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The inQuence of degeneracy on coherent pulse propagation in an inhomogeneously broadened attenuator
is examined by computer calculations, and the connection with self-induced transparency in a nondegenerate
system is described. Specific modifications that arise in a degenerate system are the development of pulse
shapes characteristic of the degeneracy, the association of a finite loss with propagation, a reduction of
pulse delay times, and the suppression of pulse separation of multi-2~ pulses. Additionally, results of calcula-
tions pertaining to experiments on pulse propagation in SF6 are presented which indicate two basically
different phenomena. One corresponds to delay phenomena qualitatively similar to nondegenerate self-
induced transparency, while the other is a coherent saturation effect generally characteristic of degenerate
media. The computed results fully substantiate our earlier experimental findings.

I. INTRODUCTION

'HE properties of coherent pulse propagation in
attenuating media have recently received in-

tensive study. ' Considerable activity has centered on
the nonlinear features associated with the transmission
of coherent radiation. A number of significant and
surprising results have emerged. One such result is the
phenomenon of self-induced transparency (SIT). Aside
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from practical considerations, this effect is of interest
because it involves the coupling of Schrodinger's and
Maxwell's equations through a nonlinear dynamical
process and is completely solvable under certain simple
conditions.

It has been shown that the effect of level degeneracy
has a strong inhuence on the propagation behavior of
coherent pulses, and hence, on SIT. Given the one-to-
one correspondence between the rotating frame well
known in NMR' and the rotating frame appropriate
for discussion of electric-dipole transitions as described
by Hartmann, ' it is pertinent to inquire why degeneracy
effects frequently arise in the latter but not in the former.
Spatial degeneracy does not occur in NMR because the
static magnetic field destroys the isotropy of space by
establishing a preferred direction. More formally, the

'A principal reference and guide to the NMR literature is
A. Abragam, The Principles of nuclear Magnetism (Oxford
University Press, New York, 1961).

3 I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Phys. Rev.
141, 391 (1966).
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unperturbed part of the Hamiltonian in %MR does not
commute with the group of rotations. It follows that
systems possessing different magnetic moments are not
degenerate. 4 This failure in the analog between the two
rotating frames is also manifested in the fact that in
NMR the rotating frame is in E' coordinate space
(x,y, z) while the electric dipole analog is in pseudospace.

An earlier publication' presented calculations, valid
for an attenuating medium, of propagating pulse shapes
with the use of an unbroadened model. ' This article is
an extension of that previous work and incorporates
the effect of an inhomogeneously broadened resonance.
We begin with a brief theoretical review and describe the
extension to degenerate systems. Specific results are
calculated for Q(j) (i.e., j~ j) transitions, since
spatial degeneracy is commonly present' in a wide

variety of materials. We point out that the origin of the
degeneracy in a particular situation may be spatial or
may arise from the presence of overlapping transitions.
As it turns out, the well-known problems associated with

SF6 involve both of these considerations.
Finally, we present the details of calculations which

are pertinent to some experimental work' using SF6.
These computations, which agree very well with the
experimental endings, describe two essentially different
phenomena. The first is the significant reradiation and

pulse delay which qualitatively resemble SIT in a non-

degenerate system. This occurs for input pulses whose

angle e(0) is in the vicinity of ~. The second phe-
nomenon involves input pulses for which the inequality
0(0)))~ is valid. A pulse-steepening effect appears for

pulse input angles in that region. This is rot a satura-
tion process in the language of rate equations. On the

contrary, it is shown to arise as a result of a completely

4This ignores the special case of an accidental degeneracy.
Throughout this paper degeneracy is regarded in the "normal"
sense as described by Wigner in E. P. Wigner, Group Theory and
Its Application to the Quantlnz Mechanics of Atonzzc Spectra
(Academic Press Inc. , New York, 1959), expanded edition, p. 120.
The standard counterexample of accidental degeneracy is the
Coulomb problem as discussed in V. Fock., Z. Physik 98, 145
(1935).

5 C. K. Rhodes, A. Szoke, and A. Javan, Phys. Rev. Letters 21,
1151 (1968).' In this context, the unbroadened attenuator is a model con-
sisting of an ensemble of noninteracting radiators each of which
is on exact resonance. The radiative lifetime is assumed as in-
finitely long.

