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A sequence of variational principles for converting a trial solution of a linearized Boltzmann equation
into bounds on a transport coefFicient is presented. For systems in which the Boltzmann collision operator
has a bounded eigenvalue spectrum, we obtain an infinite sequence of lower bounds which begins with the
familiar result of Ziman. For an arbitrary trial function, this sequence converges monotonically to the
exact transport coefEcient. Application of the erst two terms has been made to the lattice thermal conduc-
tivity of a model simulating solid argon; the second bound lies considerably higher than the first.

I. INTRODUCTION
'
OST theoretical study of transport coefficients in

~ ~ recent years has been from one of three ap-
proaches. On the formal side, numerous authors have
used the Kubo formalism to relate the linear response
of a system to a disturbance ultimately to some quasi-
particle Green's function. Some of these authors in-
tentionally avoid the question of describing the trans-
port process by a kinetic equation; others derive such
an equation. On the practical side, the solutions to
relaxation-time forms of qua, siparticle Boltzmann equa-
tions have been used to analyze a great body of experi-
mental data. This approach very conveniently gives
information about the relative importance of different
attenuation mechanisms, but the theory is a phenom-
enological one, whose parameters are difFicult to
interpret at a fundamental level.

Somewhere between these two approaches lie the
techniques for bounding transport coefficients, originally
developed by Kohler, ' Sondheimer, ' Leibfried and
Schlomann, ' 4 and Ziman. ' Here too, one presupposes
a Boltzmann-like transport equation for the space-and-
time-dependent occupation number Ill, (r, t) of a single
quasiparticle state specified by indices q (e.g. , wave
vector and polarization, for phonons). One then seeks
to discover or invent a functional X(E,) which has a
stationary point at the distribution E~ satisfying the
transport equation, and whose stationary value is the
desired transport coefficient. By evaluating X for a
distribution only approximately satisfying the trans-
port equation, one then obtains an upper or lower
bound on the transport coefficient. This approach pro-
vides a controlled means of approximating transport
coeKcients, without mutilation of the collision operator
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in the transport equation, and is suitable for
computation.

Recently, Jensen, Smith, and Wilkinss have studied
several functionals other than the standard one (as
discussed for instance by Ziman'), and have used them
to bound transport coefficients in a degenerate Fermi
liquid. Unfortunately, in several other physically in-
teresting systems the complexity of the quasiparticle
collision operator precludes direct application of these
new ideas; a system of interacting phonons is one such
case. Nevertheless, the method. of Jensen, Smith, and
Wilkins suggests a new approach to bounding transport
coefficients, which is presented in this report.

The approach is not general. The new bounds we
derive are useful only when the linearized collision
operator for the system under study possesses a bounded
spectrum of eigenvalues. For the case of interacting
phonons, we shall show this property to be a rather
general feature of anharmonic interactions. It is also
known that the property holds for a classical gas with
a soft interaction potential. 7 Under the rather formal
condition that the regular part of the collision operator
is completely continuous' (which as far as we know
has been verified only for the classical Boltzmann
equationr), boundedness of the total spectrum is implied
by boundedness of the spectrum of quasiparticle relaxa-
tion rates —the diagonal elements of the collision
operator in a representation based on quasiparticle
eigenstates. Since no quasiparticle should have a relaxa-
tion rate larger than its own excitation frequency, one
is tempted to guess that the above boundedness pro-
perty of the collision operator's spectrum holds for any
system in which the energy spectrum of noninteracting
quasiparticles is bounded. This would include electron-
electron and electron-phonon systems in solids, so long
as only a finite number of one-electron bands need be
considered. The guess, of course, presupposes the
unverified complete-continuity condition.

For collision operators with a bounded spectrum,
we find an infinite sequence of functions X ~(tV,),

' H. H. Jensen, H. Smith, and J. W. Wilkins, Phys. Rev. 185,
323 (1969).

