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with a copper crystal placed between the A1203 sample
and our movable counter, oriented as in the copper
annihilation experimeots. No Laue peaks were observed
in this "correlation-absorption" curve, taken with the
same statistical accuracy as the original copper N„"(ft).

We conclude therefore that the observed high-
momentum anisotropies in copper can be attributed
to a large extent to HMC annihilations with the con-
duction band and that the observed order of magnitude
of these HMC is in agreement with simple independent
particle computations. It is clear that a far better
theoretical calculation is needed to include the fol-

lowing effects neglected in our model: (a) k-dependent
Fourier components obtained from a "first-principle"
band computation, which includes s-d hybridization
both for the "s" and the "3d" bands and the effect of
the large energy gaps on the (111) faces, combined
with anisotropic positron wave functions'r; (b) k-de-
pendent enhancement factors due to positron-electron
correlation. "

The authors thank A. Thompson and j.M. Weingart
for technical assistance during the experiments.
"Similarly to the computation of Ref. 9 for Si.
» J. P. Carbotte and S. Kahana, Phys. Rev. 139, A213 (1965).
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Straggling of Heavy Charged Particles: Comparison of Born Hydrogenic-Wave-Function
Approximation with Free-Electron Approximation*
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Statistical fluctuations in the energy loss of heavy charged particles in thin absorbers resulting from
collisions with atomic electrons are determined for collision cross sections obtained from the first Born
approximation calculated with hydrogenic wave functions. A comparison is given with the results calculated
with a 1/e2 collision spectrum.

1. INTRODUCTION

S TRAGGLING functions describe the statistical Quc-

tuations of the energy losses of fast charged
particles. Landau' has introduced a transport equation
describing the behavior of the straggling function f(x,d, )
for energy losses 6 small compared to the initial energy
T of the incident particle:

elf(x, a)
w(e) f(x, 6 e)de f(—x,A)o „—(1)

where f(x,A) is the probability density function of
particles that have penetrated a thickness x of the
absorber and have experienced an energy loss 6; w(e)de
is the differential collision cross section for single
collisions, with an energy loss e; and a. ,=j's" w(e)de is
the total collision cross section. This equation has re-
cently been discussed by Tschalar, ' and Kellerer. '

In experiments, for example, X0 particles penetrate an
absorber of a given thickness x. The number dg of

* Work supported in part by the U. S. Atomic Energy Com-
mission and Public Health Service Research Grant No. CA-08150
from the National Cancer Institute.

$ Now at Department of Radiology, University of Washington,
Seattle, Wash. 98105.

'L. Landau, USSR J. Phys. 8, 201 (1944).' C. Tschalar, Nucl. Instr. Methods 61, 141 (1968).' A. Kellerer, G. S. F. Bericht 8-1 Strahlenbiologisches Institut
der Universitat Munchen.

c+ico

f(x,S)= exp pa —*
C—iao 0

w(e)(1 —e &')de dp.

(2)

4P. V. Vavilov, Zh. Eksperim. i Teor. Fiz. 32, 920 (1957)
/English transl. : Soviet Phys. —IETP 5, 749 (1957)].Extensive
tabulations of the Vavilov functions are given by Seltzer and
Berger, Natl. Acad. Sci.—Natl. Res. Council, Publ. 1133, 187
(1967), 2nd printing.

particles emerging with energy losses between 6 and
6+dd, is given by dN=Nsf(d)dh Often, only t.hemean
energy loss (6)= J'f(h)hdA is of interest. It is closely
related to the stopping power 5: (6) xS.

The collision cross section w(e) is of great importance
in the solution of Eq. (1). The simple approximation
w(e) =k/e' used so far' ' ' and a more realistic function
obtained from calculation in first Born approximation
using hydrogenic wave functions are therefore discussed
in Sec. 2. It may be noted, though, that the true
collision cross section w(e)de for single atoms is zero
below an energy e& equal to the difference in energy
between the lowest possible excited state and the ground
state of the atoms, and also vanishes rapidly for
e) e ~2rrtv'. Similarly, f(x, 6—e) must be equal to zero
for e& A. The limits of integration introduced by
Vavilov have to be understood from these conditions.

