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Double Injection in Insulators. II. Further Analytic Results with Negative Resistance
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The problem of double injection under varying lifetime conditions is analytically intractable when the
physically important space charge is included in the analysis. The regional-approximation method is used to
obtain approximate analytic solutions for two prototype insulator problems, both involving a single set of
recombination centers and exhibiting a current-controlled negative resistance. In the first problem the
centers are partially filled in thermal equilibrium; in the second problem they are completely filled. For both
problems we assume that the capture cross section of a filled center for a free hole greatly exceeds that of an
empty center for a free electron. This leads to a hole lifetime which increases with injection level, this being
the source of the negative resistance. Earlier work based on the assumption of local neutrality is simplified
in its domain of validity. Also, a previous analytic result for the first problem, yielding the threshold voltage
at zero current, is derived in a simple manner which also yields the complete field and density distributions,
previously unavailable.

I. INTRODUCTION

&IOUBLE injection under varying lifetime conditions
is of unusual interest because of an associated

negative resistance. Unfortunately, the theoretical
problem, stated in its full glory, is hopelessly intractable.
Meaningful progress in understanding double-injection
phenomena is possible only with the help of simplifying
assumptions and judicious approximations. A partic-
ularly simpli6ed model of double injection exhibiting a
current-controlled negative resistance was earlier
studied by one of the authors (M.A.L.) in a paper'
hereafter referred to as I. This model incorporated a
single set of recombination centers, initially filled, and
for which o-„)&0-„, these being the average capture
cross sections for holes by filled centers and for electrons
by empty centers, respectively. The key assumption of
local neutrality was made to achieve analytic tract-
ability and an outstanding feature of the solution
thereby generated was a threshold voltage for current
Row. As discussed in I, the analytic solution obtained is
consistent with the neutrality assumption at high
current levels but is necessarily inconsistent at threshold
(low) currents. A similar analysis was made, by Keat-
ing, ' of the more general situation in which the single
set of recombination centers is only partially filled at
the outset, and again assuming local neutrality to
achieve analytic tractability. In this case a completely
unphysical result is predicted at low currents, namely, an
infinite threshold voltage for current Qow. However,
again, at sufficiently high currents the analytic solution
is consistent with the neutrality assumption and is
physically correct. This same model was investigated
by Ashley' in his PhD thesis, including space charge

*Currently with the Princeton Electronics Products, Inc. ,
Princeton Jct., X. J.' M. A. Larnpert, Phys Rev. 125, 126. (1962).' P. N. Keating, Phys. Rev. 135, A1407 (1964).' K. L. Ashley, Ph.n. thesis, Carnegie Institute of Technology,
1963 (unpublished).

in the defining equations. The consequent loss of
analytic tractability forced the use of digital computa-
tion to obtain the current-voltage (I—V) characteristic
for a few specific cases. Ashley did succeed in obtaining
one analytic result for this model, namely, the threshold
voltage for current Qow, i.e. , the voltage in the limit of
zero current.

In this report we study analytically, with the inclu-
sion of space charge, both of the above-mentioned
models: a single set of recombination centers partially
filled initially' ' and completely filled initially ' Clearly,
to progress beyond the previous understanding of these
models we must inject a new approximation procedure
into the theory. A procedure which works exceptionally
well with the generally intractable problems of injection
currents in solids is the regional approximation method.
This method is based on the simple observation that
where there are several terms in an equation "cornpet-
ing" with each other, each being a function of position,
it is generally possible to divide up the volume of the
solid into separate regions, in each of which a single
term dominates. Within each such region the basic
approximation is made of neglecting all terms within
the competing group except the one term which is
dominant in that region. It turns out, generally, that
inside each region the simplified set of equations has
an analytic solution. It remains then only to connect
the solutions in adjacent regions, and this is done via a
continuity requirement, say on the electric field
intensity.

The regional approximation method is an attractive
procedure not only because it brings the intractable
into the realm of the tractable, which would itself be
sufficient justification for its use, but in so doing it leans
heavily on physical considerations and necessarily
exposes the underlying physics governing the behavior
in each region. All of the interesting new results of this
paper are obtained by its use. These Dew results include
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the particle-conservation equations

p (d/dx) (ri8) = r=—p„—(d/dx) (p 8),
and the recombination-kinetic expressions

r =n/r =p/r„, 1/r = (ao )pa,
1/r„=(po„)~a, pa+ad„=Pa.

