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Sensitivity of Nuclear Magnetic Double Resonance*
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(Received 6 October 1969)

The dynamics of the nuclear magnetic double-resonance process for Na nuclei in a (2,0,0) position rela-
tive to a substitutional Ag+ impurity in NaCl has been studied for several Ag concentrations. The purpose
was to determine experimentally the factors which limit the double-resonance sensitivity. For Ag concentra-
tions below 0.03 mole 'P&, the magnetization of unperturbed Na nuclei decayed exponentially with rates
proportional to the impurity concentration when a rf field at the resonance frequency of the quadrupole-
shifted transitions was applied. Using a method of intermittent search-field irradiation, evidence was
found that the finite spin diffusion rate caused a double-resonance energy transfer rate under continuous
search-field irradiation about 30/& less than the transfer rate which would be observed if the spin diffusion
were infinitely fast. A theoretical explanation of the results is given using a perturbation approach based
on the concept of spin diRusion. In addition, we have studied the Na spin-lattice relaxation in the completely
demagnetized state as a function of impurity concentration, and found a rapid initial decrease of spin order.
This was caused by cross relaxation within the nuclear spin system.

I. INTRODUCTION

HE idea of nuclear magnetic double resonance
(DNMR) was proposed several years ago by

Hartmann and Hahn (HH)' as a method to detect very
weak nuclear magnetic resonances in solids. Modifica-
tions in the experimental technique have been given. '
In recent years a number of experiments have been de-

scribed in which this method was used to study nuclear
magnetic resonances of rare nuclei in solids. ' ' Special
interest has been paid to the investigation of electric-
field gradients around impurities by studying the quad-
rupole split tings of the nuclear-magnetic-resonance
signals. ' 8 Redfieldg introduced a field-cycling technique
to study the pure electric quadrupole resonance in
impure copper, a technique which has been used there-
after to study the quadrupole splitting around impuri-
ties in a variety of metallic' ' and nonmetallic" solids.

The double-resonance scheme involves two spin
systems, one abundant and the other dilute, say I and

S, respectively. The I system is prepared in a very
ordered state (i.e., low spin temperature). Then if the
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5 nuclei are maintained in a disordered state or at high
spin temperature and if there is a coupling between the
two spin systems, energy will be transferred from the
S system to the I system. Success or failure of a DNMR
experiment depends entirely on the rate of communica-
tion or temperature exchange between the two systems.
The purpose of this research is to investigate the dy-
namics of this process, using a physical system pre-
viously studied': silver-ion impurities in sodium
chloride. This system is advantageous because of the
presence of an abundant spin system (I spins or Na"
nuclei) with a large nuclear magnetic moment and a
spin-lattice relaxation time of several minutes at liquid
nitrogen temperature. In addition the silver substitu-
tional ion is nearly the same size as the sodium ion it
replaces, so the lattice distortion and electric-field
gradients are small enough to avoid difhculty with
second-order quadrupole effects.

In the experiments to be described, the 5 spins were
Na" nuclei which experienced a quadrupole perturba-
tion because of the electric-field gradient near a silver
impurity. Of the Na" neighbors near such an impurity,
only the (2,0,0) neighbors were detected. We assume
that the other sites have a smaller quadrupole splitting.
It is not obvious that the (1,1,0) neighbors experience a
smaller perturbation than the (2,0,0) neighbors. How-

ever, experimental results by Hartland, ' Nelson and
Ohlsen, ' and a theoretical calculation by Dick" in other
alkali halide systems indicate that the (1,1,0) neighbor
to an impurity can have a smaller quadrupole splitting
than the (2,0,0) even though the (1,1,0) neighbor is
closer to the impurity.

The quadrupole shifted transitions of the (2,0,0)
neighbors can be observed down to concentrations of
about 10 ' mole % of silver, so that the concentration
dependence of the double-resonance sensitivity can be
studied over a range of several orders of magnitude.

In Sec. II the experimental procedure is outlined.
Section III gives the experimental results. In Sec. IV

'4 B. G. Dick, Phys. Rev. 145, 609 (1966).
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FIG. 1. Nuclear double-resonance spectra for a NaCl single
crystal containing 0.1 mole % Ag impurities. The angle between
the $100$ direction and the external magnetic 6eld was 0', 10',
and 20' for A, B, and C, respectively.

we attempt a theoretical analysis based on the concept
of spin diffusion as introduced by Bloembergen. "

II. EXPERIMENTAL PROCEDURE

The experimental procedure was a combination of
the methods used by HH, ' and Lurie and Slichter (LS)',
which have been described in detail in their papers.
Therefore we will give only a short review of the ex-
perimental procedure.

In a nuclear double-resonance experiment we have to
prepare the abundant I and the rate S spins at different
spin temperatures. In order to do so we use the field-
pulse method of LS for an adiabatic demagnetization
of the I spins in their rotating frame. "In this process
the Na magnetization Mq is made parallel to the rotat-
ing rf Geld H» by pulsing the static magnetic field Hp
away from its resonance value Hpp by an amount h,
turning H» on suddenly, and then gradually decreasing
h to zero. Following this adiabatic demagnetization in
the I spin rotating reference frame H» is turned off in
a time slow compared to the precession period in the
rotating frame. The I spins are then at a very low tem-
perature, 0'ro.

We now give a simple but approximate theory, which
we refine in Sec. IV B.Let us turn on H~g, at angular
frequency cv&, nonadiabatically, i.e., in a time short
compared to the spin-spin relaxation time, T~. This
brings the S spins to a high spin temperatur" if
exactly at resonance to an infinite temperature. After a
certain cross relaxation time, which will be a minimum
for %3ys&ts= prier. ,

' both spin systems will reach
common spin temperature,

where e is the ratio of the respective heat capacities and
will be calculated in Sec. III C. If we now shift the
phase of H~q nonadiabatically by 180', the S spins end

'5 N. Bloembergen, Physica 15, 386 (1949).
C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 (1961).

This equation describes Hahn's basic idea: Though e

will be small if the S spins are rare, e may be large so
that OI„may be made much larger than Blo.

After a heating time TI„H~q is turned off and H» is
turned on adiabatically, restoring the remaining order
in the I spin system as magnetization along the rotating
field, then suddenly switched off. The I-spin free-induc-
tion decay (FlD) amplitude, which is proportional to
the I-spin magnetization, is measured with a digital
boxcar integrator. A similar device has been described
elsewhere. '~ In order to improve the signal-to-noise
ratio we averaged in critical cases over several experi-
ments taking advantage of the infinite holding time of
the digital readout.

