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A unified treatment is given in the adiabatic approximation for phonon sideband intensities, multiphonon
relaxation transition probabilities, and phonon-assisted energy-transfer probabilities. The intensity distribu-
tion of phonon sidebands is determined by coupling constants of the vibrational modes with electrons or
holes and a criterion for the appearance of discrete sidebands is given. Transition probabilities of multi-
phonon relaxation processes among various excited levels of an ion are shown to depend exponentially
on the energy gap between these levels, in agreement with recent experimental results. A similar dependence
is derived for the energy-transfer probabilities between two ions on the energy mismatch between excita-

tion energies of these ions.

1. INTRODUCTION

ISCOVERY of laser action in various hosts con-
taining transition ions and rare-earth ions has
stimulated studies of optical spectra, relaxation pro-
cesses, and energy-transfer processes between pairs of
ions in these systems, and detailed information regard-
ing these processes is being accumulated.!?

It is well known that phonons play an important
role in these processes. In fact, one can infer the phonon
density of states from the multiphonon structure of
absorption or emission spectra, and often the cutoff
frequency of the phonon spectra is deduced from this
kind of observation.!* When the coupling between
lattice modes and the electron (or hole) in question is
sufficiently strong the multiphonon structure is
smoothed out and only a single broad (Gaussian-like)
band is obtained, whereas multiphonon structure is
visible for weak or intermediate coupling.*®* However,
there seems to be no clear criterion stated in the liter-
ature to discriminate between these two limiting cases,
nor do there seem to be theoretical expressions which
are useful in the analysis of observed spectra in which
multiphonon structure is superimposed on the broad
background absorption or emission band.

Furthermore, experimental results and subsequent
analysis on the relaxation times between various
excited levels of rare-earth (RE) ions®7? suggest that
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these relaxation processes occur through multiphonon
emission. From the analysis the relaxation rates are
found to depend exponentially on the energy gap be-
tween levels involved in the process. Also it is a well-
known empirical fact that fluoresence from a level will
only be seen if a lower-lying level is separated from the
first by an energy which exceeds some critical value.®
These facts should be explicable by the interaction with
the phonons which are responsible for the phonon side-
bands. Kiel® has developed a perturbational expansion
for n-phonon processes but the results cannot be placed
in closed form.

Finally, the same multiphonon processes should be
involved in the energy-transfer process between ions
in which excitation energies of the two ions have a large
mismatch in the absence of vibrational transition.
Orbach® has formulated a theory for two-phonon
processes in ruby.

During an analysis'* of sensitized luminescence of
weakly coupled RE3*+Yb3+ systems in various hosts
it became necessary to estimate the probability of
energy transfer between ions in which the energy
mismatch of excitation energies sometimes amounts to
2000 cm™, many times a phonon energy. Although the
standard formal expressions'? for transfer probability
are applicable, it was not possible to evaluate the
density of phonon states from overlap integrals of
measured absorption and emission spectra in the usual
way, but from measured relaxation rates and the
following theory it was possible to make reasonable
estimates. In the present paper we describe a theory
for the three multiphonon processes mentioned above,
assuming a simplified model which we hope represents
the essential aspects of the problems. In the next sec-
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tion we explain our model and approximations; the
method of generating functions first developed by
Kubo,® Kubo and Toyozawa,* and Lax'® will be
reviewed in Sec. 3; in Sec. 4, we derive and discuss the
formulas for the phonon sideband intensity distribu-
-tion; the gap and temperature dependence of the
multiphonon relaxation rates are derived and dis-
cussed in Sec. 5; Sec. 6 is devoted to the derivation and
discussion of the formula for the phonon-assisted
energy-transfer probability. The results are sum-
marized and discussed in the final section. Throughout
we shall have RE systems particularly in mind, although
many of our results are not restricted to these materials.

2. MODEL AND APPROXIMATIONS

In this paper we restrict ourselves, depending on the
phenomenon under discussion, to cases in which there
are either one or two ions of interest in the system. In
considering energy transfer between two ions, we as-
sume that the interaction between them is so weak that
we may ignore it as regards the shape of the absorption
and emission spectra and the nonradiative intraion
relaxation probability. As the overlap between 4f wave
functions on different RE ions in which we are most
interested is extremely small,'* we may safely neglect
the effect of exchange and overlap in our treatment of
these two ions, and thus may treat them in the Har-
tree approximation.

Denoting the coordinates of electrons (or holes) of
the ions and the lattice by » and Q, respectively, we
can write down the total Hamiltonian of the system as

Hy=H(r,Q)+Hg+H.r, (2.1)
H(r,Q)=H.(r)+HL(Q)+H.(1,Q), (2.2)

where H,, Hy, H.1, Hg, and H. are the energy of
electrons, the lattice vibrations, the interaction energy
between electrons and lattice, the energy of the radia-
tion field, and the interaction between electrons and
the radiation field, respectively. More specifically, the
electronic energy consists of two parts,

H,(r)=H° (7'1;7'2)+Hab(7’1,7’2)
=H,(r1)+Hy(ro)+Hap(r1,r2). (2.3)

Here H,(r1) and H,(r;) denote the Hamiltonians of the
sets of electrons 1 and 2 localized, respectively, around
ions @ and b and Hap(r1,72) is the interaction between
electrons 1 on ion @ and electrons 2 on ion b.

