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Tight-Binding Calculations for d Bands*
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The accurate tight-binding method used by Lafon and Lin has been extended to treat d electrons in
transition metals. Formulas to evaluate three-center integrals are presented and applied to the calculation
of the M bands of nickel. Contrary to the usual assumptions in tight-binding calculations for d bands,
especially in interpolation or pseudopotential schemes, it is found that the 6rst-neighbor approximation
is not adequate to obtain convergence in matrix elements, and that beyond 6rst neighbors the two-center
approximation fails badly. Three-center integrals are presented for the 6rst four neighbors and used in a
tight-binding calculation for the d bands of nickel. In the following paper, these results are used in a pseudo-
potential scheme to caclulate energy bands of ferromagnetic nickel.

I. INTRODUCTION

~CALCULATIONS of energy bands in transition~ metals' are complicated because of the presence
of d electrons which occupy narrow energy bands lying
in a broad s-p band. The relative positions of the bands
are sensitive to small changes in the crystalline potential
and to the form of exchange potential which is used, so
self-consistent solutions are needed. However, calcu-
lational methods which work mell for narrow bands
do not for broad ones, and vice versa, and until.
recently the only method which proved fruitful was
the augmented. -plane-wave (APW) method. ' In its usual
applications, this method suffers from certain in-
adequacies, chivy the muffin-tin potential approxi-
mation, which, even in a self-consistent calculation,
leaves some uncertainty in the relative position of the
d bands and some doubts about the details of the Fermi
surface. ' This approximation is even more serious in
transition-metal compounds. 4

Recent developments which look. promising for the
transition metals are the combined interpolation
schemes developed by Hodges ef al. ' and by Mueller, '
in which d bands are treated by the Slater-Koster'
form of tight-binding and the s-p bands by the pseudo-
potential method in a manner similar to Harrison. '
The parameters in these schemes can be chosen to
reproduce accurately first-principles calculations or can
be adjusted to obtain agreement with experimental
information. One advantage of interpolation schemes
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is that computations are quite rapid, permitting a large
sampling of points in the Brillouin zone in a reasonable

time, for a density-of-states calculation, ' for example.
Another advantage is that inadequacies in the potential
used for the first-principles calculation can be corn-

pensated conventiently by adjustment of parameters
to obtain agreement with experiment. This approach
has worked in nickel. '

Successful application of interpolation schemes based
upon tight-binding expansions for d bands suggest that
first-principles tight-binding calculations should be
reconsidered. Lack of any good quantitative results in
previous tight-binding calculations for transition metals
has been difficult to assess, since errors could be due to
potentials which were not self-consistent, or to any one
of several approximations which are customarily made
because of computational

difhculties.

One of the
stronger objections has been that tight-binding func-
tions do not form a complete set of states, and, what
may be more important from a practical point of view,
do not include any continuum states. These objections
have been removed by the work of Lafon and Lin, '
who applied the tight-binding method to metallic
lithium using a potential for which accurate orthogo-
nalized-plane-wave (OPW), augmented-plane-wave
(APW), and Green's-function calculations were avail-
able. The principal result of their investigation was
that the tight-binding method is capable of yielding
accurate results, but only if the usual approximations
of neglecting three-center integrals and of restricting
the sum over neighbors to the first or second neighbors
were not made. To do this they carried all sums to
convergence and used an accurate method for evalu-
ation of three-center integrals.

In this paper the method of Lafon and Lin is extended
to handle d electrons in order to perform more accurate
tight-binding calculations for transition metals. In the
case of d bands the integrals are substantially more
difficult to obtain, but, on the other hand, the sum over
neighbors should converge more rapidly. It is expected
that the method which worked well for s and p electrons

E. E. Lafon and C. C. Lin, Phys. Rev. 152, 597 {1966).
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i 1S(B)) (4)
[II. THREE-CENTER INTEGRALS

The basic quantity which must be calculated for d
electrons is the three-center integral These derivatives become quite tedious to work out

for d orbitals, since the expressions get lengthy. How-
ever, the great advantage is that three-center integrals
are reduced to a single one-dimensional integral which
can be evaluated simply to the required degree of
accuracy. The formulas which are obtained for all the
d-d integrals are tabulated in the Appendix to this
paper. Kinetic energy integrals may be handled by a
similar procedure, but standard programs for doing
these two-center integrals are available. "