(3)

FxG, 1. Schematic energy-band diagram for the problem of
double injection into an insulator with a single set of recombina-
tion centers partially filled in thermal equilibrium.

The two equa, tions in (3) are readily combined to give

a complete, analytic specification, for both models,
of the I—V characteristic over the entire range of
currents, from zero current up to "high" currents, i.e.,

'

currents at which the semiconductor, constant-lifetime,
injected-plasma description4 prevails. A detailed picture
of the electric field and density distributions is available
at any current level. In particular, the transition from
space-charge-dominated to neutrality-dominated cur-
rent Qow is graphically traced. Ashley's threshold-
voltage result' for the partially filled center model is

reproduced, in the appropriate limit, by a very much
simpler "analysis which, at the same time, yields a
simple picture of the fieM and density distributions
(not available from Ashley's analysis). Finally, the
unwieldy algebraic results of I for the completely
ulled center Inodel, valid in the neutrality-dominant
realm of currents, are replaced by a considerably
simpler set of algebraic results which are, for practical
purposes, identical to the earlier results.

II. RECOMBINATION CENTERS PARTIALLY
FILLED, INITIALLY

This problem is illustrated schematically by the
energy-band diagram of Fig. 1. There is a single set of
recombination centers lying not too far from the
Fermi level, and therefore partially occupied by
electrons in thermal equilibrium. The average free-
carrier capture cross sections 0-„and 0- for holes and
electrons, respectively, are such that o.~&&0-„. This
inequality would be the normal expectation if, for
example, the centers are acceptorlike, that is, negatively
charged when electron-occupied. In that case we might
imagine that the negative charge held in the centers in

thermal equilibrium is precisely cancelled by
positive ionic charge of compensating donors, the donors

being so shallow as to play no further role in the elec-

tronic behavior of the insulator (and therefore not
shown in Fig. 1).

The equations governing this problem, written in

mks units, are the current-Row equation

J=ep„ri8+ep, „ph= const,

the Poisson equation

(e/e) (d 8/dx) =p+ (pa —pa, p)
—&, (2)

' M. A. Lampert and A. Rose, Phys. Rev. 121, 26 (196j,).

The solution to these equations is subject to the
boundary condition

8=0 at x=0 and at x=L. (6)

In the above, J is the total current density, e is the

magnitude of electronic charge, n and p are the free-
electron a,nd free-hole densities respectively, p„and
p„are their respective drift mobilities, 8 is the electric.
field intensity, e is the static dielectric constant, pa and

pa p are the densities of empty recombination centers
under injection conditions and in thermal equilibrium,
respectively, r is the recombination-rate density, v „
and T„are the free-electron and free-hole lifetimes,
respectively, v is the microscopic free-carrier kinetic
velocity, cr„=o„(p) and o.„=a„(a) are the (velocity-
dependent) electron- and hole-capture cross sections,
respectively, ( ) signifies that an average is to be taken
over the free-carrier velocity distribution, and Ez is
the density of recombination centers. The anode, which
is the hole-injecting contact, is located at @=0and the
cathode, which is the electron-injecting contact, at g =L,.

In writing Kqs. (1)—(6) the following assumptions
have been made:

(i) The current is volume-controlled, i.e., the contacts
impose no significant constraints on the currents
entering or leaving the insulator.

(ii) Diffusion currents are negligible.

These two assumptions are linked together and are
both violated in the immediate neighborhood of an
injecting contact. (For, a contact which is injecting
for electrons will block the egress of holes, and vice
versa, particularly under one-dimensional planar-Qow
conditions. ) Therefore, the solution to Eqs. (1)—(6)
gives a good description of the double-injection current
flow only if the separation I. between injecting contacts
is sufficiently large. Since the buildup of plasma near
an injecting contact leads to a diffusion-dominated
current-Aow there, "sufficiently large" means large
compared with an ambipolar diffusion length I.,
Within the negative-resistance regime of the I—V
characteristic, namely, for J&J~ in Figs. 3 and 5,
over a significant volume of the insulator the hole
lifetime is very short and correspondingly I. is very
small. Therefore assumptions (i) and (ii) are not
likely to lead to diculties in this regime, ID the
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semiconductor injected-plasma regime, namely, for
J&J~ in Figs. 3 and 5, the hole lifetime is everywhere
comparable to the electron lifetime and therefore much
longer than at lower injection levels. Correspondingly
I, is substantially larger than at lower injection levels.
Therefore this is the regime in which the use of assump-
tions (i) and (ii) is apt to produce the largest errors.
Fortunately, the errors incurred in neglecting diffusion

currents in the study of the constant-lifetime semi-

conductor injected-plasma problem are well under-
stood" and easily taken into account. In particular the
appropriateness of assumptions (i) and (ii) when