As we are assuming that the interaction H,p(r1,72) is
weak, and that electrons are well localized around ions
a and b, we may use the adiabatic approximation in
dealing with the lattice vibrations. We first solve for
the eigenvalues and eigenfunctions of electrons for
fixed lattice coordinates Q,

[H(r)+H .1(r,Q) 1®;(r,Q) =W;(Q)®;(r,Q), (2.4)
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and then use this Q-dependent eigenvalue W;(Q) as the
state-dependent potential for the lattice vibrations,

[HL(Q)+W;(Q)IX5n(Q)=H;X;,=E;1X7(Q). (2.5)

In this approximation we can write the wave function
of the total atomic system in the following form:

¥, (1,Q) = 2;(1,Q) X (Q), (2.6)
®;(r,0) = ¢ia (r1,Q) 0, (r2,0) 2.7)

where 74, 75 specify the electronic states of @ and b ions.

It is to be noted that the zero-order eigenfunction
(2.6) is not strictly a stationary state of the system
because of the Q dependence of the electronic wave
functions. Indeed, the nonadiabatic part of the Hamil-
tonian Hy 4 defined by

Hy V5, (r,0)= (H—E;,)%,(r,0)
=Hp (27X 5)P;(HLX;0) (2.8)

acts as the effective interaction which causes non-
radiative transitions between levels of an ion.

Contrary to an earlier statement,” a small Stokes’s
shift does not in itself imply breakdown of the adiabatic
approximation. The adiabatic approximation can be
applied for systems with discrete levels in which cou-
pling through electron-photon, interion, or nonadiabatic
parts of the Hamiltonian is weak compared with that
through H,r. Furthermore, as we shall see in the follow-
ing, it provides the most natural systematic starting
point to include higher-order effects when combined
with the method of generating functions.

In this respect it should be noted that in principle
one need not restrict oneself to a linear or quadratic
form of H,1,(r,Q) provided the trace of certain operators
can be evaluated in a reasonable approximation. All one
needs usually is to assume that it is possible to ap-
proximate the adiabatic potential Uj, the sum of the
state-dependent effective potential W;(Q) and the
lattice potential by harmonic potentials with different
equilibrium positions and possibly with different
frequencies. However, we restrict ourselves here to the
case of a linear interaction. The higher-order terms in
the interaction Hamiltonian will cause higher-order
effects such as asymmetry in the intensity distribution
of absorption and emission lines or nonequidistant
structure of the phonon sidebands. As we have, so far,
almost no information regarding these higher-order
effects, we may assume that these effects are not very
important. Moreover, the inclusion of these terms will
not alter, at least qualitatively, the main conclusions in
this paper, i.e., the exponential dependence on the
energy difference of the relative intensity distribution
of phonon sidebands, of the relaxation rate, and of the
phonon-assisted energy-transfer probability.

Thus we assume a general linear interaction Hamil-

tonian
HGL(r:Q) = _Z VS(r)QS ) (29)

summing over all lattice normal modes.
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Even when we restrict ourselves to the linear term
in H,r, we still have higher-order effects in the adiabatic
potential which come from higher-order contributions
of H,z, to W;(Q). These effects will also be neglected in
the following for the same reason as above. Thus we
use the lowest-order approximation for the wave
functions ®;(r,Q) and adiabatic potential U;(Q),

Veir®r @ (X)Qs

. =d&.0) — -
®;(r,Q) =%, (r) s,kZ#] G5’ (2.10)
Ui(Q) =043 2 Q242 VeiiQs
Vsj Vs’ 7 s\ s’
— Z *_kﬂ_’ (2‘11)

8,8'k#j ((‘9’]‘(0)"- é’k(o))

where §;© is the zero-order energy of the jth electronic
state and

Vein= /dvj(o) NV (r)® @ (r)dr. (2.12)

The superscript (0) means that the quantity is evaluated
at the equilibrium positions of the lattice coordinates
for that state. We have assumed that the lattice po-
tential in the ground electronic state is already diagonal-
ized by the introduction of the lattice normal modes Q,
[i.e., we assume that for the ground state the third and
fourth terms in (2.11) vanish].

We may neglect the last term in (2.11) in the follow-
ing because we have no evidence for a lattice frequency
shift in the optical spectra of RE ions. In this approxi-
mation we have

Ur(Q)=8:+3 L 0[Q:—Q:(B)F,  (2.13)
(gkzé;k(o)—% Z(Vskk/ws)z, (2]4)
Qs(k) = Vslclc/‘"’s2 ) (2.15)

the last expression being the shift in equilibrium lattice
coordinates in the final state.