7 In the case of spatial degeneracy we are concerned with the
transformation properties of the states under rotations. They are
specified by the angular momentum quantum number j so that
these considerations are not necessarily restricted to molecular
rotational-vibrational states. Our interest is centered on Q(j)
transitions because they most nearly satisfy the conditions for
SIT. See Ref. 5 in this regard.' In nearly all molecular gas systems presently under study, for
example, CO2, HCN, N~, SF6, N20, and H20, one is dealing uni-
formly with levels of relatively high angular momentum. Indeed,
this situation is not unknown in solids as the high spin levels of the
1.06-p transition of Nd lasers illustrate.

C. K. Rhodes and A. Szoke, Phys, Rev. 184, 25 (1969).

coherent excitation in the presence of sufhcient level

degeneracy.

II. THEORETICAL OUTLINE

where e designates a unit polarization vector. The
electric field envelope function 8(t,s) is assumed to be

slowly varying"; more precisely, this assumption is

stated as

and
ah(t, z)/az« t h(t, z)

a 8(t,z)/at«v h(t, z)

for all s and f. The field interacts with a set of en-
sembles, indexed by {A), of two-level systems de-
scribed by a corresponding set of 2&(2 density matrices

p, =p(co, t,s, p,), is{A)." Each density matrix p, has
elements (p,)„, (p, )qq, and (p;),&=(p;)g * where the
subscripts a and b index the upper and lower states,
respectively. The radiators, in the laboratory frame,
have resonant frequencies co, the ith ensemble possesses
a dipole matrix element p, ; the relaxation processes for
all the ensembles are characterized by the relaxation
parameters" T~ and T~. Since the medium is attenu-
ating, the equations of motion are supplemented by
the boundary condition'

hm (p,) p
——8 gl pg

gazoo

for all is{A},and for all se/O, L7. Furthermore, the ith
ensemble has an inhomogeneous frequency distribution
0.;(co) which is a normalized Gaussian centered at cu =coo

' Frederic A. Hopf and Marian O. Scully, Phys. Rev. 179, 399
(1969)."This is known in the literature as the slowly varying envelope
assumption (SVEA). It enables one to neglect certain derivative
terms in the basic equation of motion for the envelope func-
tion 8(t,s)."The expression ic{A) states that the element i is a member of
the set (A)."The relaxation parameters Ti and T2 correspond to the
energy transfer and dephasing times, respectively.

'4 By an attenuating medium, we mean one in which all the
atomic systems are initially in the ground state. The b & and bpf,
are Kronecker deltas with n,pe{a,b). The medium is treated as
finite and one dimensional so that the variable s is constrained to
lie in the closed interval $0,I.) for some length 1.& ~.

The theoretical analysis of a degenerate inhomo-

geneously broadened ensemble of two-level radiators
interacting with a classical electromagnetic field in-

volves a straightforward generalization of the nonde-

generate theory. Since a previous publication'0 has
examined that theory in considerable detail, only an

outline of the extension to the degenerate case will be
presented here.

Consistent with customary notation, we take the
electromagnetic field as a linearly polarized plane run-

ning wave of the form

E(t,s) = ~$(t,z) cos(kz —vt),
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with standard deviation" 2/Ts*,' for a unidirectional
running wave 6eld in the medium this treatment is also
appropriate for Doppler broadening. The density of
the ith ensemble is given by E;.The polarization of the
medium P(t,z) is the ensemble average and the sum
over the i ensembles of all the microscopic dipoles
induced by the field and is expressed in the form

in the form
P~=fiP,

with the assumption that pj = p is the maximum
element and pI, &p~ —+k&l. Thus, r~ ——1 and r~&r~~
k&l. Similarly, the densities E; are dehned as

&(i,z) = e E &~p' d~{~'(~)l:(p~).s+(p') s.7} (4)

The response of the atoms with the coupling constant
p, is summarized in a susceptibility function X,(T,t,z)
which is the cosine Fourier transform of the population

difference.

x, (T,t,z) =L27ro, (v)j i choo. , (oi)

r(z) = (p /is ) P(i,z)df. (12)