The phase modulation of H~8 was achieved using a
balanced modulator' which was driven by a trapezoidal
audio voltage, the rise time of which could be adjusted
to give a phase switching time which was short corn-

pared to T2 but not instantaneous. To avoid un-
necessary sidebands we usually used a "phase switching
time" of about 100 @sec, with 1000 phase reversals per
second.

All our experiments were done at liquid nitrogen
temperature, where the spin-lattice relaxation times in
the laboratory frame, T&, and the rotating frame, T&„,
are

T&——250~20 sec,
T~,——105~$.0 sec,

respectively. Since the spin system has to return to
thermal equilibrium after the free-induction decay, we
had to wait after each FID for several minutes before
performing another double-resonance experiment.
Therefore, it took several hours to obtain an entire
double-resonance spectrum. Consequently, good long
time stability of the static magnetic field Hpp was re-
quired. To obtain field regulation a commercial margi-
nal-oscillator field control was used. However, the
marginal-oscillator frequency, which controlled the
magnetic field, was itself unstable. We therefore mixed
it in a balanced mixer with the output of a crystal
oscillator at the desired frequency. The output of the
balanced mixer was amplified and fed to a varactor in
parallel to the proton probe. In this way it was possible
to phase lock the frequency of the marginal oscillator
to the crystal frequency and therefore to achieve a long-
time magnetic-field stability determined by the crystal.

To speed up the response of the magnet to regulation
signals we wound small coils on the pole pieces to which
we fed the fast components of the regulating signal. We

"D. Ware and P. Mansfield, Rev. Sci. Instr. 3'V, 1167 (1966).
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thereby improved slow regulation response due to the
large inductance of the main magnet coils. The two
modifications greatly increased the stability of the mag-
netic field. In spite of these steps we feel that field
Quctuations were one of the largest sources of noise,
limiting the signal-to-noise ratio for the sodium FID
signals to about 200.

Since the spin-lattice relaxation time was long, we
could use heating times up to 100 sec. To correct for the
inhuence of the spin-lattice relaxation in the demagne-
tized state, we always normalized our signals by di-

viding them by the FID amplitude observed using the
same pulse sequence, but without an H&z search field
being applied.

Our crystals were grown from reagent grade NaCl
doped with AgCl, both of which had been chlorine
treated for 12 h to reduce the OH impurity concen-
tration. They were grown from the melt under argon
gas atmosphere. Impurity concentrations in the crystals
were: 0.001, 0.003, 0.007, 0.03, 0.11, 0.3, and 0.5%.
These concentrations were determined using several in-

dependent methods: gravimetry, uv absorption spec-
troscopy, '8 Game, and absorption spectroscopy with
visible light. There was significant inconsistency be-
tween the results for different methods. The limits of
error for the absolute values of the concentrations given
above are probably about &SO%%uq, but we feel that the
ratios of the concentrations are known more precisely,
within &20 j~. On the average the silver concentration
in the crystal was about 40% of that in the melt for low
concentrations.

TABLE I. Destruction time constants under continuous
search-field irradiation.

c (%)
0.001
0.003
0.007
0.03
0.011
0.3
0.5

T (sec)

88 +40
58 &15
22.5&3
5.3+0.4
2.4&0.3
1.4&0.2
1.4&0.2

"R.F. Caldwell, Ph. D. thesis, University of Illinois, Urbana,
Ill. , 1966 (unpublished).

III. EXPERIMENTAL RESULTS

A. Double-Resonance Spectrum

Double-resonance spectra, or graphs of I spin mag-
netization as a function of the search field frequency,
vg, obtained using the procedure explained in Sec. II
are shown in Fig. 1 for three orientations of the sample
relative to Hpp. The I spin resonance frequency,
vr=11.000 MHz for Has ——9770 G, is subtracted from
the horizontal axis. The experimental parameters were:
total heating time, Ts= 2 sec; IIts (rotating component)
=1.6 G; and time between phase reversals, t„=1.0
msec. The large magnetization destruction for vq less
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FxG. 2. I-spin magnetization remaining after search-field irra-
diation versus heating time for five impurity concentrations.
From top to bottom c was 0.003, 0.007, 0.03, 0.11 and 0.5'P&.

{(vs —vr) =40 kHz, L100j parallel Hs, , H'&&=1.6 G, continuous
heating with time between phase reversals, t„=1 msec. }

than 16 kHz was caused by direct irradiation in the I
spin resonance tail by H&z. Plotting the resonance fre-
quencies as a function of the sample orientation gave a
rotation pattern consistent with that reported by
Mallick and Schumacher' who assigned it to a Na
nucleus in a (2,0,0) position relative to the impurity.

Several very weak double-resonance lines, which
could be observed in samples with very low Ag concen-
tration, could not be identified as belonging to a specific
impurity.

B. Time and Concentration Deyendence
of Double-Resonance Line

In this subsection we describe how the intensity of
the double resonance line depended on the concentra-
tion of the impurities and the number of phase reversals
of H&s (or the heating time, Ts). For this study we
chose the double resonance line at 40 kHz. This line was
present when Hss was parallel to the L100) direction
of the sample, and was chosen because the 40-kHz
splitting was the largest observed. It resulted from an
5 spin at a (2&0,0) site relative to the silver impurity,
and was well resolved from the quadrupole line at 20
klz and from the tail of the I-spin resonance. We were
able to detect this line with silver mole concentrations
as low as 10 ppm obtaining a signal-to-noise ratio of
about 2 without averaging.

Preliminary experiments had shown that the inten-
sity of this line increased monotonically with increasing
rf amplitude, H~q. Therefore, we used B~q——1.6 G
which was the maximum obtainable with our trans-
mitter. Other parameters were also the same as in the
previous section.

