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Optical Mixing by Mobile Carriers in Semiconductors
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Institute of physics, Vppsata, Sweden
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Certain nonlinear optical-mixing phenomena associated with collisional effects in drifted semiconductor
plasmas have been considered by means of a simple kinetic analysis. This leads to important modifications
in the results of two recent papers.

INTRODUCTION
'

N a recent paper, ' hereafter referred to as I, it has
~ ~ been shown that the nonlinearities associated with
the energy dependence of the relaxation time in semi-
conductors can make important contributions to the
optically mixed output. Thus, the current induced by
the electric fields of two laser beams (frequencies coi

and co,) may have components with frequency 2toi —cop,

which are mainly due to collisional effects.
An error in I has recently been pointed out in another

paper' (hereafter referred to as II), where a still more
significant contribution to the current was found for
frequencies larger than the inverse of the relaxation
time. The purpose of the present paper is to calculate
the induced current using exactly the same simplifying
assumptions as those of I and II. In addition, a constant
external electric field Ep will also be assumed to be
present. The calculations will be performed by means
of a kinetic analysis, whereas I and II used a moment-
equation approach. The results of the present paper
are compared with those of II. They are mainly equal,
if the dc electric field Ep is zero, but differ significantly
from one another, if Ep is sufficiently large. Thus, even
the direction of the current component with frequency
20'~ —~~ may be different from that of II, if the current
carriers have a constant nonzero drift velocity. This
example illustrates clearly that results on semicon-
ductor plasmas, derived by means of hydromagnetic
equations, may be misleading. Further, we propose a
new diagnostic method to determine the velocity distri-
bution function for current carriers in semiconductors.

BASIC EQUATIONS AND RESULTS

We consider a spatially hontogetteotts electron plasma,
which is situated in external electric fields. The dis-
tribution function for the carriers F(v, t) has to satisfy
the Boltzmann equation

qEp 8F
+

8$ Bv

where Ep is a constant electric field,

(m/q) y=Ese'~ "+Epe'""+(c.c.)

is the electric field due to externally impressed laser
beams, q is the electronic charge, nz is the electron
effective mass, and C(F) is the collision integral.

We will here divide F into two parts,

F=Fp+Fis,

where Fp(v) is the distribution function in the absence
of the field y. Equation (1) thus yields

BFp
=C(Fp) (2a)

ctPp ( IlEp) ctF12
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=C(Fp+F„)—C(Fp). (2b)

Equation (2b) is now multiplied by qv and integrated
over velocity space. We obtain

B3——qttpp =q v[C(Fp+Fip) —C(Fp)] dv
8$

=q vC(Fis) dv, (3)

where j =qJ'vFt2 dv is the current induced by the
la,ser beams and where ttp= J'F dv is the (constant)
density of the carriers.

The last equality in (3) follows from the fact that
electron-electron collisions, which conserve momentum,
do not contribute to the right-hand side of (3) whereas
the remainder of the collision integral C, which is due
to scattering of electrons by molecules, phonons,
impurities, etc. , is linear.

Following I and II we now assume that or& and co&,

as well as their sum and diGerence frequencies, are
much larger than any collision frequency of interest,
i.e.,

' P. K. Kaw, Phys. Rev. Letters 21, 539 (1968).' B. S. Krishnamurthy and V. V. Paranjape, Phys. Rev. 181,
1153 (1969).
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The function F» in the right-hand side of (3) can momentum transfer collision frequency' t (I)') from
then approximately be replaced by the solution of the relation

01
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(tFp(v) BF12

+"( '

Ov
=0 (Sa) vC(F.)dv = — vvF, dv,

where
F12 Pp(——v—ll) —Fp(V), (Sb) where F is an arbitrary distribution function.

Equation (9) can then be rewritten in the form

q fEIecrct(
rc= C tt= —

~

-+ -+(c.c.)) . (tr)
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~4p 2P 4 O'F p
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Accordingly, we write Eq. (3) in the form

Oj——q2(pp =q vC[Fp(v —u) —Fp(v)] dv.
Ot

In the moment-equation approach it is usually
assumed that t (p2) approximately can be replaced by

(6) v((p2)), where (p2) is the mean-square velocity, i.e.,

OFp O'Fp O'Fp
Pp(v —u) —Fp(v) = —u +-,'u' ——;u' . P)

Ov Op Ov

Following I and II we focus our attention on the current
component j3, which corresponds to the frequency
2MI —M2. Accordingly, by means of (Sc) we write

3iq' E&282*
u'= — — et('~' ~»'+terms with frequencies

m GOy 072

+Mit +M2t +3MI, &3M2t & (MIN 2M2) t + (2MI+M2)t

M2 —2MI, (8)

where the star over E2 stands for its complex conjugate.
Equations (6)—(8) then yield

Oj3
—=2(2MI —M2) j2 =

Ot
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Equation (9), which is the basic result of this paper,
corresponds to (8) in I and to (8) in II.