(3d (A) i V(r) i
3d (B)),

where 3d(A) is an atomic orbital centered at site A, and
3d(B) is another centered at site B. V(r) is the crystal-
line potential which leads to three-center integrals, as
can be seen most clearly when V(r) is approximated by
a superposition of atomic potentials

V(r) =P( V, (r —R)),

in lithium will work as well or better for more tightly etc. For example,
bound d electrons.
I„"In the paper which immedia, tely follows, " results
obtained here for d electrons in nickel are combined with

Bng xn] 8A z)a pseudopotential scheme to include s-p conduction
bands and hybridization of s-p bands with the d bands.

where the sum is over all lattice vectors Rt. The
integral is conveniently done with a Fourier series
expression for the crystalline potential, a form which
is not limited to the approximation given by Eq. (1).
For crystals with a center of inversion

V(r) =P, V(k„) cos(k„rc),

where the sum is over all reciprocal-lattice vectors k„,
and r& is the radius vector measured from any lattice
site of the crystal. Integrals with this potential may be
done accurately if the atomic orbitals are given in
Gaussian form or as sums of Slater-type orbitals (STO).
In the latter case the orbital may be Laplace trans-
formed to obtain a Gaussian representation of the wave
function. A three-center integral calculated in this way
for a 1S STO is given in Ref. 9,

(1S(A) i
cosk„roi 1S(B))=2mnqn2rgs'

fP(fg) '"+3(fg) '+(fg) "j
Xexpf —(fg)'"j cos(k„r~D)dn, (3)

where f=u(1 N)r~s —g=k +nq/(1 —n)+nP/n and
n~ and n2 are the constants which appear in the ex-
ponentials for 15 orbitals at A and 8, respectively. The
variable rt.-D is defined by r&D ——rz —rD, where rD is the
radius vector measured from the point D, which is the
point about which is centered a single Gaussian equiva-
lent to the product of the two Gaussians derived from
orbitals at the points A and B. Integrals for orbitals
with higher angular momentum or higher principal
quantum number can be obtained from the 1s integral
by partial differentiation with respect to 0.&, ot2, A, 8,

' J. Calloway and H. M. Zhang, following paper, Phys. Rev.
Bl, 305 (1970).

III. APPLICATION TO NICKEL

Formulas given in the Appendix for d electrons have
been used to calculate tight-binding matrix elements
for nickel. The crystalline potential for nickel was taken
as a superposition of spherically averaged atomic
potentials constructed to correspond to a 3d'4s' con-
6guration. However, wave functions used to construct
the potentials were taken from Clementi's calculation"
for a 3d'4s2 configuration. For spherically averaged
atomic potentials, Fourier coefficients of the crystalline
potential depend upon the magnitude of k only, and in
atomic units, are given by

224m Sx
V(ik. l) = — +

00ik„i' Qp/k„i'

XP„$ i
U'„$i sin(ik„ir)r dr, (3)

where U„~ are the radial parts of the atomic orbitals
multiplied by appropriate occupation numbers and 00
is the volume of the unit cell. The complete Clementi
wave function was used in constructing the potential,
in forming Bloch sums of atomic orbitals, and in evalu-
ating integrals. The lattice constant for nickel was
taken as 6.65454 a.u.

Exchange-potential integrals were calculated sepa-
rately using a p"' approximation. The charge density
in the cell at the origin was obtained by summing the
charge due to the first five shells of neighbors. A cubic
harmonic expansion of p"' was made and Fourier co-

"Quantum Chemistry Program Exchange, Chemistry Depart-
ment, Indiana University, Bloomington, Ind. 47401

+ E. Clementi, Tables of Atomic Functions (IBM Corp. , San
Jose, 196S).
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TABLE I. Independent three-center integrals. Column 3, kinetic plus potential energy; column 4, Slater exchange potential;
column 5, overlap integrals.

