T 2T

+2 Re[8(p),8) (g (p),8) —1)]

N (p),8)X(p),8)[2i Immi+2(X(p), 8)—1)p)p]

2i Imgi+2X(p), 8)p)p

(29)

III. NUMERICAL RESULTS

To obtain numerical results it is necessary to evaluate
the integral over I which may be done analytically.
Using the above definition of X(pp, 8) and W(s) this
integral may be carried out straightforwardly and me

obtain 6nally the expression for the real part of the
conductivity:

Reve@(q)p)p) 1 vp
dQ—h(v q)vg

ir. ( ,qp))p7r v'

the integral over or and over angles by numerical
quadrature.

From either the specular or diffuse scattering result
for the surface impedance (using Imp-, =0) we obtain
for the ratio of the Inixed state to normal surface
imp edances —1/8

nZg—=2
R

(31)
v, (q,p))

So, by carrying out the numerical integration, me may
obtain results for the surface resistance as a function
of angle and of magnetic field. There is an angular
dependence because, as Hp varies from parallel to
perpendicular to q, there is a change in the angles
8= arccos(k Hp) which are integrated over.

We mill also include numerical results where the
order parameter is assumed to vary more slomly in
space than predicted by the Abrikosov GL solution
given by Eq. (8). Since the spatial variation of A(x) is
of the form h(x) exp[ —eHx'7 if the order parameter
becomes less localized in space this can be taken into
account by multiplying H by a delocalization factor 6

so that 6 (x) exp[ —eHx'8'7.

We note that one motivation for arbitrarily assuming
a large amount of delocalization (8 small) is that for
very small 5 our theory approaches the BCS result and
is consequently similar to the result obtained by CM
using the Maki ansatz. Numerical results for a small
value of the delocalization factor mill be given together
with the normal numerical results.

To carry out numerical calculations for comparison
with experiments on pure niobium we determined
Kp(T) from the results of McConville and Serin'4 and
used X(0)=5.6X10'4 (states/cm'-erg), the result ob-
tained from specific-heat measurements. " For vp we
used v F=3X10 cm/sec. From Eilenberger's work"

3f(2v.T)'
[ai(H, T,l)7 '.

2eX(0)v p'

P [2EpP (T)—1]

The imaginary part of the conductivity is given by
(1/p)) Re%„„where Re%„„is given by Eq. (14) for the
orientation A„IIHp and ReK„„=0 for A„J Hp.

Of particular interest is the orientation A„J Hp and Near II,2 the magnetization is given by
qIIHp. In this orientation sin8=1 for all angles inte-
grated over. For 6 small (i.e., H near H, p) and T/2p (1,
we have, neglecting terms of order (6/p)',

(32)

1+2 Re
~(q,~) = ~-(q,~)

iv.i/pg/p where Z, (T) is the second Landau-Ginzburg parameter
and P~1.2. In the limit of i-+ po

+i~i)p~/

As 6 —+ 0 this result reduces to the normal-state conduc-
tivity [as does the more general expression in Eq. (19)7
as it must. For p) LV/p, ~ becomes approximately equal
to 3o.„, and as p) approaches v'i'LV/p, o decreases and
eventually approaches o „ for p)))LV/cv'i'.

In general, the expression on the right-hand side of
Eq. (29) must be evaluated numerically by evaluating

1
ai(H, T,l) = —G(p) =— ip«(1 —s')'"

16

dS
* t ( —~ )P i ) ( +jp~)

—
(33)

'4 T. McConville and B. Serin, Phys. Rev. 140, 1169 (1965).
"H. A. Leupold and H. A. Boorse, Phys. Rev. 134, A1322

(1964).
26 G. Eilenberger, Phys. Rev. 153, 584 {1967).
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FIG. 2. Magnetic-Geld dependence of the normalized surface
resistance for the orientation HOJ A„; Ho~~q. The Fermi velocity
is taken to be v~=3.10' cm/sec.