I-spin magnetization versus 5-spin heating time for
five silver impurity concentrations is plotted in Fig. 2.
For short times the magnetization decayed exponen-
tially, but for longer heating times the heating rate de-
creased. Since the dynamic range of the double-reso-
nance line was not large, especially for very low concen-
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two out of four states are connected by the rf field, only
half of these nuclei are part of the 5-spin system. E is

the total energy given up by the 5-spin ensemble if
cooled from infinite temperature to temperature O~. If
this energy is used to heat the I spins from 0 to O~,

energy conservation gives

Pepys'(His)'
~ —(Q~/Q~ ) 1 = — (3.3)

(5/4) 1Vyr' (H z,'+H ir')

where (Hr, ')"' is the average local field at one nucleus
due to its neighbors. ' ~ is the fractional change in mag-
netization of the I spins, as defined in Sec. II. In our
experimental situation A'~~ is zero, so

(3.4)
FIG. 3. Initial double-resonance destruction rate as a function

of the Ag+ concentration. Experimental conditions vyere the same
as in Fig. 2. The precision of the concentration determination is
discussed in the text.

trations, this decrease may have been an experimental
error. It could also have been related to relaxation
within various portions of the quadrupolar system
which may have made our correction for spin-lattice
relaxation during the heating time somewhat in error.
We therefore focused our attention mainly on the initial
times, during which the decay was exponential for all
concentrations. In Table I the time constants r of the
initial decay are listed. The reciprocals of these initial
time constants are graphed as a function of concentra-
tion in Fig. 3. Up to 0.03% the reciprocal time con-
stants or destruction rates were proportional to concen-
tration with a proportionality constant 600/sec. It
seems reasonable that proportionality does not hold for
larger concentrations since a significant fraction of the
impurity atoms may be in adjacent pairs or groups.
This would result in a smaller number of equivalent
(2,0,0) neighbors per impurity ion which could con-
tribute to the 5-spin resonance.

We can calculate an upper bound for the destruction
rate using a theory similar to that of LS. We are con-
cerned with the quadrupole shifted transition m= —

~
+-+ m= —~. If the rf field is tuned to this transition, the
energy levels of the two states in the rotating frame are
easily calculated to be

Ed= = &~&3ysAHis. (3.1)

The total energy of the 5-spin ensemble is, in the high-
temperature approximation,

(3.2)

where Q' is the ensemble spin temperature for these
spins. c' is the concentration of equivalent nuclei which
have quadrupole transitions satisfying the resonance
condition with the rf field. In our case there are two
equivalent (2,0,0) neighbors, so c'=2c, where c is the
impurity concentration. However, since on the average

If the total heating time is T~, and the time between
phase reversals is t„, the fractional signal destruction is

with
Mr/M, =e r«',

1/r = 2r/t„= 6000c sec '.
(3.5)

(3.6)

This rate is ten times larger than observed experi-
mentally. It could only be achieved if there were no
limitation for the energy exchange process. In Sec. IV 8
we will discuss in detail how cross-relaxation time and
spin diffusion determine the actual double-resonance
destruction rate, which is smaller than the upper bound
which we have estimated here.

C. Double Resonance with Intermittent Heating

The idea of the nuclear double-resonance experiment
is based on the assumption that the energy absorbed

by spins near impurities will be transmitted to the
entire I-spin system, i.e., that the I-spin system is
coupled strongly by spin spin interaction. If the 5 spins
are brought to a high spin temperature they will couple
strongly only to I spins nearby. Spin diffusion among
the I spins has to distribute the energy within the I-spin
system to reestablish a uniform I-spin temperature. In
earlier works, '" it was suggested that slow diffusion
rates among the J spins may cause an inhomogeneous
I-spin temperature and consequently reduce the double-
resonance sensitivity. It was the purpose of the experi-
ments described in this section to give experimental
evidence for the build up of the inhomogeneous spin
temperature.

To discuss these experiments we first want to describe
the inhuence of slow spin diffusion in a conventional
double-resonance experiment. Let us assume we turned
on our heating field H~g for a total time Ty„during which
we had e phase reversals. At the end of this period the
l-spin temperature O~r is a function of the distance from
the nucleus 5, because of the slow I-spin diffusion rate.
If we inspect the remaining order by remagnetizing the
I spins, the amplitude of the free-induction decay
signal will be proportional to the spatial average of the
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magnetization, which in turn is proportional to the
spatial average of the inverse temperature before
remagnetization,

2 1I2

M(t = Tq) =CrEEul
&(atr)'+&i'

1.0

0.9—

0.8—

0.7—

where C~ is the I-spin Curie constant.
Now one might expect that leaving the I spins in the

demagnetized state and giving them a chance to reach
a uniform spin temperature during a delay time t before
observing the free-induction decay might give some in-

formation about the degree of inhomogeneity of the
spin temperature at the end of the search-field irradia-
tion. However, a simple argument shows that this is not
true: Apart from spin-lattice relaxation effects, for
which we correct the experimental results, the internal
energy of the I-spin system during the delay time is
constant. Thus we have

—~=CrIIJ.'
O(r, t=TI,)

from which it follows that

M(t= Tg) =M(t= Ty,+td). (3.9)

Thus by waiting after the search-field irradiation before
inspecting the FID signal we should not get informa-
tion about the spatial distribution of the spin tempera-
ture. Figure 4 shows the experimental verification of
this statement. The size of the remaining I-spin FID
signal (after a heating time, Tq=2.5 sec, with 2500
phase reversals of H, s) is plotted as a function of the
delay time before inspection in a NaC1 sample doped
with 0.03% AgCI. In order to correct for spin-lattice
relaxation these data have been normalized as described
above. The figure shows that this ratio is essentially
constant for f~ between 3 nsec and 90 sec.

How can one observe the buildup of a nonuniform
I-spin temperature? Assuming that the S spins repre-
sent a continuous source of heat Qowing into the I
system, the I nuclei close to the impurity will rise to a
higher than average spin temperature if the spin dif-
fusion is not fast enough to communicate this heat Row
to all the I nuclei. The S spins then can couple only to
more distant I spins and consequently the double-
resonance heating rate decreases. If the heat Row were
interrupted the I-spin system would reach uniform spin
temperature after a certain time. If then the heat source
were turned on again, the full initial double-resonance
rate would be observed. Consequently in order to ob-
serve the buildup of a nonuniform spin temperature we
did not use continuous heating but rather groups of

+ +
I
— I—

0CL

0.6-

9.5-

04—

0.5-

0.2—

O. I—

heating pulses which were separated by some interrup-
tion time t;. We studied the double-resonance sensi-
tivity as a function of this interruption time for a given
number of pulses per group.