Integral

xy, xy
3z2 —r2 3z2 —r2

xy1 xy
xy) xy
xy) xz
x2 y2 x2 y2
3z2 —r2 3z2 —r2

3z —r
xy, xy
xy, xy
x2 y2 x2 y2
3z2 —r2 3z2 —r2

xy) xy
xy, xy
xy7 xz
xy, xz
x2 y2 x2 y2
3z' —r' 3z' —r'
xy) 3z —r
xy) 3z —r
yz, 3z —r
xy, xy
xy, xy
xy) xz
x2 y2 x2 y2
3z2 —r2 3z2 —r2

xy) 3z —r

Neighbor

000
000
110
101
011
110
110
110
200
002
002
002
211
112
211
112
112
112
112
211
112
220
202
022
220
220
220

KE+PE
(Ry)

3.068580
3.071944—0.011861
0.0095334
0.013563
0.022098—0.0060100
0.0049848
0.0021099—0.00036745—0.00074436—0.0041559—0.00043833—0.000)3124—0.00086815—0.00020191
0.00017601—0.00030271—0.00028109
0.000046395—0.00051831—0.00069908
0.0000032347
0.0000222188
0.000019317—0.00023901
0.00039125

Exchange
(Ry)

—3.813905—3.811621—0.024091
0.0078754
0.012076
0.018289—0.010101
0.011641
0.0026407—0.00032069—0.00043323—0.0044223—0.00026864—0.000038024—0.00066016—0.00015190
0.00016703—0.000037912—0.00034960
0.000041325—0.00045745—0.00036740
0.000048957
0.000059859
0.00010167—0.00012394
0.00020253

Overlap

1.0000
1.0000
0.016737—0.0061056—0.0092478—0.015353
0.0076737—0.0078489—0.0020257
0.00027525
0.00027525
0.0043343
0.00022428
0.000033202
0.00047039
0.00012739—0.00010236
0.000016849
0.00031779—0.000068827—0.00015890
0.00023502—0.000041662—0,000049807—0.000091470
0.000083771—0.00013099

efficients evaluated by integrating over the Wigner-
Seitz sphere. Nonspherical components were then
dropped for convenience, since they were found to
contribute less than 1% to the total.

Matrix elements needed for the tight-binding method
can be written~

with

II. (k) =P(R;) exp(ik R;)E„„(R;), (6)

E„(R;)= q „*(r)Hq (r—R;)dv,

where q „and y are the atomic orbitals. The overlap
matrix is

S„„=P(R;)exp(ik R;) y„*(r)q (r —R;)dv,

and the secular equation is

det)H;; —ES;;~ =O.

The number of independent E integrals can be greatly
reduced by symmetry consideration. From group
theory it follows that, for example,

A,„,,s „m(abc) = ', E,,„:„(cba)+ss-E.„,s,~ „*.(cba), (8).
which is a relation between an integral with d functions
transforming like xy located at the origin and d func-
tions transforming like x'—y' or 32,'—r' at the points
(abc) or (cba). Coefficients multiplying the integrals
on the right of Eq. (8) are determined by transformation

properties of d functions under an operation of the
cubic group which takes point (abc) to (cba). Similar
equations hold for other operations and other types of
integrals, so that for the first four neighbors there are
only 27 independent potential integrals.

Integrals needed for forming matrix elements in the
tight-binding method are given in Table I for the erst
four neighbors. Integrals for the potential given by
Eq. (5) plus the kinetic energy are listed in column 3,
while the Slater exchange-potential integrals are given
in column 4, and overlap integrals in column 5.

It is sometimes desirable to adjust the form of the
exchange potential by choosing a different over-all
numerical factor; for example, multiplying by —,

' to get
the I&ohn-Sham form. '3 This can be accomplished
simply by introducing a factor X to the exchange-
potential integrals as they are added to kinetic and
Coulomb integrals to form matrix elements. Unless
otherwise stated, results quoted in this paper were
obtained for X=0.85, a value suggested in Ref. 10.

A common approximation found in tight-binding
calculations is neglect of three-center terms appearing
in (7). The energy integrals can then be written in the
two-center approximation in terms of atomic orbital
two-center integralsr (ddo), (dd~), and (ddt). Relations
given in Ref. 7 may be solved simultaneously to yield
these two-center integrals from the three-center results
given in Table I, but, depending upon which relations
are used, different values are obtained. A measure of

'3 +. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1963).
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TABLE II. 1'wo-center integral equivalents for 6rst neighbors.