I-H/Hcp = 07
D,o Experiment, Nb-5, 7=4.2
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where p=e/2rrT and P&'& is the tetragamma function.
We note that this expression for 6', which may be
deduced from Eilenberger's work and which is also
used by Pesch, " differs somewhat from the Maki-
Tsuzuki" expression for 6'. For T, we use 4.2'K.

Using these expressions we plot in Fig. 2 theoretical
values for R./R„as a function of magnetic field near
H, s for Hs parallel to q, the direction of decay of the
screening current. The experimental data points are
taken from Ref. 14. The theoretical curve with no
delocalization (6= 1.0) is not in good agreement, since
when plotted as a function of magnetic field it shows a
sharper drop off than is observed experimentally and
then a leveling off. This leveling off may not be com-
pletely valid theoretically because Caroli and Maki
proved the cancellation of the imaginary part of the
conductivity only to order 6'. As we move amay from
B,2, Imr may become nonzero and this would decrease

FIG. 4. Orientation for anisotropic predictions and measure-
ments. Hot I„,for all values of y.
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the surface resistance. The curve with the delocalization
factor of 6=0.07 is in much better agreement. We also
illustrate in this figure the CM prediction using the
numerical parameters listed previously. With these
parameters the Maki theory does not agree quanti-
tatively with experiment although the functional form
agrees well with the experimental results.

The anisotropic results for the surface resistance are
given in Fig. 3 with the orientation described in Fig. 4.
These anisotropic results mere obtained' by expanding
1Vt(oi, 8,u) and 1V(oi,8,N) to linear order in sin 8. This is
of sufficient accuracy since we are primarily concerned
with the qualitative anisotropic behavior and it simpli-
fl.es the numerical calculations considerably.

As before the theoretical curve with a delocalization
factor is in qualitative agreement with the experimental
results, which in this case is in sharp contrast to the
Caroli-Maki theory. The theoretical angular depen-
dence with no delocalization effects is dependent upon
the value of the frequency as can be seen. For high
frequencies Z,/E„decreases as the angle 7 increases
while for frequencies of the order of one megahertz
Z,/R„remains constant. The frequency at which
R,/R„begins to decrease if no delocalization effects are
included depends upon the value of the Fermi velocity,
and for smaller values of vp the higher this frequency

.98—

(2)

(4)—(~)

.60 I I I l 1 l I
.02 .04 .06 .08 .IO .I 2 .I4 .I6

l- H/Hc2

I

80'.96

"K.Maki and T. Tsuzuki, Phys. Rev. 139, 868 (1965).

I I I

20 40 60

FIG. 3. Angular dependence of surface resistance for Hp J A„
and 1—H/II, 2=0.07. The angle y is the angle between Hp and
g (q is the propagation vector of the perturbing field).

FrG. 5. Magnetic-Geld dependence of the normalized surface
resistance for frequencies above 1 MHz. The orientation is
H, J A„, Ho~~q; and the Fermi velocity is taken to be vs =3.10'
cm/sec. The small circles were numerically computed from Eq.
(29) and smooth curves were drawn through them.

2 W. D. Hibler, III, Thesis, Cornell University, 1969 (un-
pubhshed).
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will be. At high enough frequencies, even with a de-
localization factor added, we would expect E,/R„ to
decrease as a function of the angle y.

The demagnetization factor has not been included
in the theoretical curves but from the analysis of Cape
and Zimmerman29 it may easily be included by a
change in the magnetization. For the numerical values
of K2(T) used it will be a small effect. If included it
would tend to cause the CM curve to disagree a little
more strongly with experiment (i.e., decrease more as
y increases) and would cause the small delocalization
factor curve to be slightly Qatter than it appears in
Fig. 3.

The Anal numerical result is the surface resistance as
a function of frequency. The field sweep curves of
R,/E„ for different frequencies are given in Fig. 5. The
change in the surface resistance is quite marked and
above frequency &v& nh'[——n= 1/e sino(2')'I'5 the sur-
face resistance begins to Qatten off at II,2 and does not
begin to decrease appreciably until H(H, 2. The cutoff
frequency co& is quite dependent upon the Fermi
velocity so that it is not easy to predict it exactly
although we expect it to be in the neighborhood of
500 MHz. This frequency dependence is not predicted
by the CM theory as the dependence upon frequency is
of the form ln(6/co) and no sharp changes occur.