Also the nonadiabatic part of the Hamiltonian Hy4
defined through (2.8) can be given to the lowest order by

0
Hya)ri=—122 Soui—, (2.16)
T 00,
8%;(r,Q)
= —ih? / &% (r,0)———dr
30,
iV ) (&0~ &©).  (2.17)

For the interionic interaction Hg(71,72) we may use
a multipole expansion because we are assuming a
large separation R,; between ions @ and 4. In the case
of 4f electrons in RE ions the quadrupole-quadrupole
interaction will be dominant®:

2963

H o (r1,r2) =4mer1r9*/ SR up®

2
X Z CmYZm(01;¢1) YZ—M(027¢2) )

m=—2

C0=1, C1=C._1————4, C2=C_2=1. (218)

In the case of energy transfer we must be careful in
evaluating matrix elements of V(7). As we are dealing
here with a two-electron system instead of just one as
in the phonon sideband and multiphonon relaxation
cases, Vr; becomes

Vskj= Vskaja+ Vskbjb .

Assuming that the zero-order wave functions (2.6)
and (2.7) are known, our threefold problem is to find
the transition probabilities between various levels
caused either by (a) H ., i.e., by absorption or emission
of a photon or by (b) Hyua, i.e., by a nonradiative
relaxation process; and (c) to find the probability of
energy transfer between ions @ and & through H,.
Only ion e will be considered in cases (a) and (b).

Formulated in this way it is clear that the three
problems can be handled by a single technique (with
minor modifications) which leads, at least formally, to
closely related results.

Finally, it should be remarked that we make the
usual important assumption that the initial phonon
state is in thermal equilibrium with the surroundings
and can be characterized by a Boltzmann distribution

Wi=e#%/Trp;(8), B=1/kpT*, (2.19)

with an effective temperature 7% Here p,(\) is the
density matrix for the vibrational states

pi(N) =22 e MivP(xz),

(2.12)

(2.20)

and P(X},) is the projection operator onto the state X .

In the case of optical absorption this is not an
assumption but simply a definition of the ground state,
with T%*=T. For other cases which involve excited
electronic states there may be cases in which this
assumption is not valid. For the electrons in RE ions,
however, which have fairly long decay times (up to
10 msec) in various excited states this assumption may
be justified with 7% closely equal to the lattice
temperature.

3. METHOD OF GENERATING FUNCTIONS

The necessary formalism is already worked out* and
rather detailed analyses of phonon side bands were
given by Wagner? and by Toyozawa.> Kubo and Toyo-
zawal* also gave an expression for the nonradiative
transition probability but they were concerned only
with the strong-coupling limit and no analysis was
made of the multiphonon relaxation at that time. The
expression for the phonon-assisted energy transfer,
Eq. (6.16), is to our knowledge derived here for the
first time.
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We start from the observation that in a crystal
containing N, ions the optical-absorption constant
A(»), the nonradiative transition probability per unit
time Wya, and the energy-transfer probability per
unit time between ions @ and b, W, can be written in
terms of spectral functions Fz(F) of some operator Z.
Thus

A(v)= (873N o/3nc) vF 31 (hv) , (3.1)
Wya= ZT/hFNA (0) ) (3-2)
W ao="2m/hF .5(0), 3.3)

where

Fy(B)= 2 ({fIZI0)PWa(E—E+E).  (34)

Here ¢ and » are the velocity of light in vacuum and
the index of refraction of the crystal, respectively, and
we have omitted any local field correction factor in (3.1)
for simplicity. In (3.4), f and 7 label the final (k')
and the initial (jv) states, and W; is defined in (2.19).

The operator Z in Eq. (3.4) can be M=er, i.e.,
the dipole moment operator!® for the optical absorption,
Hya given by (2.16) for nonradiative relaxation, or
H,, given by (2.18) for the case of energy transfer.
Thus the three problems reduce to the evaluation of
the spectral function Fz(E) in each case.

The spectral function Fz(E) can be calculated from
the generating function fz(\) defined as the Laplace
transform of Fz(E),

fz(>\)=/ Fyz(E)e MdE, (3.5)

which in turn can be calculated in the form of a trace of
products of Z and the density matrices p;(\),

f2(N) =t Zjpr(N) Zrjp;(B—N) 1/ trp;(8)

where Z;; is the matrix element of Z between electronic
wave functions ®; and ®,© and may still be an oper-
ator as regards the lattice coordinates,

(3.6)

ijs/<I>,-(°>*(r)Z(r,Q)CI>k<°)(r)dr. 3.7

It is given by (2.16) for the case of nonradiative relaxa-
tion. In the cases of optical absorption and of energy
transfer we have in the lowest approximation