Assuming that Ts*&(T&" and 8(t,z) very small, the
usual Beer's-law attenuation

with the convention e~ ——1; this normalizes all the re-
maining densities to N&. The energy of the pulse,
S(z) = (ce/87r) (h'/p')r(z), is proportional to the quan-
tity v (z), where

Xcos{(~—v) T}[(p,)„—(p,)..7. (5)
dr (z)//dz = —p r,sit, ,o.r (z) (13)

The electric field envelope h(t, z) then obeys the equa- obtains where n )assuming o., (te) =o.(te), for all is{A}j
tion of motion" is given by

08(t,z)/Bz+ (1/c) $08 (t,z)/Bt7 = —Q n, dt'h(i', z)

Xexp{—(t—t')/T }X,(t—(', i', z), (6)

where c is the velocity of light in the inert background
and

n, = p,s(oX;7ta;(v)/2Ac.

The dynamical evolution of the susceptibility X; is de-
scribed by Eq. (8):

&&,(T,&,z)/&&= $&,(T) x, (T,&,z) j/T—i (pP/2&') @(&—,z)

n = p'ouzo (tu)/2Ae.

Typical circumstances' are e;=1 for all i. In such
cases, thei = 1 radiators will tend to dominate the linear
absorption and the nonlinear behavior as well. Further-
rnore, if 0(z) is defined in terms of the maximum dipole
moment as

0(z) = (p/I. ) h(t, z)di,

then d0(z)/dz is found in a straightforward manner's as

d0(z)/dz= —(o/2)P n, ,r, sinLr, 0(z)j. (16)

X dt'h(t', z) exp) —(i—t')/T j
X{~,(T+t—i', t', z)+x, (T i+i', t'z)} (g).

D, (T) is the normalized Fourier transform of the fre-
quency distribution function o., (&u). The initial condi-
tion associated with Eq. (8) for X, is"

lim X,(T,t&z) =D; (T) = (Ts*+ir) ' exp L
—T /(Ts*) )

for all is{A}. (9)

The set of dipole matrix elements, {p, ~
is{1,2, . . . }}

is dealt with conveniently if they are indexed with the
following convention. The matrix elements are rewritten

"The dephasing time T2* is chosen to give a simple form for
D(T) Lsee Eq. (19)g. The full width at half-height of 0(a&) is
Ace;„h, =3.3/T2*. The choice of identical, resonant, degenerate
Doppler lines will adequately approximate the actual physical
situation of overlapping degenerate Doppler lines so long as T2*
is chosen to be much smaller than the pulse width. The definitions
of x(T,t,s), n, and D(T) differ from the convention of Ref. 10 by
a minus sign. The convention used in this paper makes o. and D (T)
positive numbers.

Naturally, the stable areas associated with Eq. (15)
(d0(z)/dz=0, d/d0(d0(z)/dz)(oj depend on the sets
{r,} and {n;}.However, certain solutions for a Q(j)
transition are easily determined. In that case, e;=1 for
all i and r, =(j i+1)/j, i=1, 2, 3—, . . . , so that
0(z) =2irj and, if j is even, 0(z) =itj represent stable
pulse areas. We emphasize that a stable pulse area does
rot imply SIT. As an example, consider Q(2). Then
0(z) =2m. is stable, although it is impossible that this
value corresponds to a transparent" pulse, since for the
ensemble indexed by i =2 (rs ——s, equivalently m, =1),
the atoms near the resonant frequency are turned
through an angle of 7r producing a partial inversion.
This process represents a considerable absorption of
energy. This energy loss at a fixed 0(z) is accomplished

"When T2 =T2*, the gain is depressed as the line is broadened.
For the quantitative details, the reader may consult Ref. 10.

"Spatial degeneracy is a common example, since a condition
for thermal equilibrium is equal population of all m sublevels.

"Naturally, we have assumed T2))7p I thloughout this
dlscusslon.

'9 In this context, we use the term "transparent" to designate
lossless propagation regardless of the pulse distortion.
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by an increase in the pulse width'" t(z) and a simul-
taneous decrease in the average electric field amplitude20

he(z) such that h, (z)t(z) is constant while h, '(z)t(z)
decreases monotonically, tending eventually to zero.
We refer to this process, in which a pulse loses energy
at constant 0(z) resulting in pulse broadening, as fixed-
area attenuation. By its basic nature, this effect is
accompanied by considerable pulse delay and reradia-
tion' and differs substantially from the small signal or
Beer's-law behavior with which no delay phenomena
are associated.