Below are the results of an experiment which demon-
strates this effect. In Fig. 5 the experimental values of
D» (fractional destruction of the I-spin magnetization
per phase reversal) are plotted as a function of the
interruption time between heating bursts for 2, 4, and
20 phase reversals in each II~8 burst. The total number
of pulses during the heating period was 1600, the time
between phase reversals 1 msec, and H&8 1.6 G. As
expected for the diffusion limited case, the signal de-
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2.0
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6
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20 50
t; (m sec)
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FrG. 5. Double-resonance eKciency with intermittent heating.
The fractional destruction of I-spin magnetization per single
phase reversal, D», is plotted versus the interruption time t;
between the heating bursts. The total number of phase reversals
was 1600, the time between phase reversals, t„=1 msec, v8 —vi
=40 kHz, H&q=1.6 G, L100] parallel to H0, c=0.03%.

I 1 I

IO 20 50 40 50 60 70 80 90
td(sec)

FIG. 4. Remaining I-spin magnetization after 2.5 sec of con-
tinuous heating as a function of the delay time td, between the end
of the heating time and the I-spin remagnetization. The data have
been corrected for the effects of spin-lattice relaxation during the
delay time.
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FIG. 6. "Recovery time constants" in an experiment with
intermittent heating versus the number of pulses per burst. Ex-
perimental conditions are the same as in Fig. 5.

struction increased when the I-spin system was given
time to carry away the heat transferred to I spins near
S spins.

The experimental curves can be fitted by single ex-
ponentials, the time constants of which reAect the
approach of the I-spin system to a uniform tempera-
ture. Figure 5 shows that there is a slower recovery of
heating efficiency for longer bursts. This is illustrated
in Fig. 6 by a graph of the "recovery time constant" as
a function of the number of phase reversals in each H'~8

burst. Within the rather large limits of error the time
constants were proportional to the number of pulses per
group. This shows that a longer heating burst created
a larger hot region and it then took a longer time to
recover to a uniform spin temperature.

D. Ag"' Double Resonance

So far we have been concerned with the double reso-
nance of sodium nuclei which had a nuclear magnetic
resonance shifted by electric-field gradients in the
neighborhood of an impurity. However, we were also
able to observe the double resonance of the silver im-

purity itself, specifically the Ag"' nuclei.
Figure 7 shows an example of this line for impurity

concentrations, c=0.107% and c=0.5%. The heating
time necessary to detect this line was 100 sec, His was
adjusted to 7.2 G, and V~1 was not turned off during
the heating time in order to match the Hahn condition,
psIIls pI+1T With II&1 off during the heating period
we were not able to detect the double resonance.

For the same impurity concentrations, the intensity
of this double-resonance line was about 500 times lower
than that of the (2,0,0) Na neighbors. A rough estimate
of the relative intensities predicts a ratio of about 800
when the 48.7% natural abundance of Ag"', the lower
silver heat capacity, and the smaller dipole coupling of
the 5-spin ensemble to the I spins is taken into account.

The latter two effects are caused by the smaller gyro-
magnetic ratio of the Ag' nuclei and the fact that Ag'
has a spin S=-,'. Since experimental and theoretical
ratios are approximately equal, we have no indication
that the silver nuclei are more effectively isolated from
the I-spin system by a diffusion bottleneck" than are
the (2,0,0) neighbors. A more thorough investigation
of this topic did not appear promising since the intensity
of the silver double-resonance line was so low.

IV. DOUBLE-RESONANCE PROCESS

A. Basic Equations

Since the double-resonance process has been de-
scribed in detail in the basic papers by HH and LS we
want to point out here only the modifications which
result from the inclusion of the quadrupole interaction.
We adopt in the following the notation of LS. The un-
perturbed abundant Xa nuclei will be called the I-spin
system, the rare quadrupole affected Na nuclei the
5-spin system. The Hamiltonian in the laboratory frame
thus is made up by the respective Zeeman energies,
Xzg and BCz8, the dipolar coupling within the spin
systems, BC&» and Xd», respectively, and the dipolar
coupling between the I and S systems, BC&18. In addi-
tion to these terms we must include the quadrupole
coupling acting on the 5 spins, BC@. Since the quad-
rupole interaction in our particular case is axially sym-
metric as a result of the lattice symmetry, we will con-
sider only an axially symmetric Hamiltonian which may
be written, to first order, as

Xo——Eo(3 cos'O~ —1)(3S '—S') (4.1)

where E@contains the field gradient and the quadrupole
moment, and 0 is the angle between the axis of the quad-
rupole interaction and the magnetic field.

For the Zeeman part we will pretend that we have
applied rotating instead of linear polarized fields. We
have then

~zz(t) = pe(I Ho+I, (Hiz cos—Qzt+His cosQ8t)

+I„(Hiz sinQzt+Hzs sinQst)], (4.2)

and a similar equation for the 5 system, where the spin
operators are understood as summations over all the
respective nuclei.

In order to use the concepts of statistical mechanics
and in particular of spin temperature we will transform
our Harniltonian to a representation where the time de-
pendence of 3Cz(t) is removed, as usual. Special care
must be applied however in considering the quadrupole
part. Leppelmeier and Hahn" have shown that for the
pure quadrupole case with a linearly polarized rf field
of frequency Qg applied, the appropriate unitary trans-
formation is given by

Tq = exp['oiQot (3S,'—S')]. (4.3)
G. W. Leppelmeier and E. L. Hahn, Phys. Rev. 142, 179

(&966).
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They point out that this transformation corresponds to
a transformation into two rotating frames precessing
in opposite directions, one sense of rotation belonging
to the m, =+s &-++s transition, the opposite to the
m, = —&~ ——,

' transition. Each of the two circularly
polarized components of the linearly polarized rf field
now couples that pair of spin levels, which has the cor-
responding direction of rotation.

In the high-field case, however, one of the circularly
polarized components is strongly distinguished by the
sense of the precession of the nuclei in the magnetic
field. Therefore it is legitimate to consider only the cor-
responding rotating component of the linear field and
simply to apply the transformation commonly used in
the pure magnetic double-resonance case,

T= exp(sQrI, ij exp(iQsS J1. (4 4)

Standard evaluation gives for the transformed
Hamiltonian20

()T—'
BC=TBCT '—iAT
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phd(IIo+—0/y )I,+II I,j
—VshL (&o+(is/VB) &.+IItsS.j
+Eoa(3 cos'Hs —1)(35,'—S')

+Erdr(3 cos'Or —1)(3I,'—P)
+~dII +~d8S +~dIS

+time-dependent terms we ign. ore. (4.5)

dII', dss', and Kdss' are the so-called secular, or
time-independent, parts of the dipolar interaction. They
are given explicitly in Ref. 2.