The solution of the transport equation using the
Laplace transform' ' is
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2. ATOMIC COLLISION CROSS SECTIONS

The practical results for straggling calculations so far
have been obtained with the use of the classical electron
cross section, "modified by estimates' ' of the inQuence
of the "resonance effects" on the second moment M2 of
w(e). The collision cross section do describing the
collision of a heavy charged particle of charge se,
kinetic energy T, and velocity @=Pc with a free electron
of mass m and charge —e is given by

da'=w(e)de=k, e 'de) for e((e«~
do'=0, for all other e, (3)

where kt ——2z-z'e'/mv'. Since we are concerned with low

energies, a sufhcient approximation for e is given by
c =2mtt'. For the further applications in Eq. (13), the
moments M ' of w(e) =k&/e' for I)1 will be required.
They are calculated for an absorber containing E
atoms per cm3 of atomic number Z,

where k =k~SZ, and e ~
——0, as assumed in the previous

papers.
It is the intent of this paper to investigate the

modifications necessary in the Vavilov theory caused by
the use of more realistic collision cross sections. As a
first, improved approximation, the values calculated
with the first Born approximation, ' ' using hydrogenic

' O. Blunck and S. Leisegang, Z. Physik 128, 500 (1950l.
6 P. Shulek, B. M. Golovin, L. A. Kulyukina S. V. Medved,

and P. Pavlovich, Yadern. FIz. 4, 564 (1966l LEnglish transl. :
Soviet J. Nucl. Phys. 4, 400 (1967)j.

7 U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).
8 H. Bethe, Ann. Physik 5, 325 (1930).

The derivation is discussed by Landau and Vavilov.
It should be noted that c ~ 0 can be used in the limits
of the integral. For a general collision cross section,
numerical integration is required. Landau' and Vavilov
achieved an analytic form for the integral over e, using
w(e) =k/e', but performed a numerical integration for
the integral over P. Blunck and I.eisegangs and Shulek
et a/. ' introduced corrections due to resonance effects in
w(e). In this paper we progress further by exploring the
effects of cross sections calculated in first Born ap-
proximation, using hydrogenic wave functions. It is
possible to express the solution for a general w(e) in
terms of a correction applied to the Vavilov solution.
Therefore Vavilov's method is discussed in Sec. 3. The
numerical integration of the integral over e in Eq. (2) is
discussed in Sec. 4. A generalization of the method of
Blunck and Leisegang and Shulek et a/. is discussed in
Sec. 5, and the modified straggling function is given in
Sec. 6. Quantities calculated with w(e)=k/e' are de-
noted with primes, e.g. , f'(x,A), Is'.

where W= e/(Z —d)'R is the energy e lost by the particle
expressed in suitable units, ri=mz'/$2(Z —d)'I|!$ is the
energy of an electron having the same velocity as the
incident particle; R= 13.6 eV is the Rydberg constant;
d is a shielding factor for the nuclear charge of the
absorber, depending on the electron shell; k is pro-
portional to the number of electrons under consideration.

The excitation function J is defined by

I(.,w)= IF(.,q)I'e-de, (6)

where g is the change in momentum of the incident
particle, e= q'/2m;

~

F (ri, q) ~

' is the matrix elemerit for
the transition from the ground state to the excited state
of energy t/V of the atom. Notice that the energy E of
the secondary electron (5 ray) is E= e I, w—here I is
the ionization energy of the atomic shell. The excitation
functions have been recalculated for the K and I.
shells. " The difference between kr/e' and I can be
appreciated from a plot of da/da. '= JW' as a function
of t/V. This is given in Figs. 1 and 2. The increase for
small 8" corresponds to the resonance effects discussed

by Bohr."No simple analytic expression can be given
for J or for its moments M„:

J(rl,W) W"dW.