M (Q) =M ;O 42 (M1 V) sQs,

() ka(()) Vsnj Vskxij(())
M;;¢@ s= 5 3.9
(M) K;%,] (é’j(O)_ &,©® T 8, — gx(m) (39)

(Hon)ii(Q) = (Ha) k5 O +20 (Hap @) 1sQs

(3.8)

(3.10)

16 Z will be the quadrupole operator for E. Q. or the magnetic
dipole operator for M. D. transitions.
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Ha © skj sk a x'(o)
(Hos®)sio= T (( Ve | VorlHon)s )
i\ 80— § O 80 _8§®
(3.11)

Since M and H,;, have the same dependence on lattice
coordinates Q, in this approximation, we can use the
results of Kubo and Toyozawa for H,;, as well. We
merely have to rederive their formulas for the case of
weak or intermediate coupling.

The Q dependence of H,, will not be important in
most cases, whereas the dependence of My; [Eq.
(3.8)] on Q is responsible for the vibration-induced
transitions. This effect may be taken into account if
we replace | M ©|2 in the following equations by | M ®|2
X (1/2w) coth (38hw). "

In this approximation the generating functions dis-
cussed in Ref. 14 are given by

fu®)=fo()| M@|2, (3.12)
Iva@®)=fo(gna(t), (3.13)
Jas(O)= fo() | Hap®|?, (3.14)

where, denoting the excitation energy or energy gap
80— &, by &,

fo@)=exp[i8ut/h—g+g, ()+g- O] (3.15)

is the generating function which determines the optical
line shape, with g, g.® defined by

g=g: (0)+¢(0)= f do D) 2not1), (3.16)

n,

gi(t)=/de(w){ ’ }exp(:!:iwt), (3.17)
Ne+1
in which

D(w)=>" (w:A2/2h)6 (w—ws) (3.18)

is the so-called spectral density of electron-phonon
coupling which specifies the strength and the spectral
distribution of the electron-phonon coupling. The shift
in equilibrium positions of the lattice normal coordinates

is given b ..

SEVEERY A =0,k —0.G)). (3.19)

The number of phonons excited at temperature 7" is
#o(T) = [exp(Bhw) —1]7. (3.20)

In Eq. (3.13) we require the nonadiabatic operator gna
characterizing the strength and the spectral distribu-
tion of nonadiabatic coupling

gva()=|R—R.()—R-(O "+ T+ (0+7-(1),

where

(3.21)

R=R,(0)4+R_(0), (3.22)

Ri(t)=/dw L(w)ln::tJ exp(int), (3.23)

17 W. B. Fowler, Phys. Status Solidi (to be published).
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= [ de o +i 3.24
1e0)= / N @) {%H} explekiat), (3.24)
L(“") =Z(‘°sSsAs/2h)6(‘*’_w8) ’ (325)
N(w)= (0:S:2/2h)6 (w—ws). (3.26)

Here, for brevity we have omitted suffices k2j in
Sskj, defined by (2.17). We shall use these generating
functions and associated definitions in computing the
probabilities for optical absorption, nonradiative de-
excitation, and energy transfer.

4. BROAD ABSORPTION BAND VERSUS
PHONON SIDEBANDS

It is well known in connection with the line shape of
F centers that the generating function (3.12) and (3.15)
yields a single broad band under some conditions. It
has also been shown® that under other conditions the
same generating function gives the multiphonon
structure. However, the criterion for the existence of
the two cases is not yet clear. Toyozawa® has argued
that in the strong-coupling limit (¢£>5) one has a
simple Gaussian line, whereas in the weak- or inter-
mediate-coupling limit (¢<5) multiphonon structure is
obtained. While this may be a reasonable criterion, one
has to recognize the distinction between conditions for
having a single broad band and those for having an
approximately Gaussian line shape. The larger the
coupling constant g, the closer is the Poisson distribu-
tion g*/n! to a Gaussian distribution of intensities,
but the condition for the multiphonon components to
be resolved is different.

As was noted in Markham’s review article,'’® the
theory of the line shape of the F center (or any other
localized center with strong coupling to the lattice)
proceeds as follows: First, one introduces an ad hoc
assumption that each “phonon” line has a line shape
g(w) which has a width Aw larger than the mean
phonon frequency @. Then one calculates the envelope
function for the over-all band shape. Specifically, in
the calculation of the generating function one assumes
that instead of a possible distribution of phonon fre-
quencies w, over a range of values of w there is only one
(in some cases two) phonon with some mean & and
replaces the summation

()—g (=5 22
g—g+()—g-()=

&+ § =~ o
X[coth (3Bhw,) —i sinwst—coth (36Aw,) coswsl |

by
wsA g2
[coth (38%h®) —i sinwt—coth (36%0) cosat] Y .