L/L, ))1has been well established, in both theoreticals '
and experimental studies. The boundary conditions

(6) are the usual ones employed in a simplified theory
neglecting diffusion.

(iii) Low-field field-independent mobility conditions
obtain. This assumption facilitates the analytic ap-
proach. With the possible exception of drift-velocity
saturation, virtually any other field dependence of the
mobility will nullify the hard-won analytic tractability.
It is a reasonable assumption in insulator studies.
Caution is in order in the use of this assumption in
studies with high-mobility semiconductors, such as Insb
and InAs and, at low temperatures, Ge and Si.

(iv) Thermal reemission of carriers from the re-
combination center is negligible.

More specifically, the rate of thermal reemission of
carriers from the recombination centers to a band is
assumed to be small compared to their capture rate
from that band. If the converse is true over a significant
region of the insulator, then this very likely signifies that
the corresponding regime in the I—V characteristic is
dominated by a one-carrier space-charge-limited current
flow. With the use of assumption (iv) one forecloses the
possibility of describing such a regime by his analysis
and must, perforce, tack on the description in a strictly
ad hoc manner. An example of this procedure is cited
at the end of Sec. II. The failure of assumption (iv)
can also have a quite diferent, but rather more remote,
interpretation; namely, the failure may correspond to a
situation in which net recombination is a relatively
small difference between large capture and thermal
reemission rates. An interesting discussion of such
situations has been given by Rose' in the context of
photoconductivity problems. Assumption (iv) has been
made by all authors studying the double-injection
problem. Abandonment of this assumption would

greatly escalate the complications in the problem,

~ See R. Baron LJ. Appl. Phys. 39, 1435 (1968)]for a computer
study of these errors.

'See R. B. Schilling aud M. A. Lampert (unpublished) for
an analytic study of these errors using the regional-approximation
method.' O. J. Marsh, J.%.Mayer, and R. Baron, Appl. Phys. Letters
5, 74 (1965).

8 A. Rose, Progress in Semiconductors (Heywood and Co., Ltd. ,
London, 1957), Vol. 2, p. 109.

possibly beyond the reach of analysis, and certainly
beyond the reach of convenience.

(v) The thermally generated free carriers can
neglected.

This assumption is easily satisfied in insulators,
but it certainly need not be satisfied in semiconductors.
With the latter materials, an obvious manifestation of
the presence of thermal free carriers will be the observa-
tion of Ohm's law at low current levels. Not obvious,
but easily derived, 3' is a square-law regime immediately
following Ohm's law in the I-V characteristic. Following
the square-law regime, for 0„&)0-, is a negative-
resistance regime for which there is, as yet, no adequate
theory.

(vi) One-dimensional planar flow current conditions
obtain.

Ordinarily this would rank as a cut-and-dried state-
ment which need not be elevated to the status of an
assumption. However, it is known' that under honso-
geneous current-flow conditions (which do not obtain
in the double-injection problem) in a regime of current-
controlled negative-resistance planar current Row is
unstable against filament formation. In the correspond-
ing experimental situation, " the filaments are present
under some conditions, absent under others.

With regard to assumptions (v) and (vi), and to a
lesser extent (iii), it is clear that the analyses of this
paper do not encompass all of the interesting physical
phenomena associated with double-injection negative
resistance. Unfortunately, the complexity of the full
double-injection problem is so great that there is no
hope of building up a fund of insight except by proceed-
ing a step at a time.