Two-center
parameter

KE+PE
(Ry)

—0.01479—0.01464—0.01464

0.02215
0.02210
0.02310
0.02210
0.02210

—0.003085—0.004030—0.003132—0.003132

Mean
(Ry)

—0.01469

0.02231

—0.003345

Exchange
(Ry)

—0.03109—0.03026—0.03026

0.01829
0.01886
0.01995
0.01829
0.01829

—0.003106—0.004201—0.003380—0.003380

Mean
(Ry)

—0.03054

0.01874

—0.003517

Overlap

0.02127

—0.01535

0.003142

validity of the two-center approximations is the vari-
ation of these results. This is shown in Table II for the
first-neighbor integrals for several of the relations.
Overlap integrals are two-center integrals, so the same
result is obtained for each set of relations. Evidently,
the two-center approximation is valid to about 5—

10%%u~

for first neighbors, with the greatest variations occurring
for the (ddt) integral. Mean values of two-center
integrals for first neighbors are compared in Table III
with the values calculated by Fletcher and Wohlfarth, '4

Hodges et al. ,
' and Zornberg. "The Fletcher-Wohlfarth

parameters have been corrected by a factor of —,'~ as
suggested by Allan et al. ,

"and mean values of Hodges'
two-center integrals are listed. The Fletcher integrals
were calculated directly using a model muffin-tin
potential and copper wave functions, while Hodges'
and Zornberg's integrals were obtained from three-
center and two-center fits to APW calculations,
respectively.

For second and third neighbors, the two-center
approximation fails badly: Variations of the integrals
by factors of about 5 are found, so that no approxi-
mately consistent set could be obtained.

For first neighbors the three-center integrals obtained
from this calculation may be compared with three-
center parameters obtained by fitting' an APW calcu-
lation" and by fitting a Green's-function calculation. "

This is done for the six independent first-neighbor
integrals in Table IV, using a factor of 'A=0.85 in the
exchange potential. Three-center integrals from the
present work are consistently higher than the param-
eter values, the largest discrepancy occurring for the
x'—y' integral. Aside from differences in crystal
potentials for the calculations, discrepancies could be
expected due to the fitting procedure, which neglected
overlap integrals and included only first neighbors in
calculating matrix elements.

Errors produced by neglecting contributions from
other neighbors can produce substantial changes in the
band structure, or, conversely, cause changes in
parameters fit to bands which include more neighbors
implicitly. This is clearly evident in Fig. 1, where a
portion of the d bands of nickel are shown in the first-
neighbor (broken lines) and fourth-neighbor (solid
lines) approximation. While the fourth-neighbor bands
are convergent to less than 0.005 Ry, there are quaH-

tatA e differences in going from first to fourth neighbors:
relative positions of levels X1 and X3 are interchanged,
causing a crossing of bands along 6, and the separation
of levels X2 and X5 changes substantially, although the
order remains the same. For the potential given by

TABLE IV. Comparison of three-center integrals
for 6rst neighbors.

TABLE III. Comparison of two-center integrals
for first neighbors.

Present work Hodges et g/. ' Wakoh"
(Ry) (Ry) (Ry)

X=0
(Ry)

) =0.85
(Ry)

Fletcher&
(Ry)

Hodgesb
(Ry)

(ddo) 1 —0.01469 —0.04065 —0.0390 —0.0384
(ddt') 1 0.02231 0.03824 0.0210 0.0228
(ddt01 —0.00335 —0.00633 —0.0030 —0.00565

Zornb erg
(Ry)

—0.038
0.0173

—0.0017

E,„,„(110)
E 1I, y(011)
E y, „(011)
E 2 2 2 2(110)
E3,2 „~32 ~(110)
E,y, 3z r2(110)

—0.03234
0.01623
0.02271
0.03764

—0.01460
0.01488

—0.03037
0.00899
0.01559
0.02091

—0.01248
0.01421

—0.02643
0.00766
0.01504
0.02495

—0 01271
0.01649

' Corrected by factor of $m- (Ref. 16).
b From three-center fit to APW calculation (Ref. 5).
& From two-center fit to APW calculation (Ref. 15).