Concerning the temperature dependence, as can be
seen from Eq. (32) for dP and Eq. (30), the theory
predicts that at high frequencies 8,/R„ increases as T
decreases. This follows because, for a fixed value of
1 H/H, 2, 6 decrea—ses with decreasing temperature. "
At low frequencies around 1 MHz there is hardly any
temperature dependence. The temperature dependence
of the theory with a finite delocalization factor 5 varies
depending on the magnitude of b. Since the amount of
delocalization may be dependent upon temperature,
it is difficult to make a definite statement about tem-
perature dependence in this case.

IV. CONCLUSION

In conclusion, our theory predicts a strong frequency
dependence of the conductivity and hence of the surface
resistance for frequencies of the order of 500 MHz.
These predictions at frequencies above 500 MHz are
especially important because we expect the pure limit
assumption, &or& j., to hold. It should be possible to
observe this frequency dependence experimentally
using many pure niobium samples.

At frequencies of the order of 1 MHz it is dificult
to obtain agreement with experimental field dependence
and angular measurements without making arbitrary
changes in the parameters put in the theory. In particu-

' J.A. Cape and J.M. Zimmerman, Phys. Rev. 153, 416 (1967).
"The temperature dependence of LV is not obvious from Eq.

(32) because it turns out numerically that gi (H, T,/), at H =8',2,
varies on the order of I'~ with~temperature. However„d'M/48'
(near H, 2) becomes smaller at lower temperatures mhjcQ cag~es
a net decrease in 6' for a fixed value at 1—H /H, 2.

lar if a slower variation of the order parameter is
assumed, the low-frequency agreement is greatly im-
proved. In this way one may obtain at least qualitative
agreement with certain experimental measurements
that at present are not explained by other theories.
YVe point out, however, that the quantitative disagree-
ment between our theory and experiments done in the
megahertz region is not surprising because the limit
coo.&1, assumed in the theory, is probably not valid
at such frequencies in the samples used.

ACKNOWLEDGMENTS

We would like to thank Professor V. Ambegaokar
for many helpful discussions. Thanks go also to Profes-
sor B.Maxfield for discussions on experimental measure-
inents and to Professor J. Wilkins for reading this
manuscript.

APPENDIX

We wish to show here that as a lowest-order approxi-
mation we may neglect G„s(y,K), for KAO, relative
to G„s(y,0). Without this approximation the calcu-
lation of the conductivity would be rather intractable.
The procedure for proving the smallness of G„~(y,K)
is very similar to the approach used by BPT to obtain
the density of states. The important difference is that
BPT were only concerned with obtaining an expression
for G„~(y,0), and did not discuss G„~(y,K).

To obtain an expression for G„s(y,K), we Fourier
transform Eq. (6) with respect to the sum and difference
variables which yields

G.'(y —K) =~,oG-'(y) —G-'(y —lK)

XQ G ~(y —K'/2, —K—K')

X V(y', K')
(2s)'

XG '(y —y' —K/2 —-', K'), (Ai)

where K=n(2~)'i'A ' is a reciprocal vortex lattice
vector. Inserting Eq. (8) for the order parameter into
Eq. (7), one finds the Fourier transform of the quantity
V(l,l') to be given by