7 H. Grad, Earefi'ed Gas Dyrlansics, edited by J. A. Laurmann
(Academic Press Inc. , New York, 1963),Vol. II, p. 26.' F. Riesz and B. Sz.-Nagy, Fnnctiona/ Analysis (Frederick
Ungar Publishing Co., New York, 1955), Chaps. 4 and 6, Sec. 134.
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m=0, 1, 2, . . . , all of which bound the transport co-
efficient from below. The beginning term Xp yields the
lower bound of Ziman. For an arbitrary trial function
E„the sequence converges monotonically to the exact
transport coefficient. This sequence of bounds is pre-
sented in a general fashion in Sec. II. The remainder of
the paper is devoted to the details of applying the
bounds to calculations of lattice thermal conductivity.
The proof that the phonon collision operator has a
bounded eigenvalue spectrum is given in Sec. IV and
the Appendix. For a simplified lattice model, we have
evaluated Xp and X~, and find a considerable
di6erence between them.

II. SEQUENCE OF BOUNDS

expand F around the exact solution iiI):

F-("'+»)= 2("-I~&+2(x-
I »)—(uIH-

I
~&

—2(&IH„I »& —(gui H„i »).
Using (3), the first and third terms can be consolidated,
and the second and fourth terms cancel, to give

F„(X;v+») =X —(»IH„ibu&.

H is positive (semi) definite; thus F is stationary
about its maximum value F (X; v) = X .

The next step is to express X in terms of Xp:—X.
We have i

X-= (x-I ~) = (xi (~—H) ='9 —H)
I ~)

=~(x.-il ~) —(x=ilH
I ~)

We wish to discuss an inhomogeneous linear equation
of the form

x,=p H„ ii;
x =Xx,—(x„,ix)=yx, —(xi(y —H)=iix)

(1) Treated as a difference equation, this has the solution

Here X, is the known real inhomogeneous term and the
B«. are given elements of a real, symmetric, positive
definite or positive semidefinite linear operator with a
bounded spectrum of eigenvalues h;, 0& h.;&h, .

A steady-state linearized Boltzmann equation can be
cast in this form, with all properties but that of the
boundedness of the spectrum of the collision operator
H following from detailed balance and macroscopic
irreversibility. The inhomogeneous term represents the
drift, or I.iouville, term of the Boltzmann equation, in
the first Chapman-Enskog approximation. We introduce
vector notation to write the equation as

m—i (g —Hx.=~- x—~-'(xI p I

— ix) .
i=0 I

(6)

m-i X —H
X=X--F (Z

'A j

By substituting Eq. (6) for X~ into (5) and rearrang
ing terms we obtain

Ix)=Hii),

and define a "transport coefficient":

X=(xi~)=2 x"' (2)

The "remainder term" involving I») is positive;
consequently, the sum of the first two terms is a lower
bound X ~:

X&X ~(P;u), m=0, 1, 2, . . .

We also introduce a scalar parameter X, satisfying I Hiu)

X&h, , so that X—H is also a positive definite or
positive semidefinite operator. By repeated operation
with X Hon the Boltzmann —equation (1), we define a
sequence of equations

with

Ix-) =H-I ~&,

ix„)=p —H)-ix),
H = (X—H)"'H,

(3) Formally, the terminating geometric series in the third
term in (8) may be summed:

and define X = (x I v), m = 0, 1, 2, . . . .
For a variational trial function iu) approximating

the solution I w), we define the functional

F p, ;u)=2(x iu) —(uiH in).

For m=0, this is the functional originally used by
Leibfried and Schlomann. 'We write iu) = In)+ I 8u) and

H--—
=(xi 1—

i

H- ix); (9)

the form (8) shows, however, that II need never be
explicitly inverted. In physical problems the inverse of
the full collision operator does not exist, since con-
servation laws give rise to eigenvectors of the operator
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with eigenvalue zero. Nevertheless H '~X) exists, since
in any damped transport process ~X) is orthogonal to
these eigenvectors.