Since the set of Eqs. (1)—(6) is beyond the reach of
exact analytic solution we use the regional approxima-
tion method to obtain an approximate analytic solution.
In order to map out the strategy for the designation of.
the separate regions we must consider the gross
physical behavior excepted of the model, particularly
at low current levels. In the vicinity of the anode,
current is carried under conditions of approximate local
neutrality. For, the hole capture rate being large near
the anode, the electron capture rate must be precisely
as large, the two rates being exactly equal everywhere
in the insulator in the steady state, because of assump-
tion (iv). This requires large electron densities near
the anode, with rs) p everywhere because of the
assumption that o „))o. (e=P+e~ s in region I adjacent
to the anode, and e))p in region II following region I,
as discussed below). Such large electron densities, far
removed from the cathode, are most easily achieved
under conditions of neutrality, in which case each

s K. L. Ashley and A. G. Milnes, J, Appl. Phys. 35, 369 (1964).
's B. K. Ridley, Proc. Phys. Soc. (London) 82, 954 (1963).
»A. M. Barnett and A. G. Milnes, J. Appl. Phys. N, 4215

(1966).
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The combination of (8) and (9) yields the character-
istic differential equation for this region

dh = Tdx, So=, T=, (10)
h+Sp ep„nn, o

with solution

h —Sp 1nL(h+Sp)/Sp]= Tx,
I'iG. 2. Schematic regional-approximation diagram for the

problem of double injection into an insulator with a single set of
recombination centers partially ulled in thermal equilibrium.

trapped hole is compensated by a free electron deriving
from injection at the cathode. (Effectively, it is as if
the electron in the center were transferred to the
conduction band as a result of hole capture, although
this mode of description is, of course, only a manner of
speaking. ) Immediately adjacent to the anode this
region of neutrality has the further property, again
because 0-„))0-„, that the recombination centers have
been largely depopulated by hole capture: pa Xn and,
correspondingly, n) n p p= Xa—pn p. We call this region
I. Region I ends at x=xi, where n(x) =nii p. Adjacent
to this region is region II, over which local neutrality
still obtains but the electron transfer from the re-
combination centers to the conduction band is in-
complete: nii p) n))p, the latter inequality again
following from o +&o . Region II ends at x= xi where
the assumption of local neutrality runs out of self-

consistency, that is, where the neglected space charge
becomes comparable to the terms retained in the
Poisson equation (p/e) (dh/dx) i——n(xp). Region III,
encompassing the remaining volume of the insulator,
is a region dominated by space charge. Further, since
both empty and filled recombination centers are
available in this region to trap injected electrons and
holes, respectively, the space charge in region III is
held largely in the recombination centers. The three
regions of the problems are illustrated schematically in
Fig. 2.

We proceed to a detailed consideration of the three
regions:

Region I. (0&x(xi):n) nz p, pa Xz—

satisfying the boundary condition: h= 0 at x= 0.
For the potential at position x in this region we have,

using (10),

dx
Sdx= 8 d8

db

1 h+Sp= —-', h' —Sph+Sp' lnT' Sp
(12)

At the right-hand end of region I,
x= xi. nr ——n(xg) = na, p.

xi= (Sp/T) {a—1n(1+a)),
hi ——h(xi) = J/ep na p=QSp.

For the voltage drop Ui across region I we have

(13)

(14)

xg =I.:
eeg OI.

J!r——h(a) h(a) =
a —ln(1+a)

(16)
{a—In(1+a)) '

a{—,'a' —a+in (1+a))

1 1.2
g(a) =

g(a) ~.r p

At lower currents we have, from (14)—(16),

J&Jpr. x,=L(J/J!r), Ur= U~(J/J~)'. (17)

Vz= (So'/T){-',a' —a+1n(a+1)). (15)

Region I just fills the insulator when x&
——I.. This

mark. s the high-current low-voltage end of the negative
resistance regime in the I—U characteristic. The corre-
sponding current and voltage are

In place of the Poisson equation (2) we have local
neutrality, which for pa=En, is specifred by

n p=Nii pn—p=nn p—

At higher currents (10)—(12), with x=L, h= h,
= h(L), and U= V(L), give the following parametric

(7) representation of the I—V characteristic:

Using (7), (1) can be rewritten as

J=ep„B(a+1)n ep„nnpS,— , (8)

h.+So
h —Sp ln =TL, (18)