V(y' K') =A'A'2(2~)'~(p') em[ A'(p-"+ p ")5—
Xexp [iA'( p.'K„'+p„'K—.'+ ,'K, 'K„')5, (-A2)

where we have assumed a square lattice of Qux lines.
We note, as pointed out by BPT, that the order of

magnitude of the coeKcients multiplying the BPT
Green's functions on the right-hand side of Eq. (A1)
is determined by the magnitude of the p' integral, and
from Eq. (A2) it is clear that the integrand is cut off at
about p'&A ' On the other hand since K) (2w)'~'h. '
the order of magnitude of the p' integral is determined
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by the expression

d'p'—V(p')K') =6' expL —A.'(-'K"——',iE,'E„')), (A3)
(27r)'

provided that K+K'Ao. Sincefor K'Ao and K+K'Wo,
the coefficients are exponentially small, they may be
neglected and therefore the dominant terms in the
equation for G„~(p, —K) for KNO are

where 0 is the angle between the momentum p and the
magnetic field, and v= i i;. For &o= f i we have used the
notation G„~(p, —K)=G~(p, —K, fi) .Substituting
Eq. (A7) into Eq. (A8) reproduces the explicit form of
the BPT Green's function as given in Eq. (20). The
imaginary part of the quantity in Eq. (A7) always has
the same sign as the sign of Immi, so that an upper
bound for the magnitude of G~(p, o,fi) is

G-'(p, —K) = —G-'(p —lK)G-'(p, —K)

d8 '
~G. (p,o,l.,) ~

&1 l-+ V(p, o)G (p-p, -l )
(2n.)'

V(p' 0)G--'(p —p' —kK)
(2m-)'

—G-'(p —2K)G (p+kK, O)

d3 '
V(p', —K)G--'(p —p') (A4)

(2n-)'

Solving for G„~(p, —K), we obtain

G (p —K) = —G (p+K/2, 0)G. (p —K/2 0)

&1/Il. I-1/ T.

Furthermore, using Eq. (A2), we see that

V(p', —K)G'(p —p', —Ci)
(2~)'

d3pt

IV(p', —K)l IG'(p —p', —f)l
(2s.)'

(A8)

— V(p', —K)G--'(p —p'), (AS)
(2n)'

where we have used the result

G-'(p —lK, 0)

G-'(p ——:K)

d'p' V(p', 0)
-=~'/Il

I
. (A9)

(2~)' [li[

Using the inequalities (AS) and (A9), and Eq. (AS)
we have

g2

( Gs(p, —K, gi) i
& —

~
G~(p+K/2, 0, pi) ~

. (A10)

v sin8 n. „Lf'i+&(p—i~K))(A/v sin9) t—
(A7)

1+G„'(p——,'K) V(p', 0)G „, '(p —-', K—p')
(2m)'

(A6)

[This last equation defines the BPT Green's func-
tion and is obtained from Eq. (A1) by solving for
G„~(p—K/2, 0) and using the approximations rnen-
tioned above. )

From Eq. (AS) we may obtain an estimate of the
magnitude of G„~(p, —K) for the discrete complex
frequencies ~= l i. To do this we note that choosing the
p' coordinate system so that the p, ' axis is parallel to
the magnetic field and the momentum p —~K is in the

p, 'p, ' plane, we easily find that

d3 pl
V(p', 0)G'(p —lK—p', —h)

(2m)'

dte "

Consequently, since 6/T is small near H, 2, the Green's
function G~(p, —K, fi) is small compared to
G&(p+K/2, o, l.,).

We note that in general G~(p, —K, fi) msy be even
smaller than indicated by the inequality (A10). This is
because the maxima of the Green's function G„~(p,o) oc-
curs for p p p so that G„~(p+ ~i K, 0) and G„~(p—2K, 0)
have their maxima displaced in momentum space by
E) (2m.)'"/A. Therefore one of the Green's functions
will be of the order A/v(2ir)'" if A/i(2ir)'"& (2~T) '
which for T 4.2' is the case for pure niobium.

As shown above, once Eq. (AS) is obtained, it may
easily be proven that G„~(p,K) is quite small compared
to G„(p,o). The approximations made in obtaining
Eq. (AS), on the other hand, are the same as employed
by BPT in obtaining an expression for the density of
states. Consequently to be consistent within the BPT
approximation whenever one uses G„s(p,o) as given in

Eq. (20) for example, one must also neglect G„~(p,K)
for K~O.