A simple argument suggests that both r(z) and t(z)
behave roughly exponentially in s under these condi-
tions. As a definite example, consider a Q(2) attenuator
and a pulse for which 8(z) =2ir. Recalling the discussion
above, this will invert the m, =1 radiators over a width
in the inhomogeneous distribution given approximately
by rr/l(z). Assuming that this is the dominant loss
mechanism, " the rate of energy loss goes as —1/t(z).
Since the energy 5(z) is proportional to" 8'(z)/t(z), and
since 0 is constant, then the loss per unit; length,
dS(z)/dz, is proportional to S(z), leading to an expo-
nential law. This produces an exponential increase in
t(z) and a corresponding decrease for the pulse energy.

For specific cases, the stable and unstable areas
associated with expression (16) can be easily computed.
For the purpose of illustration, we quote some of the
results for the cases Q(2), Q(10), and the continuum
model. ' A Q(2) transition will have stable values of
pulse angle at 8(z) =2ir and 8(z) =47r with the first
unstable solution appearing at 8(z) =1.06ir. The lowest
solutions for Q(10) are 2.36ir, 4.27ir (stable), and 1.37ir
(unstable). These values, of course, do not exhaust all
of the solutions. At suKciently high spin, the systems
approximate classical behavior which in the limit corre-
sponds to a continuum model. In this case the sum-
rnation appearing on the right-hand side of Eq. (16)
becomes an integral of the form 1'n(r)r sin(r0)dr.
Assuming tha, t n(r) is independent of r, n(r) = np

"We define the quantities t(s) and G0(s) in the following sense:

alld

S(s) = (c«/8n-) S(t,s)dt= (r./8~) 8,'(s)t(s)

8( ) = (yl&)I &(( (« 4 s/(«((( «=—

are two expressions which determine t (s) and a(((s) unambiguously
in the case where no phase reversals in 8(t,s) are present. For the
details of this singular case where 8(s) =0 is a possibility, the
reader should refer to Frederic A. Hopf, C. K. Rhodes, G. L.
Lamb, Jr. , and Marian O. Scully (unpublished). Similar argu-
ments were used by E. Courtens in Chania, Crete, 1969 (unpub-
lished) and by S.L. McCall in Flagstaff, Ariz. , 1969 (unpublished).

'~ The actual loss is pulse-shape dependent on account of the
inhomogeneous broadening. For Q(2), the m; =2 atoms will
generally also produce a loss directly related to the wings of the
inhomogeneous distribution even when 8(z) = 2m-. The reader
should examine the off-resonance behavior of the state amplitudes
for a square-wave pulse at 0(s) =2m- and 8(s) =m. as an explicit
example. The 2m. hyperbolic secant pulse is the only known case
where the upper state amplitude vanishes independent of the
detuning from exact resonance. Thus, the assumption we have
made ignores the influence of these effects.

[this is the appropriate density for correspondence
with the limit of a Q(j) transition], then d0(z)/dz
is proportional to —ji(0), where ji(8) is the spherical
Bessel function of the first kind of order 1.' Therefore,
the first stable value occurs at 8(z)=1.43ir. For P(j)
and R(j), the values for the ratio of the dipole moments
is r,=[j'—(j—i+1)'/j] ". Because r; takes on irra-
tional values, there are no straightforward solutions of
Eq. (16) for this case, even for j= 2. One notes that for
J))1, the function r, is peaked strongly near r=1, so
that many of the levels, and especially the dominant
ones, well tend to stay in phase with one another. For a
continuum model, the sum in Eq. (16) is replaced by
j'drrs(sinr0)/(1 —rs)'". This integral does not reduce to
a simple closed form, but its general characteristics will
be similar to an ordinary Bessel function. The solutions
of Eq. (16) in this case are at 1.2z. (unstable) and 2.2ir

(stable). The clustering of the matrix elements near the
maximum means that a 0=+ to 2m pules will behave
more like one propagating in a nondegenerate medium
if it is in a P(j) rather than a Q(j) attenuator.