The lower limit is now exactly the lowest possible
excitation energy 8'& of the atomic shell; the upper
limit can be set at ~, because J drops off rapidly near
W =4ri= 2m''/(Z —d)'R. It is to be expected, though,
that, for large rl, the tail beyond 4rl (see Figs. 1 and 2)
will contribute increasingly to the higher moments.

The total collision cross section 0-&, equal to the
moment Mo, has been discussed, e.g. , by Merzbacher
and Lewis" and by Brandt and Laubert. '4 The stopping
power 5, equal to the first moment M~, is discussed in
many papers. "' The stopping number 8=M&/k is
compared with the expression 1n2mv'/I, used frequently
in simplified stopping-power theory, in Fig. 3.

' M. C. Walske, Phys. Rev. 88, 1283 (1952); 101, 940 (1956).' G. S. Khandelwal and E. Merzbacher, Phys. Rev. 144, 349
(1966); 151, 12 (1966).

"Unpublished calculations by the author, available on com-
puter tape. Approximate values can be obtained from Figs. 1
and 2.

1'X. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd.
18, No. 8 (1953).

13 E. Merzbacher and H. W. Lewis, in Encyclopedia of I'hysics,
edited by S. Flugge (Springer-Verlag, Berlin, 1958), Vol. 34.

14 W. Brandt and R. Laubert, Phys. Rev. 178, 225 (1969)."H. Bichsel, American Institute of Physics Handbook, 3rd ed.
(to be published).

wave functions, ' " are used. Using Kalske's notation, '

do. = kJ(g,W)dW,
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Frc. 1. The excitation function J~
for the E shell. Plotted is the product
J~W2, where W is the electron energy
in a suitable unit: W=e/P(13. 6 eV)
X (Z —0.3)'g. The parameter
= 18 800P'/(Z —0.3)2 is the value of W
for an electron of the same velocity
v=Pt," as the incident particle. The
energy e =2'' for a free electron
corresponds to W =4g~. The lower
limit for the integrals is W)=W~j~
=I~/(13.6 eV) g (Z—0.3), where I~
is the energy to lift a E'-shell electron
to the lowest unoccupied level of the
atom with atomic number Z. The
asymptotic value for large W(4qz is
JW' —+ 1 ~
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An approximation for the second moment has been
given in Livingston and Bethe"; for the higher mo-
ments, M„=M„' is usually chosen. This is not a good
assumption, as mentioned above. The second and third

moments for the I.shell are given in Figs. 4 and 5; some
higher moments are listed in Table I.

For solids, the excitation function for valence elec-
trons will be modified for energy losses below 50 or 100
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Fzo. 2. The product JI,W' for the L
shell. The units are the same as defined
for the E shell, except that (Z—0.3)'
is to be replaced by (Z—4.15)'. Notice
that JL, as well as Jz extends. beyond
4gL,. There is a small probability of
collisions with energy transfer e& 2nzv'.

depends on Z: for Al, W;
0.0926, for Pb, W;„0.167. The

asymptotic value of JL,W' is 4.
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~'M, $. Livingston and H. Bethe, Rev. Mod. Phys. 9, 263 (1937}.
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FIG. 3. The stopping number
Bl, as a function of qL, for
Z 50, compared with Bl,'=3.37
&(ln(2m''/IL, ). The shell correc-
tion Cl, is the difference between
BI.and Bl.'. CI.=BI.' —BL,.
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eV to resemble a resonance-type cross-section curve, ' '8
with a finite slope toward low energies. For single
atoms, sharp peaks are expected in the cross section at
energy losses equal to the excitation energies. "Although
these effects are quite important for o-z and S, they
produce relatively small changes in the higher moments
Mgy M3y ~ ~ ~ e

3. VAVILOV SOLUTION

In order to solve Eq. (2) it will be useful to consider
separately the integral over e.'