In the Hamiltonian (4.5) we have included a quad-
rupole part for the I spins, although they were defined
as unperturbed nuclei. The reason is that nuclei in the
m= ~ ~ levels belong to the I system as long as second-
order quadrupole sects are unimportant. To first
order, the energy difference between these levels in the
laboratory frame is equal to that of the unperturbed
nuclei. This is di6erent in the rotating frame and as an
illustration let us consider the energy levels in the ro-
tating frame for a series of spins I with increasing quad-
rupole interaction. %e will neglect the dipolar inter-
action and will restrict ourselves to a spin ~. Further-
more we will assume that only one rf field, H», is
applied and that the quadrupole interaction is small
enough to give no shift for .the m= —', +-+ m= ——,'transi-
tion in the laboratory frarne. Solution of the Schrodinger
equation in the rotating frame, with Ql at the resonance
frequency of the unperturbed m= ~+-+m= —~~ transi-
tion gives the energy levels in the rotating frame

t
—1 ~ (4+g'+2g)»'j —yhIIU

es 4
——P1~ (4++'—2a)'~'gr "rhIIrr (4.6)

' C. P. Slichter, Priecip/es of 3fugnetic Resorsaece (Harper and
Row Publishers, Inc. , New York, 1963).

I

1.925 1.945

Fro. 7. Ag'"' double-resonance spectrum for 0.11%Ag+(A) and
0.5% Ag+(Bl in a NaC1 single crystal. (Heating time, To=100
sec, H11=1.3 G, Hag=7. 2 G, time between phase reversals
$„=1msec. )

with
3Eor(3 cos'Or —1)

-', yAIIU
(4.7)

B. Spin DMfusion

In the experiments with intermittent heating, which
were described in Sec. III -C, the heating rate per pulse

21 P. S. Pershan, Phys. Rev. 11'7, 109 (1960)."A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958}.

In the laboratory frame for a first-order perturbation
approximation, the energy levels of the states m=+ —',
and m= —

~ remain equidistant. In contrast, there is no
such pair of equidistant levels in the rotating frame for
a set of nuclei experiencing slightly different electrical
field gradients, as shown in Fig. 8. The success of a
nuclear double resonance experiment depends on the
possibility of spin diffusion within the surrounding I-
spin system, and it has been shown that spin diffusion
decreases rapidly if the energy levels of the nuclei in-
volved are not equally spaced. ""Now in our experi-
ment the surrounding spins are nuclei which feel de-
creasing field gradients and therefore do not have
equally spaced energy levels in the rotating frame. How-
ever, if EIjl is smaller or on the order of the linewidth,
the difference in the level spacing may be made up by
local field variations and no serious decrease in the spin-
diGusion rate might be expected.
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5E&(5 cos 8 —I)

IO

g(r) =K/rs (4 8)

must carry the energy to the entire I-spin system in an
attempt to reestablish a spatially uniform I-spin tem-
perature. If the spin diffusion is not fast enough, the
I-spin temperature around the impurities will increase
locally, thereby decreasing the coupling rate between
the S-spin ensemble and the I-spin reservoir. We call
this phenomenon the "diffusion bottleneck. "

We assume that the S spins are homogeneously dis-
tributed over the lattice, each of them having a sphere
of equal radius 8 around it which contains only un-
perturbed nuclei I.

The S spins communicate with the I spins through
their mutual dipolar interaction. We approximate the
resulting coupling rate by a simple radial function, "

Fxo. 8. Energy levels of a spin —,
' in a frame rotating at the un-

perturbed Larmor frequency versus the quadrupole shift of the
transition nz 2~=&n 2, I=voI =6Eo(3cos'0 —1).

decreased a few milliseconds after the heating field was
turned on. In other words, after a few pulses the S spins
were no longer able to couple to the I spins so effec-
tively as at the start.

In this subsection we discuss a simple phenomeno-
logical model, based on the concept of spin diffusion
introduced by Bloembergen, "in terms of which we try
to describe the dynamics of the nuclear double-reso-
nance process. Similar models have been used pre-
viously for the calculation of nuclear double-resonance
dynamics. ' "The idea of spin diffusion has been applied
most successfully for the calculation of nuclear spin-
lattice relaxation times in solids with paramagnetic im-
purities"=' for different limiting cases. DeGennes"
studied the case in which coupling of the 5 spin (in his
case a paramagnetic ion) to the lattice held its tempera-
ture at the lattice temperature. Furthermore, he as-
sumed that the coupling of the S spins to the neighbor-
ing I spins was so strong that the neighbors were at the
S-spin temperature. In our case we cannot assume that
the I-S coupling is strong compared to the I-I coupling—it is in fact weak, a limiting case considered by
Blumberg. "Below we present an analysis which differs
from his. Our leading term is the same as his, but we
find the correction arising from the I-I coupling.

During the nuclear double-resonance process energy
has to be exchanged between the I and the S spins. This
energy exchange is made possible by the dipolar inter-
action between I and S spins. However, since this is a
short range interaction, the S spins can exchange energy
only with nearby neighbors. To make an eScient energy
exchange possible, spin diffusion among the I spins

"P. G. de Gennes, J. Phys. Chem. Solids "l, 345 (1958).
'4 W. K. Blumberg, Phys. Rev. 119, 79 (1960).