' G. C. Fletcher and E. P. Wohlfarth, Phil. Mag. 42, 106 (1951).
i5 E. I. Zornberg, Phys. Rev. Bl, 244 (1970).
"G. Allan, W. M. Lomer, R. D. Lowde, and C. G. Windsor,

Phys. Rev. Letters 20, 933 (1968).

& Reference 5.
b Reference 18.

"J.G. Hanus, M.I.T. Solid State and Molecular Theory Group
Quarterly Progress Report No. 44, p. 29, 1962 (unpublished).' S. Wakoh and T, Yamashita, I. Phys. Soc. Japan 19, 134)
(1964).
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FrG. 2. Energy bands along symmetry axes. Exchange parameter
X =Q.gs. Matrix elements summed to convergence.

FIG. 1. Energy bands along 6 axis. Broken lines are Grst-
neighbor approximation; solid lines are fourth-neighbor approxi-
mation. Exchange parameter X =O.gs.

Eq. (5) and with the exchange parameter X=0.85, the
order obtained for X5 and X2 is reversed from that
obtained in previous calculations' ""for paramagnetic
nickel. This order is sensitive to the crystal field
splitting

AE=&,„,,„(000)—E ~ „2,,2 „~(000),

and may be in error because of the form of the crystal
potential, a superposition of spherically symmetric
potentials. This question could best be resolved by a
self-consistent calculation, not restricted to this form.

The band structure along several lines of symmetry
is shown in Fig. 2 for X=0.85. The d band width is
calculated to be 0.377 Ry, which may be compared
with 0.304 Ry for Ref. 19, and 0.37 Ry for Ref. 17. The
major qualitative difference from previous calculations
is the position of the X5 level.

IV. CONCLUSION

The three-center integrals given in the Appendix
have been used to calculate energy bands for a potential
constructed to represent paramagnetic nickel. Although
the potential was a superposition of spherically averaged
atomic potentials, formulas in the Appendix are not
limited to this form, nor are they limited to a muf6n-tin
form. In performing the band calculation, special
attention was paid to approximations involved, but no
attempt at a complete first-principles calculation for
nickel was made. Conclusions drawn are: (1) The first-
neighbor approximation is inadequate for accurate
tight-binding matrix elements for the d bands, (2) con-
vergence in tight-binding matrix elements is obtained

"J. Yamashita, M. Fukuchi, and $. Wakoh, J. Phys. Soc.
Japan 18, 999 (1963).

after third or fourth neighbors, (3) the two-center ap-
proximation is valid to about 5—10% for first neighbors,
but not justified for other neighbors.

These conclusions, of course, do not invalidate a
pseudopotential scheme based upon one of these
approximations, but give an indication of the accuracy
which might be obtained from such a calculation, and
qualify interpretation (in terms of first-principle results)
of parameters obtained from a fitting procedure.

One of the problems with combined pseudopotential
schemes, especially for ferromagnetic-band calculations,
is the large number of parameters which enter the
calculations to fit only a limited amount of data. In
addition to tight-binding parameters, there are pseudo-
potential, orthogonalization, and hybridization co-
efficients, spin-splitting factors and the spin-orbit
parameter needed to obtain detailed agreement with
experiment, for example, Fermi-surface data. It is
suggested" that the d-band part of these combined
pseudopotential schemes could be treated by 6rst
principles, using the results of this paper and a rea-
sonable potential to eliminate d-band parameters,
while treating the remaining interactions as before.
This would have the advantage of reducing the number
of free parameters while increasing accuracy of the d
bands. In addition, the pseudopotential scheme would
not depend on a fit to another first-principles calcu-
lation (APW, for example), but could evolve indepen-
dently, relying only upon experimental data as in the
usual psuedopotential methods. ' This approach is used
in Ref. 10 to calculate the band structure, spin splitting,
and spin-wave effective mass in nickel.
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APPENDIX

Expressions of the type given by Eq. (4) are presented in this Appendix. In addition to the definitions made
in Sec. II of this paper, the folio@ring are convenient:

/' 3 3
A, =A +

&(fg)" (fg)'

1+-
(fg)"'~

15 15 6 1
A2 f'I +- + +

)((fg) / (fg) (fg)2/ (fg) l

t' 105 45 1
A =f'i + + + — +

k(fg)" (f'g)' (fg)' (fg) (fg)" ) '
10

( 945 420 15 1 ))

+ +— + + +-
(fg) 11/2 (fg) 2 (fg) 2/2 (fg) 4 (fg) 7/2 (fg) 3)

105

4725( 10395 21 1
A2=f'I — + +- + + + +

&(fg) "(f"g) (fi)'"(,f"g)' (fi:)" (fg)'' (fg)'")
21010395

(K„).=E.,

(K„)„=If„,

(K„),=K„
h=u(1 —u).