Since p is imaginary, Ii is complex. In general, the
uncertainty in the knowledge of te(e) is greater at small
values of e. Landau and Vavilov therefore extract the
first moment Mt of te(e) from Ii,

3IIt= 'R(e)ede
&

I,IO—

FIG. 4. The ratio r2 3f2/N2' of the-— '

cross section as calculated in this
paper and of the free-electron cross
section for the I shell. The four curves
are drawn for 8'~ =—8'; =0.093 (sili-
con}, 0.115 (copper), 0.135 (silver)
and 0.167 (lead). For qI.)4, the ex-
pression of Ref. 16 agrees approxi-
mately with the curves given here, but
deviates strongly at smaller ql, .
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' P. Nozieres and D. Pines, Phys. Rev. 113, 1254 (1959).
'8 R. E. Burge and D. L. Misell, Phil. Mag. 18, 251 (1968)."J.T. Park and F. D. Schowengerdt, Phys. Rev. 185, 152 (1969).
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e in the parentheses:by adding andd' nd subtracting pe in f I will be needed:power-senes e px aIlsioIl 0

with

Ii p—— 10 I2 — ———"—w e)e"de= —P (—1)"w(e)ed&+ w e(e) (1 e &'—p—e)d—e, (10

(13)

I2= w(e) (1—e——&' —pe)de,

Ii= pS+I2 (12)

ower S of the material,3f is the stopping power oand, since 1 i
we obtain

e e"de [see also Eqs.. 4 and (7)j
are '' of the col ision1'are the moments o

f E . (11) using the ne free-electron
b V ilctrum has been given

(R I2') ande real an imarepe tdhr. T e
e arately, wiI ') are written sep

t t m oreliminating unc
hdd bd hfirst moment. For the met o

(cost —11—cosy'
de=ky

g2

=—[cost—1+t Si(t,)j,

+si (t))

uantum-mec a
'

nical
. T.b.l,t,dM. d p-d --. '

g
co 1slon cross section.
is& /M

10

where

Si(t) —= dt', Si(0) =0,

0.1

0.2
0.25
0.4
0.9
1.5
4

10
20
40

100

1.08
1.04
1.026
1.012
1.003
1.001
1.0005
1.0005
1.0005
1.0005
1.000

1.97
1.51
1.42
1.27
1.12
1.074
1.03
1.01
1.01
1.003
1.000

4.57
2.65
2.30
1.80
1.35
1.210
1.08
1.032
1.016
1.008
1.002

4,62 26,2

1.434 1.82 1

1.061 1.102

1.004 1.008

1926 g(I2') =k

2.85

1.16

1.0115 1.016 Ci(t) —=

25.5

1.24 where

'm slnye —ye k

&mQ2

(1~)—'
t+t[Ci(t, ) —int —yj),

t'
for y =0.577216. (16dt'+1nt+y, o—r y =
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The functions (R and g are plotted in Figs. 6 and 7 for
several values of e

For any given collision spectrum zv(e), two procedures
can be used to determine Is. (a) Direct numerical
evaluation of Eq. (11), discussed in Sec. 4, and (b)
calculations based on the use of Eq. (13), similar to the
methods used in Refs. 5 and 6, and discussed in Sec. 5.

4. TRANSFORM OF BORN-APPROXIMATION
COLLISION CROSS SECTIONS

The integral Is defined in Eq. (11)has been calculated
numerically for the collision cross section J(W) defined

IOOO

IOO

IO
7

2
I

~ cv

IO

IO

I 00
IO

IO4 I IO
O. I 0.2 0.4

I I

2 4. IO

IO
7

FIG. 7. The imaginary part of the integral I2' for three values
of W~. The dotted lines show the function for I2. This function,
added to y(&—n), forms the argument of the cosine in Eq. (24).

IO

where a„= (W„W„ i)'", b„= (W„W„+,)"', since the W
follow a geometrical progression. The ratios r= (R(Is)/
(R(Is') and r, = g(Is)/g(I, ') are given in Figs. g and 9
for L-shell electrons. The numerical accuracy of the
results can be estimated from a comparison of the
evaluation of Eq. (17), using J'=1/W', with results
calculated with Eqs. (14) and (15). The agreement is
within 0.1%%; a slightly larger error for Is is expected
because of the faster change of J(W) at small W.