If we make this assumption it is rather straight-
forward to show that the intensity distribution of

18 J. J. Markham, Rev. Mod. Phys. 31, 956 (1959).
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these lines at 7=0°K can be approximated by

|
€
v/ (2m9)

0

Xp<_(E—gO)2) S S(E—mha), (4.1)

F(E)=
262 m=0

with

00

62=/ (hw)2D(w) 2n,~+1)dw

for g>5, and by
w € 0g"S(E—mha)
FE)=M]r T ——

m=0 m!

4.2)

for g<5. The over-all line shape is given as a convolu-
tion of this envelope function and the line-shape
function g(w).

Evidently, the condition for the multiphonon com-
ponents to be resolved depends on the ratio of the
width of the line-shape function g(w), i.e., Aw, to the
mean phonon frequency @, r=Aw/e. If r>1 we will
have a broad band, whereas for » <1 each phonon
component will be resolved. The difficulty is we do not
know where the line-shape function comes from.

Work of Wagner* has suggested a way to resolve this
difficulty. He assumed in the usual way a dipole matrix
element which is independent of the lattice coordinates,
thus reducing the problem of calculation of the line
shape to that of the Franck-Condon factor or the over-
lap integrals between two harmonic-oscillator eigen-
functions. At low temperatures the absorption line
shape is given by the energy dependence, that is, the
m dependence, of

10m=/on*(Q)ka(Q)dQ,

where X ;o and X, are the vibrational wave functions in
the ground and excited electronic states. For emission
one requires

Lno= / X105 (Q) X m(Q)dO.

His calculation shows that the generating function for
each phonon component can be written as g%/z! at
T=0 for the case of no lattice frequency shift. This
result is just what we would obtain by expanding the
generating function (3.15) in power series in g_(f)
(which is equal to ge=* at T=0). He then calculated
the line shapes of each phonon component, assuming
some specific distribution of phonon frequencies. In
this way he could show that each phonon component
has a line shape which is determined by the spectral
density of electron-phonon coupling D(w). The width
of the mth phonon component increases with m [for
Lorentzian D(w)] or v/m [for Gaussian D(w)].

This result suggests an approach in which we first
take into account the effect of the spectral density of
electron-phonon coupling D(w) and calculate the line-
shape function G(w) which is centered around a mean
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frequency @ with a width Aw. Next we calculate the
envelope function or the intensity distribution of these
phonon components by the method of generating
functions.

The above discussion suggests that the criterion for
the resolution of multiphonon components is that the
mean frequency of the interacting phonons be larger
than the width of the component determined by the
spectral density of electron-phonon coupling D (w).

The mean frequency @ and the width Aw can be
expressed in terms of the spectral density of electron-
phonon coupling D (w),

wD (w)dw
(I):/.__(_)_, (4'3)
g
@D (w)dw
(Aw)2=/—(—-—— —a&?. (4.4)
4

If D(w) can be approximated by a Gaussian
D(w)=poenee0?, (4.5)
we obtain

w= wo, (46)

(Aw)?*=1/2n—w¢’. 4.7

Thus the condition <1 reduces to

dnw>1. (4.8)
Both wo and 7 should be determined mainly by the
characteristics of the lattice, but if the center or the
electron we are considering is strongly coupled to the
lattice, this coupling may introduce localized modes
around the center and thus have effects on both of
these parameters.

It should be noted, however, that both wy and n may
be relatively independent of the coupling strength
characterized by the magnitude of g. Therefore it
should be possible to find a system in which the cou-
pling constant itself is large so that the higher-order
multiphonon component has a much larger integrated
intensity than that of the zero-phonon component, even
though both can still be resolved because 4nwe® remains
greater than unity. This seems to be the case in
KCl:RE*" and AgBr:1.” The number of multiphonon
components resolved will be, under this criterion,
proportional to (&/Aw)? for a Gaussian D(w) and to
(@/Aw) for a Lorentzian D(w). Furthermore, the shift
of lattice frequency will enhance or reduce the number
of resolvable components.?

As we have seen, there are various aspects of phonon
sidebands in the spectra of solids. In one extreme there

19 M. Wagner and W. E. Bron, Phys. Rev. 139, A223 (1965);
139, 233 (1965) ; 145, 689 (1966).
2T, Miyakawa and S. Oyama, Phys. Letters 28A, 206 (1968).
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are broad unresolved absorption bands (or emission
bands) characterized by a large Stokes shift like those
of F band or exciton absorption bands in alkali-
halides. In the other extreme belong sharp zero-phonon
lines and very weak structure associated with it like
that observed in the spectra of RE ions or transition-
metal ions in crystals.??? Between these two extremes
there are a number of systems like KCIl:Sm?**®
AgBr:12 or R’ centers® which exhibit both broad
band and sharp multiphonon structure.

According to our discussion in the present section, a
broad band or phonon sidebands appear according to
whether or not the spectral density D(w) of electron-
phonon coupling has a spread larger than the mean
frequency of interacting phonons. Thus it appears that
in these intermediate cases there are two groups of
phonons, one of which is responsible for the broad band
and the other for the phonon sidebands.