In the case of both degenerate and nondegenerate
attenuators, the pulse behavior is determined to a
large extent by Eq. (16). If one considers only attenu-
ators of few absorption lengths and pulses whose area
is not much greater than 2m, the right-hand side of
Eq. (16) is qualitatively similar for P(j), Q(j) and
nondegenerate media, so that, qualitatively speaking,
one expects considerable similarities in pulse develop-
ment among the various cases. The major differences
arise from the shifting of the values of 0 that represent
the stable and unstable solutions of Eq. (16).However,
in the absence of an independent means of accurately
determining the area of the pulse (or equally, the
maximum dipole moment), one cannot tell from the
experiments which energies correspond to which 0.
Indeed one "measures" 0 by observing, for instance,
the value of 8(0) for the maximum delay time [approxi-
mately at the lowest, unstable solution of Eq. (16)].
Thus the determination of 0 will be model-dependent.
The single feature of the experiment that is independent
of the model is that the "knee, " or transition from
small-signal attenuation to large-signal "transparency, "
should occur over no more than an order of magnitude
or so of variation of input energy, and should coincide
with the maximum delay time. At high 0, however, the
right-hand side of Eq. (16) goes to zero for the de-
generate case, but not for the nondegenerate case.
Thus one expects to see the greatest differences for
0))2x. These similarities and dissimilarities are dis-
cussed further in the section dealing with the experi-
mental results.

III. RESULTS OF CALCULATIONS FOR
Q(j) ATTENUATORS

The propagation behavior of pulses in Q(j) attenu-
ators is presented in this section. Since sufficiently
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general results are not available in closed analytic form,
the following calculations were performed numerically
using the equations presented in Sec. II.

The most elementary nontrivial case which exhibits
the features of the general result is a Q(2)(j=2~ j=2)
attenuator. Recall that a definite propagating pulse
shape can be calculated for Q(j) in the absence of in-
homogeneous broadening. ' The general conclusion of
these calculations was "that for a j—+ j&1 transition
(j arbitrary) an undistorted pulse propagating without
attenuation cannot exist except for the special cases
0~ 1 and s —+ s. However, j+j transitions (j arbi-
trary) admit, in principle, solutions corresponding to
lossless, undistorted, finite-energy, propagating pulses.
The steady-state pulse shape for j' —+ j is multiply
peaked with jmaxima for integral j and j+—, maxima
for half-integral j."' This result, based on the un-
broadened' model, is unfortunately unable to furnish
information concerning the evolution of an arbitrary
input pulse. "Hence, two points are of direct interest:

(1) Under which conditions, if any, does an arbitrary
input pulse develop into the multiply peaked configura-
tion characteristic of the degeneracy?

(2) In the degenerate case, how severe are the
losses'" associated with the presence of the inhomo-
geneous distribution& This will a6ect the pulse stability.

Calculations, which were performed for Q(2), Q(3),
and Q(4) attenuators, produced the following results.
It was found that the multiply peaked pulse shape was
characteristic of the pulse evolution provided that the
input pulse had sufFicient area 8(0). This sufficient area
is determined by the condition 8(0) =2s relative to the
minimum matrix element. For Q(j) transition, recall
that the dipole matrix elements are proportional" to the
magnetic quantum number m. Thus the input pulse
corresponds generally to =2zm for the mth sublevel.
A precise examination of the Q(2) case revealed a

"See footnote 3 of Ref. 5 and the text referred to therein. We
point out a critical misprint occurring in that footnote; T'pz$
(&T2" should read "~p I ((T2 invalid. " Physically, this problem
arises since no process is available for reversible dephasing in the
unbroadened model. In the absence of such dephasing, an arbi-
trary input pulse will broaden so that 7.p„&„=T2. However, the
presence of an inhomogeneous width allows a reversible dephasing
process to occur which limits the reradiation and enables the in-
equality z„„&„((T2to be preserved for an arbitrary input pulse.
Hence, an inhomogeneous width is essential in any discussion con-
cerning pulse evolution.

"The 2~ hyperbolic secant pulse has the remarkable property
that it is effectively 2~ independent of the radiator's position in the
inhomogeneous distribution; the atomic systems begin in the
ground state and end up in the ground state independent of the
detuning parameter Aced =co—s. This is not a general property valid
for an arbitrary E(t,z). In such cases where this property is
absent propagation is necessarily accompanied by loss.