I
02

O.I 0.2 04
I

4 IO

Fro.6 The real part 6t(Is') of the integral Is' for three values
of 5' =4gz, , as a function of the Laplace-transform parameter y.
The electron energies corresponding to W are e =W )&13.6 eV
&& (Z—4.15)~. The dotted line is (R(I2) for the cross section calcu-
lated here, for gL = 10. This function is the exponent in the inte-
grand of Eq. (24).

in Sec. 2 for a number of purely imaginary values of p,
0

~ p ~

(1000.Since only a limited number of values of
J(W) are available at W=W„, n=1, 2, 3, . . ., and
since (1—e &'—pe) oscillates rather strongly, the mean-
value theorem has to be used for the integral:

Is(p,g)=k P J(W.,q)
an

(1—e,w pW)dW
0,8—
0.0 I O. I. IO IOO

=k P J(W.&r/)tLb~ a„+P '(e r " e "—s")—Fxa. 8. The ratio r of the real part of I2 and the real part
of I2'. The dotted lines indicate the correction by Shulek et al.—-', p(a„'—b„')j & (17) (Ref. 6). W&=0.095.
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I.8

l.6

I,2

0.8

0.6
O.OI O. l

qL= lo

r~ 1
q„=0.25

IO IOO

first discussed in Ref. 16, to get a second approximation
to l2. Corresponding curves, using the more appropriate
second moments from Fig. 4, are shown in Fig. 8, for
rtr, = 1.5 and 10. Since the region 1(p (10 is still quite
important for the convergence of Eq. (2) (see Fig. 14),
this procedure is usually not satisfactory. The imaginary
part is unchanged, since it does not contain M2. The use
of higher moments in Eq. (20) leads to problems; D4 is
quite small (Table I), whereas the higher moments give
larger contributions and lead to wild fluctuations of 52
for p above O.S or 1.0. As elegant as the method may
appear, it is not practical.

6. MODIFICATIONS OF VAVILOV FUNCTION
Fro. 9. The ratio r; =$(I2)/$(I&') of the imaginary part

of I2 and I2'.

For very small values of p, I& can be written as:

(R(Is) = —-'p'Ms (18)

g(I,) =p'M, /6i, (19)

derived from Eq. (13), and therefore (R(Is)/(R(Is' )
=Ms/3E, ' and g(Is)/r! (Is') =3Is/IrIs'.

With the function Is defined in Eq. (11), it is now
possible to write Eq. (2) in the form

0.5

5. METHOD OF MOMENTS

The direct evaluation of Eq. (13) is not practical,
because quite a large number of terms would have to be
calculated. Blunck and Leisegang' and Shulek et al. '
suggested the comparison of M2 with the moment 352'
of the free-electron cross section. This method can
readily be extended to all moments. Using 8„=—M„—3E„',
with M'„ from Eq. (7) and M„' from Eq. (4), we obtain

0.4

0.5

I
/
I

l
\

\

v=1
qL= 0.25

n=2 n—2 0.2

The erst sum is exactly I2', and the last sum, therefore,
is the contribution due to the diGerence in the higher
moments of the true collision cross section from the free-
electron value 1/»'. It is convenient to introduce

D„=b„/M„'= (M /M ') —1

to modify the second sum

O. l

I
I

I
l

I
l
I
I

( 1)npnti—Ss—=P
( 1)npn» nD

=k P . (21)
Ltt!(tt —1)» 7

I I

-2 I

I

0
X

I 2
I

4

D can be obtained from Figs. 4 and 5 and Table I.
Using the substitution p =it/», we obtain

- (—1)"(it)"D„—Ss——» 'k Q
(tt!(e—1)]

(22)