5 G. R. Khutsishvili, Proc. Inst. Phys. Acad. Sci. Georgia
{USSR)4, 3 (1956).

M G. R. Khntsishvili, Usp. Fiz. Nank 87, 211 (1965) [English
transl; Soviet Phys. —Usp. 8, 743 ($966)$,

neglecting the angular dependence of the interaction.
r is the distance between the S spin at the origin and
the I spin. Because of the r ' dependence of the coup-
ling rate, the S spins will effectively interact only with
close neighbors. However the strong dipolar interaction
between the I spins provides a path to transfer energy
over longer distances. This has been analyzed by
Bloembergen in terms of a diffusion concept, where

op(r, t)
=D'p(, t) —a( )I p(, t) —p'3. (4.9)

=0. (4.1O)

The outer boundary condition is given by the fact that
there is no net heat flow across this boundary, which is
"equidistant" from impurities, and thus no gradient in
temperature, so

ap(r, t)
=0 (4.11)

Br

We will use for the solution of Eq. (4.9) a perturbation

"In actual fact, p' is not zero, but changes from positive to
negative or from negative to positive each time H18 changes phase.
In between, p' relaxes towards the positive value of p of the nearby
I spins. If this relaxation time is long compared to the time be-
tween phase reversals, the time average of p' is zero, and p' may
be taken as zero in I:q. {4.9). Experimental evidence that this
condition is satisfied is that the destruction per pulse, D», shall
be proportional to the duration of the pulse. In our case for a
pulse length of 8 msec the proportionality factor was 83'P& as large
as for the 1-msec pulse, showing that the assumption p'=0 was
well satisfied for the 1-msec pulse length. This result is consistent
with the theoretical value of Tg given in Eq. (4.53),

P(r, t) is the inverse I-spin temperature (kO') ', P' the
inverse 5-spin temperature (which we will set equal to
zero) "

The diffusion approach is valid only on a scale large
compared to the lattice constant. Consequently we set
D=O in a small sphere of radius b around the S spin,
where b is probably on the order of the nearest I-spin
neighbor distance. The inner boundary condition then
becomes
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approximation. For values of r much beyond b, g(r) is
small enough to be considered a small perturbation for
the diffusion equation,

apo(r, t)
=DV2po(r, t) . (4.12)

DV"R),„(r)= —tJ, „R),„(r). (4.14)

Vile will show later that this approach is justifiable for
small concentrations.

Time and radial dependence in the solutions of this
differential equation can be separated, giving

p„(r,t) =R,„(r)e-~", (4.13)

where the R),„(r) are the eigenfunctions of the unper-
turbed radial problem

po (r, t) =Re (r)e ""'=le-)e "-' (4.2S)

where the ) are the eigenvalues of the radial part.
Since the same boundary conditions hold and since the
solutions

I
k ) of the diffusion part alone form a com-

plete set of orthonormal functions we can expand the
functions I)7 ) in terms of the Ik„):

we have the initial condition

P(r, t=o) = (47rB'/3)')2P;
I k))). (4.24)

Now we turn on the heating Geld so that the direct
dipolar coupling term is no longer zero. However, we
will treat it as a small perturbation to the diffusion
equation, an approximation we justify below.

'

The solu-
tions of the entire differential equation can be sepa-
rated as before,

The spherically symmetric solutions of this equation
are well known and can be written as lv-&=2 lk-&(k-lv-&. (4.26)

R),„(r)= (1/r) sin[k„(r —b)+C']. (4.15)

The boundary condition at r = b determines the phase
constant,

Immediately after turning on Hi& there is still a uniform
spin temperature and we can expand this initial distri-
bution in terms of the q

or
tanC =k„b

C =k„b, k.b((1. (4.16)

P(r, t =o) = (4~B'/3) "P' 2 I V-&(V-/ko& (4 27)

The values k„are determined from the boundary condi-
tion tan(k„B) =k„B.The solutions of this equation can
be written in the form

However this is no longer an equilibrium distribution
because of the heating. The time evolution is given by

p(r t) = (47rBo/3)')'p p I)7~&(q~lko)e " '

k„B=n„x,
where the e„'s have the limits

rt&n„&n+

(4.17)

(4.18)

=( v4r B'/3)'" pp Ik„)
m) R

X(k.lq.&(q. lko)e " '. (4.28)

P(t) =(4-B/3)-) (k. IP(r, t))(4.19)y =Dk '=n '7r'D/B'.

with no ——0. For higher r) the n„s converge fairly rapidly Experimentally we measure the spatial average of p,
towards the value m+ —', . The eigenvalues p,„are then which we calculate as
given by

If we normalize the functions by requiring that =p' 2 I (ko I v.&
I'e-""'. (4.29)

4n'
I Ro„(r) I

orodr =1, (4.2o)

the approximately normalized solutions for the diffusion
problem are

The spatial average of the magnetization thus decays
with a series of rate constants A each of which is
weighted by the matrix element

I (ko I q~& I'.
The rate constants X may be computed by perturba-

tion theory to be
P)„(r)t)= (4mB'/3) ')'=

I k()), -—(4 21)
~-=t -+(k-Ia(r) Ik-&

(k-
I g(r) I k-&(k-

I a(r) I
k-&

+Z . (4.3o)

and for e)0

Pm —y~

If we define the fractional S-spin concentration to be
cg, we will show below that p is proportional to cq'~',
whereas the next terms in (4.30) go as ce. Therefore the
erst-, second-, and higher-order perturbation terms are
small compared to the difference between the unper-
turbed values p at low concentration.

(4.22)

Since, at t=0, we have uniform spin temperature,

P(r, t=o) = (Ifo/&r)P). «;..=P, , (4.23)

sink„r D
(), (r,)) = exp — ,'„'))—

(2vrB)"'r B'

D= ~).) e p(
— '')). —„

82
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On the other hand, as we also show, the ratio of the
second order correction term to the first-order correction
term is independent of concentration, but is propor-
tional to TD/T„where

Roughly, therefore,

l(kolg( )I k-)I'

p

I(kolg( )I k )I'

1/T, =E/d—o,

1/T g)
=D/d'

(4.31)
64m TD

9 T 2

d being the lattice constant. Thus, as D becomes infi-

nite, the case of negligible diffusion barrier among the
I spins, we can neglect the second-order terms. The
relative size of the first- and second-order terms thus
indicates the importance of the diffusion bottleneck.

Using Eqs. (4.19) and (4.30) we see that the expo-
nentials 'A for m&0 decay rapidly compared to that
term m=0, so that after a short time we are left with
only a single exponential of rate ) p.