'4 For Q(j) transitions, using the conventions of Ref. (5), the
matrix elements are p = prIi, where p is a constant and m=0,
&1, &2, . . ., &j. For a symmetric top molecule, the additional
sc degeneracy may be included although we have assumed that
the a degeneracy is broken. See C. H. Townes and A. L. Schawlow,
Microwave Spectroscopy (McGraw-Hill Book Co., New York,
1955), p. 96, for the details of these matrix elements.

shght deviation from the 2~m condition. Actually, it was
found that the tendency to develop into the multiply
peaked configuration was maximized when 8(0)=2s-j+e,
where the e«1 is associated with a small modification
due to the presence of inhomogeneous broadening.
Figures 1(b)—1(d) illustrate the results for Q(2), Q(3),
and Q(4) attenuators, respectively. In all three cases,
the input pulse shape, labeled s 0, does not represent
a special or preferred h(0, 1); it was taken proportional
to (1/Cs) exp( —(t/Cs)'), where C, defines the pulse
width, for computational convenience only. Addition-

ally, the time T&* is taken as unity and the small signal
attenuation constant n is identical in all three cases.
The attenuation constant o. is such that a weak pulse
L8(0)((1j would sustain approximately a factor of 10'
attenuation in energy after propagating a distance of
120 cm.

The output pulses clearly exhibit a modulation that
is directly associated with the degeneracy. The pulses
for Q(j) develop j maxima. Although the angle 8(s),
as expected, is very nearly a constant, these pulses do
not propagate without distortion. Furthermore, a finite,
albeit very small, loss is associated with the propagation
due to the presence of inhomogeneous broadening.
This small parasitic loss will eventually cause the pulse
to be completely damped, thus destroying SIT in its
strictest sense. For the case of Q(2), it is worth noting
that the input pulse possesses 8(0) =47r relative to the
largest matrix element associated with that transition
and that a nondegenerate system with a 4m input pulse
would have evolved into two very well separated 2x
pulses under the same conditions. " Kith this com-
parison in mind, one inhuence of degeneracy is such as
to suppress pulse separation.

It is conceivable that different input pulse shapes
would follow very different evolutions and arrive at
substantially dissimilar output pulse shapes. In order
to check this possibility, the propagating pulse shape
for Q(2) calculated without considering inhomogeneous
broadening was used as the input field. Figure 1(a)
shows the results. All the conditions of the attenuating
medium were identical to those corresponding to Fig.
1(b). A small loss is again associated with the propaga-
tion. Most importantly, however, the output pulse
shapes of Figs. 1(a) and 1(b) strongly resemble one
another. The general features of the pulse development
could depend so severely on the input pulse form that
observation of the degeneracy modulated pulse shapes
would be impossible. The opposite tendency is actually
present.

The result shown in Fig. 1(a) demonstrates that the
influence of inhomogeneous broadening on a properly
modulated pulse is minimal. The principal reason for
this is that these pulses are chosen in such a way that
the medium is left with a negligible macroscopic polar-

"S.L. McCall and E. L. Hahn, Phys. Rev. Letters 18, 908
(1968); G. L. Lamb, Jr., Phys. Letters 25A, 181 (1967).
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~ CALCULATED POINTS

$ OBSERVED POINTS

~INPUT = OUTPUT
CURVE

OBSERVED CURVE
P(16) LINE ABSORBED IN

SF6 at 6 mTorr

FIG. 3. Calculated and experimental
saturation curves. The ordinate is pulse
output energy while the abscissa corre-
sponds to the input pulse energy.

CALCULATED CURVE FOR
Q(10); T2=10, WIDTH =10,
a=0.0050, L=120cm, T2=1

1O' 1OO 1O'

INPUT ENERGY (ARBITRARY UNITS)

a Q(10) transition is merely representative of a situa-
tion involving a large range of dipole matrix elements.
The results are not influenced appreciable by the
choice of another comparable transition. " Basically,
the pulse-sharpening effect occurs because, for large
8(s), the distribution of dipoles dephases leaving the
system in a saturated" state. Hence, the effect emerges
as a general phenomenon associated with the response

' As described in Ref. 9, the identical computations were per-
formed for a P-branch transition with angular momentum quan-
tum number j=21, E(21).The conclusion was identical.