Using (9) for the third term in (8), it is easy to show
that X satisfies the recursion relation

(10)

with ~()= ~X)—H~u).
The sequence X ~ is thus monotonically increasing;

it must necessarily converge. To show that it converges
to the exact transport coeKcient X, it seems necessary
to assume completeness of the eigenvectors ~h, ) of H.
This allows us, for instance, to expand the error ~8u)
in the trial function as

(bu)=P c;~h;);

finite value X)h„„„(thus proving boundedness of the
spectrum) without great diAiculty. We found it very
helpful to realize that one need not discuss the spectrum
of the full collision operator, but only of the projection
of the operator onto the subspace of its eigenvectors
which are not orthogonal to the inhomogeneous
term ~X).

In the case of a collision operator with a gap in its
spectrum above the zero eigenvalue, one can also choose
0&X&h„„.The operator P —II is then negative definite,
and the treatment above is correct with the signs of
some of the inequalities reversed. From terms with even
m, one obtains a sequence of lower bounds, while terms
with odd m give a sequence of upper bounds. However,
both sequences diverge, so that only the m= 0 and m= 1
terms are interesting. The upper bound for m= 1 is not
new; it has been obtained by Jensen, Smith, and
Wilkins. '

the sum over eigenstates includes an integration over
any continuous part of the spectrum. The remainder
term in Eq. (7) is then

(bu
~
[(7, H)/7, ] H I, $u) =p

~
c, )

zh, (1—h, /y)

III. LINEARIZED PHONON BOLTZMANN
EQUATION

The Hamiltonian of a crystal including three-phonon
interactions can be written in the form

which approaches zero for large m. This result also
shows that in order to obtain a bound X close to X,
it is important that the spectral expansion coefficients
of the trial function

~
u) be closest to those of the exact

solution in the small-eigenvalue end of the spectrum;
because of the weighting factors (1—h,/7) one can
tolerate more error near the top of the spectrum.
Physically this is reasonable; since the large-eigenvalue
components of a disturbance from equilibrium decay
most rapidly they should not dominate a transport
process.

It is easy to include one va, riational parameter in the
trial function

~
u); we simply replace

~
u) by a

~
u) in the

bounds (8), and choose u by maximizing X ~(li; au)
with respect to this parameter. The results for hz= 0,1

are

+ Q +„,"(a,—a,t)(a, .—a,.t)(g,„—g,„t)

where a,t is the creation operator of an harmonic phonon
of wavevector q, polarization s, and frequency', (=—ce~.).
The cubic anharmonic coe%cients 4«, ~ contain the
lattice Kronecker delta function D(q+q'+q").

Under certain assumptions it is possible to derive a
kinetic equation' " for the single-phonon occupation
numberiV, . We shall deal with this phonon Boltzmann
equation in the form

(13)KV,/Bt+cq V,Xq G[1Vq(r, t)], ——

1V,"&= [exp(PA&e, ) —1] ',

where c, is the group velocity Bce,/Bq, and the collision

X„&(7,; gu) =(X
~
u)'/(u~ H

~
u), term G[1V,] gives the change 87Vq/N due to the three-

phonon interactions in the above Hamiltonian. We
(X ~~1 —H/~

~

u)' introduce deviations n~=E~ —E~( ) from the equilib-
X,&(7, iiu) = —+ —(X

~
X) . (12) rium occupation number distribution

(u i (1—H/X) H
i u)

These bounds are now independent of the normalization
of ~u). Equation (11) is the variational principle of
Kohler, ' Sondheimer, ' and Ziman. 5

In order to apply the bounds X, it is necessary to
choose a value for the parameter X as well as choosing a
trial function. For a collision operator whose spectrum
is not bounded, the only possible choice is X= ~; in this
case X ~=XO~ for all m. For phonons with cubic
anharmonic interactions, we have been able to obtain a

and use a Master equation to relate the collision term to
three-phonon scattering matrix elements of ordinary
second-order perturbation theory. The results, "when

' R. Peierls, Ann. Physik 3, 10SS (1929).
0 C. Boric and J. A. Krumhansl, Phys. Rev. 136, A1397 (1964);

W. Gotze and K. Michel, ibid 15'7, 738 (1967.); L. J. Sham, ibid
1S6,494 (1967)."Reference 4, pp. 2908.
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linearized in the n's, can be written in the form

G[n«$ = —Q P«««[v((v+(v' (u"—)+"v(a)+co" (v'—)

+g(~ —(o' —(g")] sinh'(-', PIi(v«) n« —Q 2F««;
qf qI I

collision operators in gases~ that the addition of the
regular operator P to —I' to form G does not shift this
continuum, adding only a bounded set of discrete
eigenvalues. However, the non-square-integrable delta
functions of frequency in (14a) prevent simple proof of
these assertions.