There seem to be three possibilities to have these two
classes of phonons: (a) These phonons belong to two
different branches as, for instance, optical and accoust-
ical modes; (b) they belong to two different groups as
regards spatial locatization, i.e., one of them represents
phonons of the normal unperturbed lattice and the
other is a localized mode; (c) they belong to the same
branch and have no localized character, but can be
divided into two groups according to whether or not
they belong to a region in the Brillouin zone around
some singular point in the phonon density of states.
Probably the last case is the one responsible for the
peaks in the phonon sidebands in systems like
MgO: V22 or LaF;: Er3t 2 whereas case (b) may be
responsible for the structures in KCl: Eu**."®* Wagner*
discussed the case of two oscillators and gave some
results of calculation. He also discussed qualitatively
the case of phonon sidebands superimposed on the
broad continuum and gave the first moment of each
sideband.

5. MULTIPHONON RELAXATION PROBABILITY

From the generating function (3.13) and (3.15) Kubo
and Toyozawa derived an expression!* for the non-
radiative transition probability in the case of strong
coupling under the assumption (implicit) of large
width of the spectral density of electron-phonon
coupling. Although the essential feature of their result
is qualitatively sufficient to explain the dependence of
this probability on the energy gap between levels, we
rederive it here in the other limiting case of small width
of the spectral density of electron-phonon coupling in
order to compare this expression with recent experi-

2t See, for instance, Refs. 2 and 3.

2 M. D. Sturge, Phys. Rev. 130, 639 (1963).

8 H. Kanzaki and S. Sakuragi, J. Phys. Soc. Japan 24, 1184
(1968).

%D, B. Fitchen, H. R. Fetherman, and C. B. Pierce, Solid
State Commun. 4, 205 (1966).
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mental data and also with the result on the phonon
sidebands discussed in the previous sections.

Thus we expand the generating function (3.15) in
powers of g,.(2):
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gva()=R*4-2R,R_+[(J_—2RR)
+(+—2RRy)]+-R>+R .

If we assume for simplicity that the spectral density
D(w) has only one singularity at some frequency w

(5.2)

fol®) =exp(zt_6_o — g) i L+ (0T i Le-(OT , (5.1) then it is easy to show that the generating function for
I3 m=0 ml =0 ! N-phonon processes is
8o \R2[g (n+1)e ]V o N!
Taa® () =exp<— - 2 [gn(n+1)T
i PRRLY N1 = (N4R) B

(n+

gn(n+1)/2n+1)*

n(n+1)
P _
x[<1+ (2n+1)2>+n(N+ +1)< 2t 1) 2g>/ (GrtD+ (N+k+1) (V+E+2)

+g—z(N+k)[1/(2n+1)—2g+(1\7+k+1)/(2”+1)]:|. (5.3)

If we use the value of the cutoff frequency for the
phonons interacting with the electron of a RE ion,
350 cm™Y for instance, in LaF;, we have n<1 for a
reasonable range of temperature (7S 150°K) and we
may approximate fv4"(f) by

JraV () ={g" (n+1)N/N}R(1—-N/g)?

Xexplit8o/h—iNwt], (5.4)
and we obtain for the spectral function Fy 4V (E)
FyaV(E)={g"(n+1)"/N}R(1—-N/g)?
X6(E+ 8—Nhw). (5.5)

Thus in this zero-width limit the multiphonon relaxa-
tion probability is given by

Wya¥= Qr/W)R(1—N/g)*{g" (n+1)"/N 1}

X8(E—Nhw). (5.6)

As we are assuming that the coupling constant g is
small and also that # is not much greater than unity,
the factor [g(n+1)]V is a decreasing function of N or of
&o=Nhw. Thus we may approximate (5.6) by an ex-
ponential function of &;

Waa¥=Wyxa(8)
= 2r/h)R2(1—N/g)%e%5(8y— Nhw), (5.7)
with

a= (o) [In(N/g(n+1))—1], (6.7)

where we have used Stirling’s formula. This expression
shows that for a reasonable range of values of V we may
approximate Wy4(&,) by an exponential function

Waa(80)=Wnya(0)e®. (5.6")

[The exponential dependence is only approximate
because both a and Wx4(0) depend at least implicity
on go.]

Actually the spectral density of electron-phonon
coupling D(w) has a finite width Aw, and we will have a

2n+1)

line-shape function Gy (w) which is the Nth convolu-
tion of the individual line-shape function G(w) instead
of the § function in both (5.5) and (5.6). Thus we would
obtain

WyaV=(2n/BR(1—N/g)% %Gy (0), (5.8)

where Gy (0) is the value of Gy (w) at w= §— NAw=0.