'2This is not a saturation process in the language of rate
equations. For high excitation, the individual dipoles tend to
cancel thus leading to an effectively saturated state in which the
macroscopic properties of the medium (polarization and energy
content} are unchanged by an additional increment of excitation.
We refer the reader to Secs. IV A and IV 8 of Ref. 9 for a further
discussion of these considerations.

of highly degenerate media to very intense, coherent
pulses.

Delay and reradiation phenomena were observed'
with input pulses whose angles were in the vicinity of ~.
Since the degeneracy produces a parasitic loss, these
phenomena were most prominent in a sample of around
two absorption lengths. Again assuming a Q(10) transi-
tion, calculations were performed with the parameters
T~, T&*, and o. appropriately adjusted in correspondence
with the experiment. The computed quantities were
the output pulse energy versus the input pulse energy
(saturation curve) and the output pulse delay versus
the input pulse energy (delay curve). The results of
these calculations, together with the experimental
points, are illustrated in Figs. 3 (saturation) and 4
(delay). We found that the computed saturation curve,
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FIG, 4. Calculated and experimental delay curves. The ordinate represents pulse delay (position of the pulse peak) in units of T2
while the abscissa of Fig. 3 is in the same units as in this 6gure, indicating pulse input energy.

the computed delay curve, and even the details of the
pulse reshaping were all very similar to the experi-
mental data. The agreement of the saturation curves,
although manifest, is by itself not sufhcient evidence of
a genuine coherent effect. Similar behavior is expected
on the basis of a simple rate equations model, as indi-
cated by Hopf and Scully. ' However, the occurrence
of the pulse delay in the nonlinear region of the satura-
tion curve constitutes unequivocal evidence of a
coherent radiative effect. Theory predicts" that the
pulse delay should be small at low intensities (i.e., in
the linear region), small at high intensities, and reach
a maximum at an intermediate pulse input intensity.
In Fig. 4, both the calculated and experimental curves
exhibit this behavior. Qualitatively, the agreement of
these curves is very good.

The discrepancy in the magnitudes of the delay
curves is due almost entirely to the shape of the input
pulse, although errors are expected to arise due to the
inadequacies of the model, the model dependence of
certain details of pulse behavior, and the inhuence of
the nonuniformity of the beam. In the theoretical
calculations for the delay curves, the input pulse has a
very sharp drop at the trailing edge, so that the reradia-
tion occurred in a region in time that was well separated
from the initial radiation, i.e., so that if t„ is the time
at which the output peak occurred, then B(t„L/c,L)—

"Frederic A. Hopf and Marian 0. Scully, Phys. Rev. (to be
published). Among other things, this work examines the de-
pendence of the pulse delay on the input pulse energy and angle.
The calculations performed in connection with this article
show that the behavior of a degenerate system is qualitatively
similar.

))h(t~, 0).'4 In the experiment, the input pulse had a
rapid rise followed by a slow dropout at the trailing
edge, so that it was dificult to determine how much
of the radiated peak came from the input pulse and
how much from the reradiation. Several computer cal-
culations were done with Q(6) using a triangular input
that resembled the experimental input pulse. The
result was that the output pulses closely resembled the
experimental outputs in all details. The reradiated
peaks corresponded to the position of the observed peaks
within 10/z, and the first peak in the output pulse
(coming from the peak of the input), was seen to have a
power which varied in direct proportion to the input
energy exactly as observed. The situation with 8(0)
=1.5~, for Q(6), near the maximum delay was com-
pared with P(6) and the nondegenerate case, givi'ng
similar outputs, with the maxima occurring at the same
times, but with considerably larger reradiated peaks
in the cases of nondegeneracy and P(6). The same run
for Q(6) was then checked against the results of
g(0) =1 37r in P(.6) and 8(0) =1.1m. in a nondegenerate
attenuator, so that the comparison was between the
outputs near the expected maximum delay. "This com-
parison showed that the reradiated peaks had similar

'4Although the reradiated peak is not much larger than the
original radiation, it nonetheless is larger and cannot be due to
rate-equation sects. Furthermore, numerical calculations have
been made which indicate that no large frequency sweeps or
other such phenomena are expected to occur in a nonresonant
Q(j) attenuator of a few absorption lengths which might possibly
give rise to similar experimental results.