Since pp
——0, we have

I &kol g( ) Ik-) I'
Xo= (kolg(r) lko) —P ~ (4 32)

Inserting explicit forms for lkp& and lk„& (in the limit
k b«1) enables us to evaluate the matrix elements. We
find

(k, l g(r) I ko) =Z/Il'b'. (4.33)

The outer boundary 8 can be related to cs, d, and the
number of spins per unit cell I* (v*= 4 for fcc NaC1),
assuming b is equal to the nearest I spin distance
b= d/v2

BP= 3d'/4ire*cs . (4.34)

Using Eqs. (4.31) and (4.34) we find

(kp I g(r) I kp) = 8v2m*cs/3T, , (4.35)

(kpl g(r) I k )=167r'N*n cs/3v3T. , k.b«1 (4.36)

, p = (4~e*cs/3)"'~ '~'/Tn (4 37)

Utilizing Eqs. (4.36) and (4.37) we see that

The second-order term can be evaluated more accu-
rately by using the exact boundary condition at r= b in
computing the matrix elements, replacing the sum over
k„by an integral over k and doing the integration. The
result is

I (kolg(r) Ik ) I' 64~2irl*cs To
(4 42)

T.2

This equation verihcs our previous statement that
the first order and second order terms are both propor-
tional to cs, but that their relative magnitudes go as
Tg)/T. .

The resultant decay rate Xp is therefore

8%2ire*cs 64V2me*cs Trp

213T T.2
(4.43)

The second term, being negative, reduces the de-
struction rate. It describes the bottleneck. Higher-order
terms in the perturbation expansion can easily be shown
to be proportional to cs and progressively higher powers
of To/T, . The fact that the relative importance of the
two terms in Eq. (4.43) is independent of concentration
is physically reasonable since the bottleneck should
occur close to r= b, and should not depend on the dis-
tance to the outer boundary r= B.A schematic diagram
illustrating the perturba. tion theory is shown in Fig. 9.

A straightforward interpretation of Eq. (4.43) is to
define two times Tqs and Tq~, the decay times we would
have if TD or T, are respectively taken to be zero. Ke
assume the total decay time to be the sum of the two
since it can never go faster than the slower of the two
times. Then

is proportional to (cs)"' but is independent of e since
0.„2 in the denominator is exactly canceled by n„2 in the
numerator. If the terms were strictly independent of e,
the summation in Eq. (4.32) would be infinite. In fact,
however, the term is only independent of e for k b(&1.
An evaluation of the matrix element without this re-
striction shows that the terms begin to drop signifi-
cantly when

(4.38)

Utilizing Eq. (4.18), we see that the number of terms
E with k less=than or equal to any value k„ is

1V=k„B/x, (4.39)
so that

p
———— —.

Trs+ Trr

If Tls»TJr we can expand to get

p 1 e ~ e

TIs Tls

Comparing this equation with Eq. (4.43) we get

1 8%2 n*cs

TIs 3 Tx

1. 7%2 e*cs
)

TD

(4.44)

(4.45)

(4.46)

8 1 3
1V= —=—

2b W2 4prm*cs)
(4.40)

8V2xe*cs
Xp=

T,+(8/7) Tg)
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and
Trr 8 Tg)

Trs
(4.47)

UNPERTURBED
STATES

g(r)=:0

PERTURBED
STATES

g(r)4O

We can therefore interpret Fig. 5 in simple terms.
Assuming that no bottleneck has time to form for the
two pulses, we have that curve A for long t; corresponds
to a decay rate of 1/Tzs, but that when t; is zero the
decay rate is 1/(Tzs+Tzz).

We have derived an equation of the form of Eq. (4.45)
by perturbation theory. It is tempting to believe that
Eq. (4.44) is however more accurate than Eq. (4.45),
and would in fact be the result of summing the second-,
third-, and higher-order perturbations exactly. We shall
assume Eq. (4.44) to be exact.

We get, therefore, from Fig. 5 that

Trs+ Trr
(4.48)

C

O

9/4e~

~%M/

.gO

~ 2 2 . 2
A ~2g2 c 2/5p,I-A

)
7T Q.

)
C

Jl

or that
Trs 1.7

ho=Ape{ I- 8K 4)

Trs
(4.49)

~ +o=o

We can calculate T, and T~ from first principles. We
have to estimate the values of D and E.If the resonance
condition in the rotating frame

oIqo

~&Vs&zs=yz&i (4.50) A
8VZ~n+ K2 p

X

is Inatched we can calculate the probability 8'ra for a
mutual I-S spin Qip Qop transition in a manner similar
to Bloembergen's calculation of the spin diffusion con-
stant. A more detailed theory has been given by
Khutsishvili" which yields, if extended to spin»

(Po
lfzzs =

I

—&'y4(&rs) 'T2(1 —3 cos'8rs)'
842 (44z

FIG. 9. Rate eigenvalues and matrix elements for a
spherically symmetric diQ'usion problem.

As pointed out in Sec. III 3, in our case c, is equal to
the impurity concentration, c. We get, therefore, that
the theoretical value of Tr8 is

1/Tzs=670c sec '.
X t(mzmstI+S +I S+~mz'ms') t'. (4.51) The experimental ) 0 is

C(r) =&i» '

where numerical evaluation gives

1/T, =E/d4 14 sec. '—'—
Similarly we estimated the diffusion constant,

(4.52)

(4.53)

giving
1/Tg& =D/d'=180 sec '—

Trr/Trs= 0 09 ~

(4.54)

to be contrasted with the value of 0.4 determined from
the intermittent pulse experiments.

rr8 is the distance from an I nucleus to an S nucleus,
Bra the angle between the line connecting them and the
external magnetic field, Ho. If we assume a homogeneous
distribution of I spins, and average over the angular
function, we can approximate the dipolar coupling rate
from an S spin to an I spin at a distance r by

(Xo), ,=600c sec '.
Using Eq. (4.48) this gives the experimental value of
Tr8 as

1/Tzs=840c sec '.
The fact that the theoretical Tra is fairly close to this
value suggests our estimate of D is too high, at least for
the region near the impurity, perhaps because the model
has simplified many of the details of the real situation.
In fact, the agreement for Tra is much better than one
could reasonably expect, in view of the crude approxi-
mations we have made.

We do not know what causes the decrease in the
double-resonance sensitivity at higher, concentrations
which was found experimentally. Our estimates tell us
that perturbation theory is still valid. However, inter-
actions between the impurities may become important,
and there may be aggregation to pairs or groups of im-
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purities, thereby reducing the number of active
impurities.