Sp

and (5) can be rewritten as 1 h.+SoJ)J!r.. ——', hP —Sph, +Spo lnT' (19)dh (a+1)n So1/ry, =(po „)cVn, (9)+B,O

dx For J&)Jpi, h, /Sp((1 and the logarithmic term in
where r! is the common lifetime for electrons and holes (18) and (19) can be expanded. Then (18) and (19)
at high plasma density levels, namely, n=p)nz o. simplify, respectively, to BP/25& 2'L and h, '/3TSo
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~t', which combine to give

J)&J&r. J~(9/8)enB pp„@~re(V'/L'),

From (22), dn= —JdS/ep„P, whence (25) may also
be written as

20

pB pB, o nB, o nB
q (21)

where we have taken p to be negligible, as dictated by
the requirement that electron and hole capture rates
be equal, and our assumption that 0-~))g „.On this same
account (1) simplifies to

J=ep eb. (22)

Multiplying both sides of the recombination-kinetic
relation (4), namely, P(po„)nB= n(eo„. )PB, by et'„h, and
substituting from (22) we obtain

which is the characteristic square law4 for a plasma
injected into a semiconductor. In effect, the transfer of
electrons from the filled centers to the conduction band,
through hole capture, has electronically transformed
the insulator into a semiconductor.

So much for the high-current positive-resistance
regime of the I—V characteristic. We return to the
negative-resistance regime.

Region II. (xi(x&xp): nB p&n»p, nB nB p.

I.ocal neutrality continues to hold in this region, in
which case the Poisson equation (2) reduces to

6+J/et' PB,O

e &Op +R, O R, O'
dx.

aJER
(26)

x= xp. np ——n(xp) = (e/e) (dh/dx) p. (27)

If the local neutrality approximation is enforced
throughout the entire insulator, that is, if (27) is ignored
then for J(J~ regions I and II fill the insulator,
region II extending up to the cathode at x=L. In this
case, because of the presence of J in the denominator in

(25) and (26), the voltage across the insulator becomes
infinite as J goes to zero. '

Region III. (xp&x&L): pB—pB,p&)n))p.

This region is dominated by trapped space charge, the
appropriate approximation to the Poisson equa, tion (2)
heing

~dS
PB PB,O ~—

e dx
(28)

The solution to this equation, in dimensionless form, is
given below as Eq. (43).

The right-hand terminus x2 of region II is taken where
the neglected space charge overtakes the retained terms
in the Poisson equation

&|Tn RJ„=aJ
'VO

& 'gR

Now uslllg

dJ„eaJ(po„)NB d'h

dx e(vo „)nB' dx'
(29)dJ„aJ(vo. )NB dn

dx (oa„)nB' dx
(24)

The combination of (3) and (22) gives

(23) The current equation is (22).
In contrast to region II Lsee sentence following (23)],

here (d/dx) (pB/nB) = (NB/n B') (dpB/dx) (oNB/enB')

(d/dx) (p /n ) (N /n p) (dp / t ) (N / p) ( t / t )
p (d'8/dx'), from (28). Using this result in (23), which
is equally valid in region III, we obtain

from (21), it follows that

Now, from (3), dJ„/dx= er= en(oo )pB. Co——mbin-
ing this with (24), and using (21), we obtain the
characteristic differential equation for this region

J(ro „)PB
(30)

e 'Vo~ SR2
dx~

n(n+PB, o) o,JNB

2e(r ~„)nB,p Equa, tions (29) and (30) together yield the character-

aJER
dx. (25) istic differential equation for this region

Note that we have replaced nB by nB p in (25). This
is a good approximation, referring to Eq. (21), because
e(eR o over all of region II, and e(-,'eR o over most of
region II, namely, everywhere except near x=xi. LIn
actuality, it is possible to deal with nB exactly in (25),
namely writing nB =nB p n from (21), —but the amount
of additional algebraic manipulation then required is
very large whereas the accompanying gain in accuracy
is insignificant. 7 On the other hand we do not replace
n+pB p=pB by pB p on the left-hand side of (25)
precisely because we have made no assumption about
the relative magnitudes of PB p and n in region II.

d28

dx2

8 80& 'SR

6P &ÃR

e &ay +R, O R, o

(31)
6P&lVR

The replacement of nB by nB, p and pB by pB, O are
good approximations, in this region, at finite currents
Lthe former has already been used in Eq. (25)7. Their
accuracy becomes greater, the lower the current, and
this procedure has exact validity at zero current.

