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Anisotropic Positron Annihilation with the High-Momentum Components
of the Conduction Band in Copper*
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High-precision measurements of the angular correlation of annihilation radiation from oriented single
crystals of copper are reported, showing marked anisotropies even at large angles. A comparison with the
predictions of a simple theoretical model indicates that most of the large-angle anisotropy can be attributed
to positron annihilation with the high-momentum components of the conduction band in copper.

'POSITRON annihilation experiments can yield, in
principle, valuable information about electron

momentum distribution in metals and alloys. ' In recent
years several investigators have used copper as a test
case to study the extent to which such experiments are
relevant to the shape of the Fermi surface. '—' In this
paper we report measurements representing the first
direct observation of the existence of high-momentum
component annihilation with the conduction band in
copper.

The two-quantum angular distribution, as measured
by the standard long-slit geometry apparatus, is given
in the independent particle model, as a function of the
angle 8=p,/mc, by

&-(P )= ~(p)dp*dp. = dp*dpv

occupied states
d're '&'P (r)fi,(r), (1)

where G is a reciprocal lattice vector, and the Ao(k)
are the Fourier components

Ao(k) =
cell

d'rP (r+)PI,(r) e "o+"'—
Thus, each electron with wave number k contributes
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where P, =Hmc=p 8, 8 is a unit vector describing the
crystal orientation, P+(r) is the positron ground-state
wave function, and Pq(r) is the wave function of a
Sloch electron in state k; II=1. Expanding the wave
function product in plane waves, one obtains

p(p) ~ Qi, P 8(p —k —G) ~Ao(k) ~', (2)
occupied states

to the annihilation not only at p=k, but at every

p =k+ G with a relative weight
~
A o(k)

~

'.
In the first paper' (BP), on annihilation from single

crystals of copper, the importance of these high-
momentum component (HMC) annihilations was
studied in various independent particle approximations.
Although since the BP paper several complete band
computations7 ' have been performed, which include
the effect of the HMC's, the statistical accuracy of the
existing annihilation data for large angles (high mo-
menta) have so far been insufficient to indicate clearly
the existence of the HMC ("umklapp") annihilations. "

Our two-photon angular distributions were obtained
using a standard apparatus' with detector slits sub-
tending 1 by 150 mrad at the sample. A source of
approximately 150 mCi of Co" was used with a super-
imposed 15-kG focusing field. The samples were
oriented single-crystal cylinders of copper (n along the
axis of the cylinder), 0.3 in. in diameter and 0.25 in.
long, slowly annealed prior to the experiment. Data
were taken with the samples at room temperature, in
vacuum. To test for possible instrumental errors, the
experiments were also performed on a second cor-
relation apparatus with 1- by 90-mrad slits, and at
77'K. No significant differences were observed between
the two independent sets of data.

As discussed in BP, the angular correlation curves
in copper include, besides the annihilation with the
conduction band, a broad distribution resulting from
the annihilation with core electrons, particularly with
the 3d band. In order to exhibit the anisotropies of the
correlation curves most sensitively, we have plotted
in Fig. 1 the differences between the experimental
points taken with 8 along the $111j,L1107, and L100]
directions Lsee Eq. (1)j. Thus all isotropic contri-
butions cancel out. We have marked on the 0=p,/mc
axes the intersections with the relevant first zone faces
as Z,;;,(Z,;; l=-', (8 Gi,, l)).

Well-defined oscillations are evident for angles corre-
sponding to p, outside the first zone, which we attribute
to HMC annihilations. The amplitude of the oscil-
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lations corresponds to approximately 2% of the total
counting rate at high momenta. We expect that the
sharp oscillations within the 6rst zone reQect mainly
the asphericity of the Fermi surface of copper, as
discussed by us in a previous paper. ' However, even
at p, close to 0, HMC's can and do contribute. " In
order to establish whether or not the observed ani-
sotropies come from the conduction band of copper,
we have calculated theoretical difference curves using
the following extremely simple approximation: (a) We
assumed that the Ao(lr) in Eq. (3) are ¹independent.
This assumption (Wigner-Seitz) is expected to be,
of course, unrealistic for copper in regions of k close
to the (111) face, where the large energy gap will cause
an appreciable k dependence of the Ao(lr) —s, even
in the nearly free electron approximation, as discussed
in Ref. 2. (b) We centered about each 6, with the
proper orientation, the known copper Fermi surface, "
and obtained the theoretical X„-(p,) by weighting each
of these surfaces by the proper

~ A& ~
' and computing

the cross-sectional areas of this system of weighted
Fermi surfaces for the three n directions. Only the
one G[ppp], the eight Gt»&~, and the six G[2pp] vec-
tors were used. (c) These theoretical cross-sectional
areas were then mathematically folded into the resolu-
tion of the apparatus. (d) The theoretical difference
curves were finally obtained and were normalized for
best fit by a single normalization factor to the data
(plotted in arbitrary count-rate units). Two such sets
of theoretical difference curves are plotted on Figs.
1(a), 1(b), and 1(c), together with the experimental
points. The curves marked A correspond to ~A]000]~'

IA]111]Is=0.0161, and IA]200]Is=00076.
These Fourier components are identical to those com-

puted for copper in the Wigner-Seitz approximation
in BP. For the curves marked 8 we used ~A [000] )'
=0.890, [A]lit](2=0010, ]A]200])2=0005. We notice
that the difference curves do not change substantially
between these two sets of Fourier components; on the
other hand, the values of set 8 were chosen because the
1V.(0) obtained with them fit better the individual
shapes of the observed angular distribution data, after
a Gaussian had been subtracted for the core contri-
bution. " (The difference curves do not, of course,
depend on such a subtraction. ) The over-all fit in shape
and even in magnitude to the experimental points is
surprisingly good in view of the obvious deficiencies of
our theoretical model. The largest discrepancy is
observed in the region between 4-8 mrad, particularly
for the 1V[II0](0)—1V]200](f]) curve, and can probably

"We do not agree with the assertion of Sueoka $0. Sueoka,
J. Phys. Soc. Japan 23, 1246 (1967lj and of Donaghy and Stewart
(Ref. 10) that HMC's cannot introduce anisotropies at P, =O.
This holds strictly only for the nearly free electron approximation,
if we take only one zone face into account.