X[&(~+~"—~') (—n-')+ ~(~+~—~")n«

+$(«« —~ —M )(—n «~)j Slllll (2pAcd«1)

qql'Rq~ o

qI
(14b)

In this equation we have introduced

l~«««-I'
Pqq/ ql 1

2A' sinh(-', Pk~) sinh(-', PA~') sinh(-,'Phoo")

and the index —q' denotes (—q', s'). Equations (14)
dehne the linear collision operator t"qq. We next list
some of the properties of this operator:

(i) G is negative semidefinite"; i.e.,

(v,Gv) =—Q v,G«, v«(0

for any distribution vq. Equality holds only for the
distribution v, ' '=~«sinh '(2PA~«); this follows from
the property that the phonon interactions conserve
energy. Consequently, the eigenvalues of G are all

negative, except for a nondegenerate eigenvalue zero.
These properties result from the introduction of
irreversibility through the use of a Master equation,
alluded to above.

(ii) G has the formal structure

G[v,f= P«v«+E I'«'—v«"

The P term is given by the first sum in Eq. (14a),
and in various parlances is called the "singular" or
"diagonal" or "collision rate" term. The "regular" or
"off-diagonal" term with kernel P is given by the
second sum in Eq. (14a).

(iii) The F«are all positive (or zero); this follows
since all Pqq q" &0. The elements P«are not in general
all of the same sign, but note from (14a) that if n« is an
odd function of the wave vector, so that —n ~,=n„,
then the coefficient of n, in the second sum in (14a) is
always nonpositive. Stated differently: The projection
of the collision operator G onto the subspace of odd
distributions is an operator with nonpositive matrix
elements.

(iv) Part or all of the eigenvalue spectrum of G is
continuous, since the eigenvalues and eigenfunctions of
the singular operator I'q are simply I'q and the delta-
functions d(q —c[')8„. I'«. varies quasicontinuously
over the Brillouin zone from zero to some finite positive
value. One anticipates from knowledge of spectra of

In the presence of a temperature gradient VT, the
steady-state value of the left-hand side of the phonon
Boltzmann equation (13) can be linearized by replacing

aV(» A~, c VT
cq V, Yq cq VT

BT 4kT' sinh'PPA~ )

I'inally, the equation can be put in the form discussed
in Sec. II:

"«=E H««v',

where

v, = n, sinh(-,'plug«),

H««: 4k[sinh(2pkcu«)/sinh( —pQ~, )jG, (14c)
~«: (~Cd«/T )c«' VT/slilll(&p/g&g ),

H is symmetric and positive semidefinite; the eigen-
values of H and G diAer only by a constant factor —4k.
Because of property (iii) above, the projection of H
onto the subspace of odd functions is an operator with
non-negative matrix elements. In fact, one need consider
only such a projected operator, because the solution vq
is an odd function, and we shall require that any trial
solution approximating vq also satisfy this symmetry
property. One sees that vq is odd as follows: The
Boltzmann equation may also be written

~-« =2 H-«, «v« =2 H, ,v, .
q q

Because the group velocity is an odd function, so is
X«, and from (14a) one has H, , «

= H««. . Thus,

X.=Z H.«(—v-. ).

Then vq and —v q satisfy the same equation; since the
solution to the equation is unique if the temperature is
specified, we conclude that vq= —v q.