In terms of these quantities, unnormalized three-center integrals for 3d Slater-type orbitals become

(3d „(A) ~
cosK, « ~3d,„(B))=2)rn1n2r~s2 gD,2D„2h2 cosK„ron A1

+t —(D„'+D,') cos(K„rcD)+(E,D,D„2+K„D 'D„)(1—2u) sin(K„ron) jhA2

+ ($K„E,D,D„( 1+4u 4u2)+—hK,2D—„2+hD,2K„2+1jcos (K„ron)j(2u 1)(K„D„+K—j),) sin(K„. ron) }A2

+P—(E,'+E„') cos(K„ron)+(E,2E„D„+K~JD,)(1—2u) sin(K„ro22) jA4

+K 'E ' cos(K„rcD) A,ge
—( )'"du,

(3d"(A) I
cosK «I3d" (B))=22rn1n2r»2 CD"2D D. cosK 'r

+f —D,D, cosK„rer)+/D„((1 —u)K, D, D,uK, )+D„D,D, (1 2—u)E„j sinK—„rc22}hA 2
i

+fggh(K„K, D,D„+Ig AD, D,+K,E.Dy2+KyK D,D„)+K„D„( K.D.(1 u)' E—,D,u2))—cos (K—„ron)

+L—E,D, (1—u)+D,K,uj sin(K„ron) }A2

+($(1 u)K„K,(KyD, +K—,D„) uKyK, (K,D„+K—„D,)j sin(K„ro22) K~, cos(K„.rc22—)}A4

+E K E 'cos(K ron) A27e («)"'du,

(3d,„(A) ~
cosK„re

~
3d, , (B))=22rn1n2r»2 {(D,'D,„D„'D,)cos(K„ron) h'A—1.

+$(IC,D 'D —jC D 'D ) (2 —3u) —(D,2IC„D„2IC,)u] sin(K„roD) hA 2—
+L((E ' K2)D,Dy(1 —u)(3u —1)+(D,—' —D„)2,EEg(u2 —3u)) cos(K re))+2(K„D, K~„)sin(K ref))—jA3
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+[((K,'D„E—„'D.) (1 u—)+(K 'E D K—'Kg)„)(1—3u)) sin(K„rq~) 7A 4

+(K 'E„K—„'K.) c'os(K„rcpt) A r,}e &r—g&'"du,

(3d, „(A) I
cos(K„rcl3d *—w'(&)) =2~n,n2r»' ((D,' —D„')' cos(K„rgo) h'A i

+[ 4(D '—+D ') cos(K rpz))+(K@7~ '+K„D„D ' O'K——Dy'K„)2(2u —1) sin(K„red)]hA2

+[4(2u —1)(K,D,+K„D„)sin(K„rqD)+( —(6u' —6u+1)(E,'D,'+K„'D„')+(1—2u+2u')

X (K„2D 2+If 2D~2) ShIC K—yD Dy+4) cos(K„'rgD)]A ~

+[2(2u —1)(—E 'D, E„'D„+—E„'K,D,+K„K,'D„) sin(K„rgo) —4(E '+K„') cos(K„re)]A 4

+(E ' K')'cos—(K„rgg)) A, )e &fg~'"-du,

I

(3d„,(A) I
«s(K «l3d"-w'(&)) =2~n&n2r»' f&~D.(D*' Dw') «s(—K. rcD) h'A~

+([2(1 u)D„D, (K—,D, K„D„)+u—(D„' D,')(K„D—,+K,D„)]sin(K. rcD)+2D„D, cos(K. reD))h42