"The maximum delay in a nondegenerate system, assuming
7 pulse((T2, occurs at the input angle 0 (0) =7r. Refer to Hopf and
Scully (Ref. 1) for details.
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amplitudes, and there were somewhat larger delays
for P(6) and the nondegenerate cases, respectively. The
expected similarities between the models was explained
earlier, and these calculations indeed show that in the
absence of an independent way of determining 0, there
is no way to distinguish easily which case one is dealing
with if observations are restricted to the region around
the maximum delay.

V. CONCLUSIONS

Some modifications of coherent pulse propagation in
attenuating media which originate from degeneracy
have been examined. It is found that the effect of SIT,
first described by Hahn and McCall, is modified in an
essential way. Among these modifications are the de-
velopment of pulse shapes for large 0 which are charac-
teristic of the degeneracy, the association of a finite
loss with propagation, a reduction of delay times, and
the suppression of pulse separation. Unfortunately, the
latter three qualitatively tend to modify the propaga-
tion behavior in a manner similar to the introduction
of a finite T2. It also appears that, in the presence of
attenuation, propagation can occur at constant angle

(fixed area attenuation). This implies considerable
pulse broadening and resembles nondegenerate SIT, in
accord with experimental findings. The resemblance
is so close, that on the basis of transmission curves,
delay curves, and pulse shapes alone is hard to dis-
tinguish between the two.

At high excitations (8(0)))7r] sufficiently degenerate
media depart from the similarity to the riondegenerate
case. A coherent saturation occurs which induces pulse
sharpening. This type of behavior provides an essential
distinction between degenerate and nondegenerate
media. It can be understood without the additional
complication of inhomogeneous broadening. Indeed,
the influence of inhomogeneous broadening on the high-
intensity behavior of a degenerate system can be re-
garded as arbitrarily small if the saturation width is
sufficiently large.
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The theory of periodic Schottky deviations is studied numerically. Corrections to experimental surface
reflection coefFicients for several refractory metals are given, The corresponding corrected estimates of the
surface inner potentials are in fair agreement with bulk band-theory calculations.

I. INTRODUCTION

A N estimate of the electron inner potential of metals
in the surface region and the confirmation of

proposed shapes of the one-dimensional surface-poten-
tial barrier can be made by measuring the complex
surface reflection coefficient p (p =

~ p ~

e'"s&).' Reflection
coefficients that have been obtained from an analysis
of periodic deviations in the Schottky effect in therm-
ionic emission from polycrystalline wires have been
reported for several metals. 2 4 There are several
approximate analytic expressions that describe the

~ C. Herring and M. H. Nichols, Rev. Mod. Phys. 21, 185
(1949).' L J. D'Haenens and E. A. Coomes, Phys. Rev. Letters 17, 516
(1966).

3R. E. Thomas and G. A. Haas, Phys. Rev. Letters 19, 1117
(1967).

4 W. C. Niehaus, in Proceedings of the Twenty-Ninth Annual
Conference on Physical Electronics, Yale University, New Haven,
Conn. , 1969 (unpublished).

periodic deviations. ' ' However, the expression given
by Miller and Good' has been favored more recently by
experimentalists because the generalized WEB wave
functions used by Miller and Good are more accurate
for realistic one-dimensional barriers than the usual
WEB wave functions. ' ' 7 Recent experimental results,
though, have pointed out two discrepancies. First, if
the Sommerfeld box model' of the surface potential is
used to calculate reQection coefFicients, it is necessary

5 S. C. Miller, Jr., and R. H. Good, Jr., Phys. Rev. 92, 1367
(1953).

'D. W. Juenker, G. S. Colladay, and E. A. Coomes, Phys.
Rev. 90, 772 (1953); D. W. Juenker, ibid. 99, 1155 (1955); P. H.
Cutler and J. J. Gibbons, ibid. 111,394 (1958).

'S. C. Miller, Jr. , and R. H. Good, Jr., Phys. Rev. 91, 174
(1953).

The Sommerfeld box model of a metal is a one-dimensional
surface potential model in which the metal's inner potential is a
constant —W~. This constant value joins the classical image
motive just outside the metal surface. See Fig. 1 and Eq. (1) of
Ref. 5, and footnote 9 of Ref. 2.