To compute the lattice thermal conductivity, one
introduces the lattice energy flux Q, given by' "

Q = —Q Ace«c«n« K(T)V T.—— —
q

Here V is the volume of the crystal. The second equality
is Fourier's (phenomenological) law defining the thermal
conductivity K(T). We treat only the case of a cubic
crystal, so that E is a scalar. This definition allows one
to define a "reduced" thermal conductivity:

VT 2

X—=KV =P X,v, =(&~ v).
q

x2RJ H@rdy~ Phys Re& 132~ 168 (1963)



Iv. UPPER BOUND FOR LARGEST
EIGENVALUE OF H

In this section we present one way of approaching the
question of the boundedness of the spectrum of the
phonon collision operator. Briefly, the procedure is to
regard the operator as a limiting case of a matrix
operator to which the theorem of Perron and Frobenius"
can be applied.

The Perron-Frobenius theorem concerns the maxi-
mum eigenvalue of a non-negative irreducible matrix M,
where "non-negative" means all elements 3f;;&0, and
the irreducibility need be only with respect to a re-
stricted set of operations, the permutations of the row
and column indices of M. The consequence of the
theorem which we shall use is" that the largest eigen-
value of 3II is less than the largest of the row
sums P, M,;.

To apply this result we formally consider a finite
crystal of volume V containing E particles and satis-
fying periodic boundary conditions. The first Brillouin
zone of the crystal thus contains a finite number of
points, and the collision operator H«can be treated as
a matrix operator of finite dimensionality. As pointed
out above Hqq is non-negative if one considers only
odd trial functions. The irreducibility property we

regard as providing a restriction on what lattice models

may be used. Physically it means that it should be
impossible to divide the phonons into two disjoint sets
such that no phonon of one set interacts via anhar-
monicity with any phonon of the other set. Any
reasonable Inodel should exhibit this irreducibility, in
order that the lattice in equilibrium be characterized by
a single temperature.

Thus for a finite crystal we can bound the spectrum
of the (projected) collision operator from above with a
parameter X set equal to the largest of the row sums

P, H« . We proceed to the limit of an infinite crystal
by first replacing P, by V/(2sr)' P, J'dq', and then
letting X, V —+ co, holding cV/V constant. For the

Debye model introduced in Sec. V, one can verify
virtually by inspection that the largest row sum stays
finite in this limit. In the general case of a phonon

spectrum with anisotropy and dispersion, the proof
that the row sums stay finite is given in the Appendix.
In the Appendix we also examine the behavior of the
largest row sum for an infinite crystal in the limit of low

temperatures. It is shown there that as T ~0'K., the
contribution comes entirely from the largest of the
diagonal terms H«, which is also shown to be inde-

pendent of temperature, at low temperatures. From
Sec. III, the diagonal elements of H are simply related
to the phonon relaxation rates I'q, which contribute a

&s fee, e.g. , F. R. Gantmacher, Applications of the Theory of
Matrices (Interscience Publishers, Inc. , New York, 1959), Chap.
III.

'4 Reference 13, p. 76.

TABLE I.Maximum relaxation rates and row sums. The unit of the
last two columns is (hqoc&) (hO~/mcP) (0 0474'') (3~).

T/O,

0
1/20
1/18

1
16
1

12
1
8
1
1
2
1
2

10

4&I'max

30.3
30.5
30.6
30.6
30.8
31.4
35.3
49.8
87.1

168
828

30.3
31.0
31.2
31.4
32.3
35.3
49.8
87.1

168
332

1655

V. CALCULATIONS FOR DEBYE MODEL

It is of considerable practical importance to discover
just how rapidly the sequence of bounds X of Sec. II
converges in a typical application. Toward this end, we
have computed Xi~ and the Ziman bound Xo~ LEqs.
(11) and (12)j, for a simplified lattice model for which
the energy and wave-vector conservation laws built
into the niatrix elements of H do not cause too extreme
complications. The model is that of a three-dimensional
isotropic elastic continuum. The phonon spectrum
contains two degenerate transverse branches with
frequencies

and a longitudinal branch with frequencies

to, t
——« I qI, ct/c, =1.76.

The ratio ct/ct was chosen to be that for a classical cubic
crystal with nearest-neighbor central forces. For the
cubic anharmonic coefficients, we use"

0.0474 h'y'
l~.o o" I'= to,to, co,"A(q+ q'+q"),

E mc]'

where y is the Gruneisen constant and 2@m the total
crystal mass. The first Brillouin zone is replaced by a
Debye sphere of radius qz&= (6s'LV/V)'t; cV/V is the
particle density.