Spin diffusion does not seriously limit the double reso-
nance sensitivity in our case. Our leading term corre-
sponding to D= ~ is identical with that of Blumberg. '4

However, as we see it is possible to observe the small
bottleneck and to account for it approximately by a
simple theory.
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APPENDIX: SPIN-LATTICE RELAXATION IN
DEMAGNETIZED STATE

At the beginning of each experiment we measured the
spin-lattice relaxation time of the Xa nuclei at 77'K.
The spin lattice relaxation time in the laboratory frame,
which was determined from the recovery of the magne-
tization after complete saturation, was independent of
the impurity concentration T&——250~20 sec. It was in
all cases a single exponential relaxation within the ex-

perimental error.
The spin-lattice relaxation time in the rotating frame,

T~„was determined from the approach to thermal
equilibrium of the I spins after a complete adiabatic
demagnetization in the rotating frame, as measured by
the size of the FID signal after adiabatic remagnetiza-
tion. Figure 10 shows the results for different concen-

IQ
0.9
0.8
0.

trations of silver impurities. After a few seconds the
approach to thermal equilibrium for all samples was ex-
ponential with a time constant T~,——105&10sec. How-

ever, in the first few seconds the magnetization de-
creased rapidly and the size of this initial spike was
larger for higher impurity concentrations.

This result closely resembles the results obtained by
Hebel, " who measured the spin-lattice relaxation at
zero external field in aluminum with zinc impurities
and by Fernelius, ""who made further detailed studies
of the cross-relaxation. We do not want to go through
a detailed analysis here but will rather give a qualitative
explanation. There are two groups of nuclei: Spins close
to an impurity, which have quadrupole split tings
greater than the rms dipolar splitting, will be called the

Q system; spins which are sufficiently far from the im-

purity that the average dipolar interaction exceeds the
quadrupole splitting will be called the dipolar system, D.
They are represented by their spin Hamiltonians, BC@

and Xn, respectively. (Note: Fernelius"" showed that
for zinc impurities in aluminum, part of the Q system
should actually be added to the dipolar system, D. This
part corresponds to nuclei with a small quadrupole
coupling which exchange energy very rapidly with the
dipolar system. )

If we perform the adiabatic demagnetization in the
rotating frame, the dipolar system is brought to a very
low temperature

0,= Oi,gt;,.Hz/Hp=5&&10 "K, (A1)

for Hr, ——0.68 6, Hp 10 kG, O~.tt;,.————77'K. The Q
system remains at a higher temperature since it is not
at resonance. As a crude approximation we assume that
the Q system remains at the lattice temperature, so that
its contribution to the total energy immediately after
the adiabatic demagnetization is negligible. If the quad-
rupolar and the dipolar system can cross-relax at a rate
fast compared to the spin-lattice relaxation, they will

reach a common temperature 0+y which can be calcu-
lated using the energy-conservation condition"

0.

O.

M (t)
M (o) 0.

0.

CH p/QH, .=C(H p+H p)IQH

where we have used the abbreviations

Hj, Tl KD
kC (2I+1)"

HQ TrBC@
kC(2I+1)~

(A2)

(A3)

(A4)

0 I
I I I I I I I I I I

IO 20 50 40 50 60 70 80 90 IOO 120
t (sec)

Pro. 10. Spin-lattice relaxation in the demagnetized state for
NaCl with Ag+ impurities. The magnetization of the sodium
nuclei is plotted versus the time they have been in the demagne-
tized state. The impurity concentration was 0.03, 0.11, 0.3, and
0.5% for A, 8, C, and D, respectively.

(C= Curie constant, k=Boltzmann constant). Curie's
law then gives

~,/Mr = O~r/0, = 1+H o'/Hz, '. (AS)

2' L. C. Hebel, Jr. , Phys. Rev. 128, 21 (1962)."L. C. Hebel, Jr., in SolQ State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1963), Vol. 15,
p. 409.
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Thus, the ratio of the quadrupolar to the dipolar heat
capacity is

(A6)
lo—0

H@s/Hl, '- 200c. (A7)

If we knew the 6eld gradients at the individual lattice
sites we could calculate H@',"

(AS)

where vq; is the 6rst-order quadrupole shift of the tran-
sition between the states (m, )= (

——,') and ~ns;)= (
——,')

of the nucleus i. The sum must be extended over all
nuclei i of the Q system which can cross-relax with the
I spins. Thus our simple model results in a concentration
dependence of the heat capacities which agrees with the
experimental data.

vo is known only for the six (2,0,0) neighbors of the
silver impurity. We can therefore estimate their con-
tribution to the quadrupolar heat capacity. The result is

Ho'(2, 0,0)/Hl. '= 1750c, (A9)

which is much greater than the experimentally deter-
mined value. This indicates that the quadrupole shift
of these nuclei is too large to allow cross-relaxation with
the D spins in times shorter than the spin-lattice re-
laxation time.

M; is the magnetization before cross relaxation took
place and off can be experimentally determined by ex-
trapolating the exponential decay to 1,=0.

A plot of (3f;/Mf) —1 as a function of impurity con-
centration is shown in Fig. 11.For the two lowest con-
centrations, 0.003% and 0.007%, the heat-capacity
ratio was independent of concentration. This indicated
that crystalline strains and impurities other than silver
contributed a quadrupolar heat capacity about 4% of
the dipolar heat capacity. For concentrations from 0.03
to 0.5% the ratio was approximately proportional to
the concentration,
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FIG. 11. Ratio of the initial magnetization, M;, to the magne-
tization remaining after the quadrupole-dipole cross-relaxation,
3ff, 3ff is obtained from Fig. 10 by extrapolating the slowly re-
laxing component to t=0. The value of JI;i'—1 is interpreted
as a measure of the ratio of the quadrupole heat capacity to the
dipole heat capacity.

The number of Q spins which do cross-relax can be
estimated as X@=Eceo,where A' is the total number of
spins, c the fractional impurity concentration, and eo
the so-called wipeout number. That is the number of
sodium nuclei per impurity for which the quadrupolar
interaction is greater than the average dipolar inter-
action. Kornfel'd and Lemanov' have determined no
for Ag+ in NaCl to be on the order of 100.

The experimental value forjthe heat-capacity ratio
allows us to estimate the average quadrupole field hg'
of the nuclei which are most eAective in the cross-relaxa-
tion process

Hq'/Hr, '= eshqs/Hr, '= 200. (A10)

Solving for v@ gives a result which suggests that the con-
tribution to the cross-relaxation is greatest for Q nuclei
whose quadrupole splitting is about three times the rms
dipolar interaction.

' M. I. Kornfel'd and V. V. Lemanov, Zh. Eksperim. i Teor.
Fiz. 43, 2021 (1962) LEnglish transl. : Soviet Phys. —JETP 16,
1427 (1963)j.