+f[2(1 u)K„D, —2uK.D„]—sin(K„«o)+[—(1—u)'D„D, (—K„'+K,')+2h(K, KyD,D,+K,K,D,D„

K„'D„D,) K—,K„gu—'D,'+u(2(1 u) —u—)D„'P] cos(K, rqo) )A ~

+([(1 u)K, '(K„—D,+K,D„)+(1 u)K„(—K,D„K—„D,) 2—uK, K„(—K,D, K„D„)]s—in (K„«D)

+2E„K,cos(K„.rgb) }A4

+(K.'E „E, ZCy'K, ) cos—(K„r,o) A,ge «~'"-du,

(3d»(A) leos(K„rq) l3d~, c „~(B))=6~nin2r»' D,2D„D.cos(K„rgg)) h'A g

3nPD.D„]cos(K„rgg)) —)A 3

N —2
+ E„E.coc(K„rcpt)+((1—ajK.'(IC„D.+K~„) 2ctC K K—D +. . „.-l —N

(~&.Dw+~&uD*)
l

3 (1—u)

+([2(1 u) h—7D„D cos(K, —rcD)+[2K,D,D„D.(1 u) u—D, (D,K„+K,D—„)]hsin(K„r~&))A&

+((D,K„+K,D„)(u —2) sin(K„rcD)+[—K'D D*(1 u)2+2K.D,K„D,—h+2K,K,D,D„h KK„D,'gp—

Xsin(K. rgo) A4

( 'Kn2,K„)
+l Kg'K„K, +

l
cos(K„rgg)) Ag e «g&'"du—

,
3(1—u)']

{3d..(A) l cos(K„rg)
l 3', „.(8))=6mn, n,rge'-D.'D cos(K„re)h'A i

+f [(2—3u)hE.D.'D —uhD, 'E,]sin(K„.rqq)+[ —3h+2(1 u)]D D, cos(K„—red) )A 2

+([(3u 4)KsD +(3u —2)E,D.]sin(K„rex) +[K*' DD*(1 u)(3u 1)+u(2 3u)K*K D '

3nPD, D.]cos(K. reo))A—, -
-K.K,(3 -4)

+ cos(K. re)+l K,'D, (1—u) K,'K,D, (3u 1) +— (K,D —+K,D,) l
sin(K„rz&) A4

(1—u) i 3 (1—u) )
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A2 EzKg
+(K.'IC. + cos(K„reo) d, e

—«&'"do,
3(1—u)'

(3dK, r „s(A) i cos(K„rg) i 3da, r „r(B))=18vrninKr~D' D,'h' cos(K„.rqD) A i

+$—2(2u —1)hD.'K. sin(K„ra D)+(2 6h—)D,' cos(K, rqD))A~

+(6 (2u —1)D,E, sin (K„re)+t —(6u' 6—u+1)K,'D, ' ,—D—P(n P+aP )+3+2/h] cos (K„rcD))A ~

( nP n,')- 2 nP n2')
+ 2(1—2 u)E,' D+2/3E', Dis ——

i
sin(Ks rqD)+ (6u' —6u —1)E ' —— +

&1—u u) 3 u 1—u)

n 'E'
+(z. + +

3 (1—u)'

nl +s nl n2 )+ i
cos(K„rgD) A, e

—«)'"du,
3u' 9h' )

nP+n2

3
cos(K„rgD)/h A4

(3d, „(A) i cos(K„rg) i 3dK, „(B))=6~nin~r~s' ) cos(K 'rcD)h Al

+f L2(1 u) (D ' —D')+h(D '—D')$ cos—(K„rqD)+$(1 u)K,D, (D,,' —D„')+uD, '(&—„D„—E~D,) j2h

)&sin(K„rgD) )A 2

+{(4—2u) (K„D„—E,D,) sin(Ks rqD)+-'n 'D '+ (1 u)'ECP (D„' —D,')+u'-Dc (E—„' K,') — KnD2,'—

i4hE, D,(K~, K„D„)]co—s(K„r ) ) A

+ i
2E,'(1 u)(K—~, E„D„)+2uK—(Z 'D, K,'D,) + — —(K,D, K„D„) i

sin—(K„rqD)

Q 2
+ (g ' —g ) + (g E)

i
cos(K—„~re) A4

1—u 1—u j
E 2nqK )+(IC'K'+ —K'E' —— ~cos(K roo)ds e 'e ""dg.

3 (1—u)' 3 (1 u)'i—