We include umklapp processes through the device
suggested by Hamilton and Parrott. ' For the umklapp
process (qs)+(q's')=( —q"s"), the only allowed value

"Reference 3, p. 83; Ref. 5, p. 295."R. Hamilton and J. Parrott, Phys. Rev. 178, 1284 (1969).

continuum to the spectrum of the collision operator:

Hqq = —4kGqq =4k I'q.

Thus at least at zero temperature there are no eigen-
values of H above the top of the continuum. This
feature may be present at all temperatures, but the
methods used here are too weak to prove it, since in
this application the Perron-Frobenius theorem gives
only an inequality for the largest eigenvalue.
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FIG. 1. Thermal conductivity of solid argon. Solid lines are the
lower-bound calculations reported here. Experimental data taken
from R,ef. 18.

temperatures between 0",/20 and 10 O~, , where O~, is the
transverse Debye temperature Ac,q&/k. The computa-
tions were performed in the limit of an infinite crystal.
In all cases the largest row sum occurs for the longi-
tudinal mode at q=qD, i.e., the mode of highest fre-
quency. We call this row sum X (X)h,„).We have also
computed the spectrum of relaxation rates, the quan-
tities 401", of Sec. III. One anticipates that these
quantities define the continuous part of the eigenvalue
spectrum of H, but see the remarks under property
(iv) of Sec. III. At aQ temperatures, 4kl', was found to
vary continuously from zero for q=o to a maximum
value which occurs for the longitudinal mode at q= qD.
Table I shows 4k' . and X.

In the limit T/O~ ~ ~, one can show that
X/(4kl', „)—+ 2; this behavior is seen in Table I. The
low-temperature results show that, in accordance with
the conclusions of the Appendix, X converges toward
4kI', from above.

Taking the parameter P from Table I, we have com-
puted the lower bounds Xo and X~ of Sec. II, and the
quantities with the dimensions of thermal conductivity
defined from them via Eq. (15).These conductivities we
label Eo and E&, they are listed in Table II. In both
cases the trial function used was the displaced Planck
function

u, = —q vT/sinh(-', phd), ). (16)

t+t" = l', t t"+t', t t"+t'

In addition, the normal-process interactions between
three colinear phonons of the same polarization,
t+t" t' and t+t" t', are also allowed, but become
forbidden when dispersion is added to the phonon
spectrum. We have thus simply ignored the contribu-
tions of these extra two processes in all calculations.

In order to determine the largest of the row sums

P,.H«, we have evaluated these sums for both
polarizations over the entire Debye sphere, for 10

TABLE II. Lower bounds for lattice thermal conductivity.
The unit of thermal conductivity is E= (kq'Dct) (wc&'/4 0~)
&& [(1.76)'/0 0474''g(1/162~').

T/0,
1/20
1/18

1
16
1

12
1
8
1
4
1

1
2

10

Ep~/E

3 79 X10'
606 X104
1.05 X104

440
34.4

5.36
2.27
1.14
0.577
0.116

EI~/E

7.10 Xio
1.13 X105
1 96 X104

812
61.9
8.35
3.03
1.44
0.713
0.142

El ~/EP~

1.87
1.87
1.86
1.85
1.80
1.56
1.33
1.26
1.24
1.22

for the reciprocal-lattice vector G = q+ q'+ q" is defined
to be the vector of magnitude 2qD directed along q+ q'.

The allowed three-phonon interactions (both normal
and umkjapp) for this model are

The numerical computations involved nothing more
sophisticated than the evaluation of two-dimensional
integrals of a function given in analytic form.

From Table II one sees that the relative difference
between Ei and Eo ranges from more than 20% at
very high temperatures to almost 90% at low tem-
peratures. Thus the new bound E~ is a considerable
improvement over the Ziman bound Eo, which has
been the basis for previous variational calculations of
lattice thermal conductivity.