We see that in this approximation the multiphonon
relaxation probability is given by (5.6), which shows
that it has an approximately exponential dependence
on the energy gap between levels. Comparison with the
expression for the intensity of the Nth phonon sideband
shows that the ratio of the spectral functions for optical
absorption and for multiphonon relaxation is equal to

R(1—N/gp/ | M|*. (5.9)

This ratio shows that in the case of weak coupling
(small g), the relative importance of higher multiphonon
processes will be enhanced compared to that in optical
absorption (or emission). Of course this does not imply
that the multiphonon process is more important in the
relaxation than it is in the optical spectra. The relative
importance of the multiphonon process itself is deter-
mined by the ratio of matrix elements (| R|2%/| M |2).

6. PHONON-ASSISTED ENERGY-TRANSFER
PROBABILITY

In this section we extend the formalism used in
previous sections to calculate the probability of phonon-
assisted energy transfer between two ions ¢ and b.
Although most of the notation defined in Sec. 2 still
applies to this case, one must recall that neither the
initial nor the final state of our system is the ground.
state. We denote the initial and final states by

j= (ja*7jb) and k= (ka;kb*) ’

respectively, where 7,* and %,* denote the excited states
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of ions @ and b and %, and j, denote the corresponding
ground states of these ions.

Next we note that the electron-lattice interaction
Hamiltonian has the form

Ho(rQ)= =2 [Vu(r)+V.(r)10:.  (6.1)
This interaction leads directly to the result in which the
displacement of the equilibrium position of the normal

modes, i.e., the corresponding parameter A, defined by
(3.19) is given by

As=[ (Vi =V skara) — (Vskyragr— Vi) /03,

that is, it is a difference between two terms representing
the interaction of ions @ and b with the lattice vibrations,
and each of these terms is the difference between the
matrix element in the ground and excited state of these
ions. Thus unless Vjptjor— Vikare and  Virgrry— Vijpiy
differ in their sign (which seems to be quite improbable
insofar as ions @ and b are ions of similar kind), lattice
modes which interact equally with both ions do not
give a large contribution to A,.

One may construct interaction modes® ¢,; and ¢
instead of the normal modes Q, in such a way that modes
@q: interact strongly with only ion @, whereas modes
¢s: interact strongly only with ion b. These interaction
modes do not diagonalize the lattice potential, but the
off-diagonal terms can be incorporated into the an-
harmonic effect. In one extreme case, in which each
electron is localized on an ion interacting strongly with
lattice vibrations to form localized modes of large
amplitude near that ion, it is quite natural to expect
that each electron interacts with different modes of
vibration, although the frequencies of these modes may
be close to each other.

Therefore we understand in this section that the
transformation to these interaction modes has already
been made. Then one can divide the spectral density
of electron-phonon coupling D(w) into two parts,

D(w)=Da(w)+Dy(w),

and it is easy to show that the generating function
fas(f) can be decomposed into three parts:

(6.2)

(6.3)

fav(t) = | Hap|? exp(it80/h) foa () for(t) ,  (6.4)

Joa(t) =exp[ —gatgar (D +ga-(1)], (6.5)
N o

gos ()= f do Da(w>{nw+l}ei , 6

ga=gar(0)+£.—(0),

with corresponding expressions for gs, gs4(f), and -

Joo ().

Thus in this case it is also legitimate to write the
expression for the probability of energy transfer in
the form

Was= 2n /%) | Hap|2Sas, (6.7)

T. MIYAKAWA AND D. L.

DEXTER 1

where S.p is the overlap of line-shape functions for
absorption of ion & and emission of ion @. Thus the
original form of the energy transfer probability®? is
retained. It is important to note that in this case we
must include the phonon sidebands in the line shape to
be used in the evaluation of Sgp.

Now in the weak-coupling limit, which is of greatest
interest to us for RE ions, we expand the line-shape
function into multiphonon components. If the energy
transfer under consideration requires emission of N
phonons for energy conservation, and if we assume that
the frequencies of the average phonon involved in the
process are equal to each other, the N-phonon part of
the overlap S.s¥ (Ses=2_n SesY) can be written in the
following form:

N
Sas¥ =2 gas(N—k, k; 0), (6.8)
k=0

where

oas(m,n; E)=/fa’”(E—E’)fb"(E’)dE' (6.9)

is the overlap between the m-phonon emission line
shape of ion @ and the #-phonon absorption line shape
of ion b.

In the limit of vanishing width of the density func-
tion D(w), the generating function for the N-phonon
process is, assuming equal mean frequency of inter-
acting phonon modes for both ions a and b,

oV ()= foa" (e o> (1+gv/8a)" .
Inserting (6.10) and (6.7) we have

(6.10)

Wap=(2m/h) | Hos|? Nz= BN (0)e o0 (1+g0/g0)"
(6.11)

F N (E)=[g." (n+1)¥/N!1(E+ — Nhw). (6.12)

So in this limit of weak coupling the ratio of the Nth
multiphonon transition probability for energy transfer
to that of the relaxation process is

(|Hab|?/ | R|De ot (14-g5/8a)V (1—N/ga) 2.