The different time-dependent components of j can now
be determined from Eq. (6) and our problem is thus in

principle already solved.
In accordance with our limitation to large frequencies

we now assume that the absolute value of the vector u
is much smaller than that of v for most velocities of
interest. If, for simplicity, we further assume that all
electric fields and currents are parallel to the x axis
(E=E'e., u=ue. , j = je„etc.), the Taylor expansion of
F,(v —u) yields

(p2) =22 ' p2P dv (12)

(13)

we easily find that Eq. (11) in the present work and
Eq. (8) in II are identical. However, as will be illustra-
ated below, an approximation like (13) may be
dangerous.

Let us, for simplicity, now suppose that v varies
with energy according to some arbitrary power law,
i.e., v is proportional to v ".By means of three partial
integrations of (11) we then obtain

4g V~
2

jp —— e'( "I "2)' —3+6(22+2)—
2222 MI M2(2MI M2) 'V

4

—(22/2) (22+4) Fo dv .—(14)—
~4 ~2

tA'e have here limited ourselves to cases where e is
smaller than unity in order to ensure convergence of
(14) and to avoid run-away phenomena. (

We shall now consider (14) for different limiting
cases. Thus, we assume that Fp(=F;,) is almost iso-
tropic in velocity space (which means that the drift
velocity is considerably smaller than the thermal
velocity). Accordingly, it is then possible to replace
P,'/P' and P,'/I)4 in (14) by 2 and —',, resPectively. On the
other hand, if we assume that Fp(=F,„) is strongly

It is then possible to introduce a momentum relaxation
time r= Lt ((p2))] ' (see, e.g. , II). Accordingly, if we
replace v in Eq. (11) by

DISCUSSION AND COMPARISONS
WITH PREVIOUS WORKS

In order to make a detailed comparison with the
results derived in II (and I) we will now define a

'I. P. Shkarofsky, I, W. Johnston, and M. P. Bachynski,
The Particle Kinetics of P4snzas (Addison-Wesley Publishing Co.
Inc. , London, 1966), Chap. 3; E. M. Conwell, High retd Trans-
port in Sensicondgctors (Academic Press Inc. , New York, 1967),
Chap. 5.

4 L. StenQo, Plasma Phys. 10, 801 (1968).
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anisotropic in velocity space (the drift velocity is much
larger than the thermal velocity), it is possible to
replace both e,'/u' and e '/e' in (14) by 1. By means of
(14) we thus obtain

j8 1S

j3 an

1 3—s
V 2VF;sdV

51+n
vJ,„dv 15

as well as

j&;, (3—n) (1 n —)(s.')r P—I.' ' dV (16)
15 no

' See, e.g., L. StenRo, Proc. , IEEE 54, 1970 (1966); 55, 1088
(1967).

where jsi& denotes the expression for j3, which was
derived in II.

If, in addition, we assume that F;, is (an undrifted)
Maxwellian, the right-hand side of (16) reduces to (8/15)
(ss )"t'+'m 't I' f(5—n)/2j, where I' is the y function. The
current component j3il should thus in general be
corrected by a factor of order unity. This factor, which
is due to an approxima, tion like that of (13),may even be
significantly different from unity, if F;, is slightly non-
Maxwellian for small velocities. It is more remarkable,
however, to note from Eq. (15) that the sign of js,„
in general is diferent from that of j&;, (or j»&). Accord-
ingly, it is evident that the sign of j& can be changed
when the applied constant electric field Eo is so large
that the magnitude of the drift velocity is comparable
to the thermal velocity. Such anisotropies in velocity
space occur in many semiconductor plasmas of interest, '
where experimental values for j3 thus can give informa-
tion about the degree of anisotropy. The numerical

data may also contribute to the development of a
somewhat more reliable description of the distribution
function.

In conclusion, it may be worthwhile to point out
that hydromagnetic equations yield results which are
comparatively insensitive to details of the scattering
processes and to the form of the distribution function.
Thus, the numerical coefhcients derived in I and II are
not correct and can even be significantly wrong' if the
distribution function is highly anisotropic in velocity
space. The kinetic approach to the problem, which also
is very simple and straightforward, avoids some basic
limitations of the moment-equation approach, however,
and predicts diQerent results.

Following I and II we have here made four basic
assumptions; namely, that the fields are homogeneous
in space, ionization as well as recombination phenomena
can be neglected, the conduction band is parabolic,
and the frequencies ~~ and co2 are much larger than
any other characteristic frequency of the system.
If these assumptions are not valid, it should be possible
to derive similar, although much more complicated,
results by means of more elaborate methods. ' A detailed
treatment of resonant wave coupling phenomena' may
also be of interest.

'It should be stressed, however, that the authors of I and II
did not intend to consider the case where Fo has a nonzero drift
velocity.' See, e.g. , P. Das, Phys. Rev. 138, A590 (1965); M. S. Sodha
and P. K. Kaw, Proc. Phys. Soc. (London) 88, 373 (1966);
I. P. Shkarofsky, Plasma Phys. 10, 169 (1968); P. K. Kaw,
J. Appl. Phys. 40, 793 (1969); M. S. Sodha and G. P. Gupta,
Plasma Phys. 11, 473 (1969); M. S. Sodha and S. Sharma, J.
Phys. C 2, 914 (1969).

'A. Jarmen, L. Stenflo, H. Wilhelmsson, and F. Engelmann,
Phys. Letters 28A, 748 (1969); H. Wilhelmsson, L. Stenflo, and
F. Engelmanu, J. Math. Phys. (to be published).