VI. APPLICATION TO SOLED ARGON

It is possible that the considerable difference found
between the bounds Eo and E~~ for lattice thermal
conductivity is a consequence of the Debye model for
which the calculations were performed, and will be
diminished for a more realistic model including aniso-
tropy and dispersion in the phonon spectrum. We have
not examined this directly; rather, we have tested the
over-all adequacy of the model by comparing its pre-
dictions with measurements for solid argon. We have
done this first by choosing appropriate values for the
model parameters y, c& and the lattice constant. " It
is also desirable to include in the model the possibility
of scattering from the boundaries of a finite crystal.
Ziman' has discussed the theory of boundary scattering;
we have simulated his conclusions by adding to the

O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Phys.
Rev. 150, 703 (1966).
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collision operator H«a constant diagonal term 4k(c/L)
8« . Typically, c should be an averaged sound velocity
and L a crystal dimension. We have adopted the value
7.8X10' sec ' for c/L by unsystematically fitting the
low-temperature thermal conductivity data for argon.
This is the only adjustable parameter in the calculation.
This addition of boundary scattering makes a negligible
contribution to A. ; it is also negligible in both bounds
Eo and E& for argon above about 7'K.

The bounds for argon are shown in Fig. 1, along with
the results of several diRerent experimental investiga-
tions. "It is not surprising that on the low-temperature
side of the conductivity maximum the two bounds are
identical, for in this region boundary scattering domi-
nates, and the displaced Planck function (16) is the
exact solution of the Boltzmann equation.
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APPENDIX

First we wish to show that the row sums of the
phonon collision matrix are finite, in the limit of an
infinite crystal. For a finite crystal, these sums are

q/.

+8(&+M M )+6(io—M M )j,
where co"= o&"(q+ q') .

For a crystal of infinite volume, we replace iV ' P
by v/(2')' J'dq', where n is the volume per particle.
Thus to prove boundedness of the row sums in this
limit, it is sufhcient to show the boundedness of the
integrals

dq'6(~(q) +co'(q') —(u"(q+ q')), (A3)

that for one of the wave vectors (say, q") small com-
pared to the lattice constant ao, it has the form'

I e- ' I

'=
I

q"
I

F(q»q'&' q"~")+o((v"/&o)') (A2)

where j" is a unit vector in the direction of q". If in
addition

I
q'I and/or

I qI are small, then
depends linearly upon the magnitudes of the other small
wave vectors as well. This dependence ensures that
there are no singularities of the factor in brackets in
Eq. (A1) due to zeros of the denominator at q', q"= 0.
The bracket thus satisfies

{ )((const/&V) h(q+ q'+ q"),
so that

I
@ac'a"

I

fg2 q// q/

sinh(2/ha&)+sinh(2Pka)')+sinh(2Phcu")
X

sinh(2Ph(o') sinh(2PA(o")

which are of the form

f (q/)=a)
(A4)

XL5((o+(u' —a)")+8(&u+(o"—(u')+8((o —(o' —o)")j,
(A1)

which follows from Eqs. (14a) and (14c). In the sum of
three sinh's in the numerator of the bracketed factor,
the term with argument i2P&=~Pha&, represents the
contribution of the diagonal term H«, while the other
two terms together give the off-diagonal contributions
to the row sum. We write the cubic anharmonic coeffi-
cients in the form

where A(q+q'+q") is the lattice Kronecker delta
function, and @«, is independent of particle number
JV. The coefficients

I
C

I

' must always depend on
particle number in this fashion, in order that the cubic
anharmonic Hamiltonian be an extensive quantity. In
addition, one can show that Ip«, I' is bounded, and

"G. K. White and S. B. Woods, Phil. Mag. 3, 785 (1958);
D. Lawrence, A. Stewart, and E. Guptill, Can. J. Phys. 3'7, 1069
(1959);A. Berne, G. Boato, and M. DePaz, Nuovo Cimento 46B,
182 (1966).