Shulek ef 0/. ' have used this approach, introducing only
a second moment

N, =k/»~, rr/Z+P 2.667I,f, ln(» /I, )j,

FIG. 10. Straggling function f(x,h) for low-energy particles in a
thin detector. The abscissa is X= (6—6)/xk+P), where (X)=0.577216—p2 —1—ln It.. The solid line represents results of my
theory; the dotted line is the Vavilov curve for P'=0. The differ-
ence for a slightly larger p~ is very small. The full width at half-
maximum (FWHM) of f' is 11% larger than that of f. Example:
protons in an argon-filled counter. With rir, =ra»2/L2E(Z —4.15)2$
~40T (MeV)/(Z —4.15)', the energy of the proton is about 1.2
MeV. Since a = 1, x~0.02 mg/cm' or 1 cm at about 40 Torr. The
mean energy loss amounts to about 3 keV, and would be affected
seriously by 8-ray escape. The narrowing of the straggling curve
predicted here for the I shell would be partially compensated by
a widening contributed by the M-shell electrons. D2 ———0.018.



2861STRAGGLING OF HEAVY CHARG ED PARTICLES

joo

f(~,~) =
2' i QQQ

e (23) o.zo Ij
I \

ofwhere A=x5 is the mean energy loss of a beam o
particles. Further, using x=xk/e and p= '

/d = it/'e we ave

exp it — —xrLcost —1+t Si(t)j
&m

—ixr;{t —sint+t LCi (t) —lnt —y7} dt

O. I 5
I

I
I
I
I

exp( —xr[cost —1+t Si(t)j}
p

O. IO

Xcos t l+xr, [ty t+ sint-
e

+t lnt —t Ci(t)) dt (24). 0.05

0.20 /
I
I

I
I
I

v =O. l

qL= 1.5

0 t I t

-2 -I 0
I t

I 2
X

t

4 5 6

O. I 5

FIG. 12. Medium-energy particles in a thin detector (e.g, ,
=25-MeV protons in a silicon detector of thickness x=3.7
m cm with 5=63 keV). My theory: solid line; Vavilov theory
for '=0: dotted line. The theory by Shulek et al. differs by only
a few percent from the solid line. The ratio of the FWHM is 1.12.

O. I 0

r
I

FTHM

0.05

0 4+ I I I I

-2 -I 0 I

X

I . I I I I

2 5 4 5 6

Fro. 11. Straggling function f(»)) for I.-shell electrons at
s= 1.5 (solid line). This is approximately the energy grvrng

tht ff'( z Si th m

1 o 1M il of h t tio,very sensitive to the contributions from t e tai s o e
k hei ht of the normalized function from an experimen

rta t ' . T fi d 't determine the number ofrtant information. o n i,
particles occurring in the peak c anne ( e sp
to be measured in a multichannel analyzerj as a rac ion o
total number of particles in the spectrum, multiply it wit x c,

he width of a channel in the same units as xk, an com-

FWHM or the determination of the standaru evia ion is m
sensitive, though. D2 ——0.10.

Note that the imaginary part of the integral is anti-
symmetric in ant d therefore does not contribute to t e
integral. For r=r;=1, Eq. (24) is exactly Vavilov s
expresston q.LE . tV-16)) for P'=0. The terms containing
' in Eq. (V-16) appear because of the choice of w(e)

= t'te —'(1—P'e/e„) by Vavilov. This relativistic correc-
tion factor has been neglected here because the excita-
tion function J(W) is nonrelativistic. Notice that the
factor e" outside of the integral in Eq. (V-16) is not
constant in Eq. (24).

The function f(x,A) has been calculated for several
values of ~ for the values of gl. given in Fig. 8. The

Vavilov curves and curves including the correction or

An impression of the problems encountered in the
numerical integration. of Eq. (24) can be obtained from
a plot of the integral as a function of the upper imit.
An example is shown in Fig. 14.

7'. COMMENTS AND CONCLUSIONS

Straggling functions derived from the transport equa-
tion with the use of collision cross sections calculated in
the first Born approximation, with hydrogenic wave
functions, for the electrons. in the atomic L shell, have
been discussed in this paper. It is expected that similar
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