"D.J. Roaf, Phil. Trans. Roy. Soc. London A255, 135 (1962).
"The direct comparison between the experimental and theo-

retical N" (8) indicates that a k-dependent "enhancement factor"
would not necessarily improve the Qt.
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FiG. 1. Experimental and theoretical difference curves of two-
photon angular correlations from oriented copper single crystals.
The theoretical models used are described in the text. The experi-
mental points are folded about p, =0, open circles representing
data for 8(0. Typical errors are indicated at the bottom of
Fig. 1(c).

be attributed to anisotropies"" in the 3d band due to
(s—d) mixing. In order to demonstrate that within the
first zone in the difference curves reflect mainly the
topology of the Fermi surface, we have plotted in Fig.
1(d) the theoretical difference curves, using the same
Fourier components as for Figs. 1(a), 1(b), and 1(c),
but with a spherical Fermi surface. The other difference
curves exhibit the same large discrepancies for p, inside
the first zone.

In order to check that the observed high-momentum
anisotropies do not stem from Laue diffraction of the
annihilation photons traversing the crystalline samples,
we have performed an independent check: We measured
the angular distribution exhibiting a narrow posi-
tronium peak" from annihilation in an A1203 sample,

"Such an anisotropy has been noted by P. E. Mijnarends
(Ref. 6).

"The sharp peak at around 16 mrad observed recently in a
"rotation" measurement by Sueoka LO. Sueoka, J. Phys. Soc.
Japan 26, 864 (1969)j, and attributed by him to core anisotropy,
cannot be easily compared with our present results, because of the
specialized geometry of his measurement."J.Lgvseth, Phys. Norveg. 1, 145 (1963).
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with a copper crystal placed between the A1203 sample
and our movable counter, oriented as in the copper
annihilation experimeots. No Laue peaks were observed
in this "correlation-absorption" curve, taken with the
same statistical accuracy as the original copper N„"(ft).

We conclude therefore that the observed high-
momentum anisotropies in copper can be attributed
to a large extent to HMC annihilations with the con-
duction band and that the observed order of magnitude
of these HMC is in agreement with simple independent
particle computations. It is clear that a far better
theoretical calculation is needed to include the fol-

lowing effects neglected in our model: (a) k-dependent
Fourier components obtained from a "first-principle"
band computation, which includes s-d hybridization
both for the "s" and the "3d" bands and the effect of
the large energy gaps on the (111) faces, combined
with anisotropic positron wave functions'r; (b) k-de-
pendent enhancement factors due to positron-electron
correlation. "

The authors thank A. Thompson and j.M. Weingart
for technical assistance during the experiments.
"Similarly to the computation of Ref. 9 for Si.
» J. P. Carbotte and S. Kahana, Phys. Rev. 139, A213 (1965).
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Statistical fluctuations in the energy loss of heavy charged particles in thin absorbers resulting from
collisions with atomic electrons are determined for collision cross sections obtained from the first Born
approximation calculated with hydrogenic wave functions. A comparison is given with the results calculated
with a 1/e2 collision spectrum.

1. INTRODUCTION

S TRAGGLING functions describe the statistical Quc-

tuations of the energy losses of fast charged
particles. Landau' has introduced a transport equation
describing the behavior of the straggling function f(x,d, )
for energy losses 6 small compared to the initial energy
T of the incident particle:

elf(x, a)
w(e) f(x, 6 e)de f(—x,A)o „—(1)

where f(x,A) is the probability density function of
particles that have penetrated a thickness x of the
absorber and have experienced an energy loss 6; w(e)de
is the differential collision cross section for single
collisions, with an energy loss e; and a. ,=j's" w(e)de is
the total collision cross section. This equation has re-
cently been discussed by Tschalar, ' and Kellerer. '

In experiments, for example, X0 particles penetrate an
absorber of a given thickness x. The number dg of
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c+ico

f(x,S)= exp pa —*
C—iao 0

w(e)(1 —e &')de dp.

(2)

4P. V. Vavilov, Zh. Eksperim. i Teor. Fiz. 32, 920 (1957)
/English transl. : Soviet Phys. —IETP 5, 749 (1957)].Extensive
tabulations of the Vavilov functions are given by Seltzer and
Berger, Natl. Acad. Sci.—Natl. Res. Council, Publ. 1133, 187
(1967), 2nd printing.

particles emerging with energy losses between 6 and
6+dd, is given by dN=Nsf(d)dh Often, only t.hemean
energy loss (6)= J'f(h)hdA is of interest. It is closely
related to the stopping power 5: (6) xS.

The collision cross section w(e) is of great importance
in the solution of Eq. (1). The simple approximation
w(e) =k/e' used so far' ' ' and a more realistic function
obtained from calculation in first Born approximation
using hydrogenic wave functions are therefore discussed
in Sec. 2. It may be noted, though, that the true
collision cross section w(e)de for single atoms is zero
below an energy e& equal to the difference in energy
between the lowest possible excited state and the ground
state of the atoms, and also vanishes rapidly for
e) e ~2rrtv'. Similarly, f(x, 6—e) must be equal to zero
for e& A. The limits of integration introduced by
Vavilov have to be understood from these conditions.

The solution of the transport equation using the
Laplace transform' ' is