where f(q') —=&v"(q+ q') W~o'(q'), and the integral is
over the portion of the surface f(q') =id lying within
the Brillouin zone of q'. The integral (A3) is then
G(co, q) at a&=co(q), but we shall show that G(~,q) is
bounded for att ~. The area of the surface S' is finite; if
the integrand is bounded on the surface, the integrals
are then finite. However, because f(q') is a continuous
periodic function of q, there must exist critical points
in the Brillouin zone of q' at which the gradient in (A4)
is zero, and for special values of co some of these points
may lie on the surface of integration. The critical points
are of course exact analogies of van Hove critical points
in the phonon density-of-states integral, ' and in fact
van Hove's analysis of that function may be applied
outright to (A4). The conclusion is that G(co, q) is
bounded and continuous in co for every q, possessing
infinite discontinuities in the slope BG/Bio at some
points. The boundedness of G(~,q) implies that the row
sums, and consequently the eigenvalue spectrum, of
the collision operator are finite.

'9This is most easily proven from the expression given by
Leibfried, Ref. 4, p. 299, Kq. (91.16).' L. van Hove, Phys. Rev. 89, 1189 (1953).
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In the low-temperature limit, we can also show that
the contribution to each of the row sums comes entirely
from the diagonal term in the sum. The implications of
this property are discussed in Sec. IV of the text. We
6rst show that the sum of the off-diagnal terms in a
row vanishes like 0(T') as T ~0'E. This latter sum is
the right-hand side of (A1), with the sinh(-', Pkruq) term
in the numerator of the factor in brackets omitted:

2,ik 2

I
@qq'q"

I

Q sinh(-', Ptgqq")

)(, I 8(%+M M )+5(CO+M —M )

+6(u —u' —8')], (A5)

where we have used the symmetry of the right-hand
side of (A1) under permutation of q' and q". We thus
wish to examine the temperature dependence of
integrals like

l~qq q" I'
dq' 8(a)+a)' —a&")

sinh(q1P Aqua")

dS'
sinhI —'ph(a)(q) +qq'(q'))]

X.
I
+&' '(q') —&' "(q+q')

I

—', (A6)

where q"=6—q
—q', G is a reciprocal-lattice vector,

and co(q)+a&'(q')=co"(q+q') on the surface 5'. We
consider only those row sums for which —,'plies(q)))1; at
low enough temperatures this includes most of the
phonons in the zone, and inclusion of the remaining
modes does not a6ect the conclusions. In this case, the
integral in (A6) with the (+) sign will vanish like

expL —q'philo(q)], and we need consider in more detail
only the integral with the (—) sign, corresponding to
attenuation of the mode q by emission of two phonons.
The integrand is sizable only where

~p~( (q) —'(q')) = lP "(q+q') &1;

at low enough temperatures this will require th3t ~" be
in the low-frequency acoustic range, where

o&"(q+q') =c"
I
q+q' —GI,

with c" some angular-averaged sound velocity. Thus the
major contribution to the integral (A6) comes from that
portion of the surface S' on which

I
q"

I
=

I q+ q' —G
I
Z»T/~"'.

The area. of this portion of S' is of order q"'=O(T').
Since q" is small over this area, the dependence (A2)
holds for the cubic anharmonic coeflicients, so that the
integrand is of order T over the contributing area. We
conclude that the o6-diagonal sums

vanish at least like 0(T'), and exponentially rapidly for
those modes for which spontaneous emission processes
are forbidden.

Exactly the same sort of analysis can be applied to
the diagonal terms H«. These are given by the right-
hand side of (AS), with the replacement

sinh(~~pkqq)

sinh(qPha)") sinh(2Pkqq') sinh(qPha)")

As above, for absorption processes this factor is ex-
ponentially small in T. For emission processes it is
independent of p over most of the surface S', excluding
only the portion discussed above, which gives a con-
tribution of order T'. This result is merely an expression
of the fact that even at T= O'K those modes which can
decay by spontaneous emission will have a finite
lifetime.

In summary, then,
(a) the eigenvalue spectrum of the (projected) phonon

collision operator is bounded, and

(b) at low temperatures

(P &qq')max (&qq)max 0(T ) &

(Hqq) m@x =const+0(T ) .

At low temperatures we would expect the largest row
sum to occur for a longitudinal mode with wave vector
near the edge of the Brillouin zone, since for such modes
the possibilities for emission processes, both normal and
umklapp, are most numerous.