As we are assuming that g, and g, are small, the re-
normalization factor ¢7# will not be important. Also
the factor (1—N/g,)? varies much more slowly than
exponentially with N. Thus in the case of energy
transfer the relative importance of the NN-phonon
process is enhanced by a factor (14gs/g.)" compared
with that for the relaxation process.

Returning to the actual case of nonzero linewidth,
we can simplify the formulas (6.8) and (6.9) when we
assume that linewidths are small compared with the
mean phonon frequency @ and ignore the rather slow
dependence of the width on the order of convolution
mentioned in Sec. 4. Thus the overlap integrals can be

(6.13)
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approximated by
aap(mm; E)
= (gomgy"/m ' n e 0stong, 1 (0,0; E).  (6.14)
and W can be put in the following form:
Was= (2n/h) | Hap|? % e 0ot v (g,4gp)V/N!]
Xa45(0,0; E)0(N,80/hw). (6.15)

When we compare this expression with the correspond-
ing expression (5.6") or (5.7) one can easily show that
W s can be written in the form

Wap(80)=Wap(0)e# %0, (6.16)

with
Wap(0)= (2m/%)| Hap|?040(0,0; E)e=atow) | (6.17)
B=a—v, (6.18)
v=(h) ™ In(1+gs/ga) - (6.19)

If we assume that g,=gs and use experimental values
of #w~350 cm™ and a~5X10~% cm for RE* ions in
LaFy7, then we have

y~2X103 cm

and B will be reduced by almost a factor of 2 compared
to a. Thus the dependence of the transfer probability
on the difference 6 in the excitation energies of ions a
and & will be formally the same as the dependence of
the multiphonon relaxation probability on the energy
gap AE between adjacent electronic levels.

Since absorption and emission spectra are seldom
measured to the precision necessary for the evaluation
of the density of states factor S, in the energy-transfer
process, this correspondence can be extremely use-
ful in estimating S,; from multiphonon relaxation
probabilities.

7. SUMMARY AND DISCUSSIONS

The results of the preceding sections show that
probabilities for multiphonon relaxation of excited
states as well as for phonon-assisted energy transfer
between ions can be written in terms of the N-fold
convolution of the phonon sideband line shape which
is observed in emission or absorption, where NV is the
smallest number of phonons which make up the energy
mismatch. In the case of energy transfer there can be
various ways of allocating N phonons to either of the two
ions, and this accounts for an extra factor (14 gs/g.)"
in (6.11).

The result that the transfer probability can be
written in terms of an overlap of absorption and emis-
sion line shapes of activator and sensitizer ions, respec-
tively, was to have been expected from the general
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result derived from conservation of energy considera-
tions many years ago.’? What is new in our present
result is that as it takes advantage of the multiphonon
sidebands explicity, the transfer probability can be
shown to depend exponentially on the energy gap in
just the same way as the multiphonon relaxation
probability. This dependence is confirmed -experi-
mentally for the multiphonon relaxation processes and
may be used to estimate the transfer probability be-
tween ions with different excitation energies.!t

A theoretical estimate of the critical value AE, of
the energy gap below which the fluroescence between
the corresponding levels cannot be observed is difficult
at the present stage of our knowledge about various
parameters characterizing the interactions. However,
if we use empirical values for relaxation rates extrap-
olated to zero gap Wx.(0), a typical value of emission
probability Wem and the coefficient of exponent « in
the equation

Wya(80)=Wna(0) exp(—ady), (7.1)
one can make a rough estimate of AE, from
AE,=qa™! ln[WNA (0)/Wem:| . (7.2)

In the case of LaF;:Er®, in which most detailed in-
formation is available, a=5X10"% cm and the extrap-
olated value to zero gap is Wy4(0)=1X108 secL” If
we assume as a typical radiative decay rate Wen~103
sec™,S we get AE, of the order of 2300 cm™. This
estimate seems to be in reasonable agreement with the
value quoted, i.e., ~1600 cm™.%

The basic assumption in our treatment of the problem
is that the adiabatic approximation is valid and that
the most important contribution to the probabilities
comes from the diagonal (in electronic states) part of
the electron-phonon interaction H,r, which is assumed
to be linear in the lattice coordinates.

The adiabatic approximation will be good as long as
the energy difference between successive levels is
larger than the phonon energy involved, so that the
correction in first order of the electronic wave function
is small. The off-diagonal (in electronic states) matrix
elements which contribute to the nonadiabatic part of
the Hamiltonian also contribute to the second-order
energy correction quadratic in lattice coordinates.
Such quadratic terms which may also derive from the
quadratic part of the electron-lattice interaction are
responsible for the shift of frequencies of multiphonon
components in emission and absorption. Although there
is some evidence that anharmonic terms affect the
temperature dependence of the zero-phonon line
characteristics in RE*" jons in alkali halides?® there
seem to be no observable effects of this kind in tri-
valent RE ions.

% G. Baldini and M. Guzzi (unpublished).