At very low currents, region III effectively fills the
entire insulator. In this regime we can ignore (10) and

(26) and obtain the I Ucharacteristic from—(31) alone.
An exact solution to (31), in dimensionless form, is



A. WAXMAN AND M. A. LAMPERT

e(v~,)L'nil, o'pzz, o
"'

VTH— (32)

given below, Eq. (48). Here we note only the salient
features of the solution. At the outset, the absence of
J from (31) a,lready tells us that there is a threshold
voltage for current flow. Further, we can estimate this
threshold voltage VTH reasonably well by the simplest
conceivable approximation, namely, a bare dimensional
analysis of (31), replacing ha'h/dx' by —VTn'/L .
This gives

wi= C/D(G —ln(1+8)}, ui= GC, (37)

where (10) has also been used.
The dimensionless voltage V~ across region I is, from

(15),
(38)v, = (C'/D)(-', a' —a+in(1+a)}.

satisfying the boundary condition (6), namely, u=0
at zv=o.

The right-hand end of region I is at m ~ corresponding
to xi given by (14), namely,

The exact result, (52), namely, the solution of (31)
subject to boundary conditions (6) differs from (32)
only through the numerical factor 1/+4zr. Note that
if a parabolic approximation is used for h, namely,
h=4h, x(L—x)/I', then dzh/dx'= 8h, /—L' and

b=op8, , so that bc'h/dx'= —12Urn'/L', where a
bar over a quantity denotes the average of that quantity
taken over the insulator. Using this in (31) multiplies
the right-hand side of (32) by 1/+12, which is very
close to the correct factor 1/+4zr. The parabolic approx-
imation for 8 is very close to the correct distribution.

For further discussion of the problem it is convenient
to switch to dimensionless variables:

x=x*m, 8= B*N, V = U*z),

For J)Jpr, U)Vpr with Jpr, Vpr given by (16),
there is only the region I in the insulator terminating
at zo, &wi, where zo, = w(L). The corresponding dimen-
sionless forms of (18) and (19) are, respectively,

and
w, = (C/D) (o (u,/ui) —

lnLa (u,/ui)+1j} (39)

v, = (C'/D) (-az'(u, / u) ' o(u—,/ui)
+lnLo(u /ui)+13} (40)

with ui given by (37). Equations (39) and (40) are used
in (34) to obtain the dimensionless I Vcharact—eristic.

At large injection levels, u,«ui, w, up/2CD and
uP/3CD. The corresponding I Vcharacterist—ic is

u,«u, : (v,/wP)' (8/9) CD(1/w, ), (41)

7

e( v)on, zips, o (e(vo v)nzz, o'pzz, opuvIUa} "

= 6*x*. (33)

which is the dimensionless form of (20).

Region II. (wi&w&zvz):

Equation (26), characterizing this region, becomes

In terms of these variables, the dimensionless

current-voltage characteristic is given by a plot of 1/w,
versus v, /zvP:

p(vo, )nzz pz 'i'
du/(u+E) =dw, E=

eu„p pl@

with solution

(42)

1 aNg

w, e(va„)nzz, p'pzz, pL

ep, „Ngg
V.

w, ' nzz pL' epzzp(v(r, ),
(34)

u+E
w —zvg ——ln

ui+E

The right-hand end of region II is specified by (27)
which, using (42), can be written

=Ddz C =
7

p(vo„)pzz, p
"'

ea'p„Ng

a'kg
D =(vo„)Xzz

e(~v„) n,zz' op, zippo,

1/2

which has the solution

The separate regions are now characterized as follows.

Region I. (0&w&wi):

Equation (10), characterizing this region, becomes

uz(uz+E) =1) with up ——u(zvz) .

Using (44) in (43) we get

(44)

u p+E
wp —wi ——ln = —lnup (ui+E) .

ui+E
(45)

dzv

Sd78 = Q dl
dQ

For the voltage ez~ across region II we have, using

(42) and (45),

u —C ln/(u+C)/C)= Dw, (36) =up —u, +E 1n(up(ui+E)}. (46)
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Region III. (wp&w(w, ):
Equation (31), characterizing this region, becomes

Ashley' has an analytic result for UTH valid under
somewhat more general conditions:

u(d'uidw') = —1. (47)

It is most convenient to write the solution to this
equation in a parametric form, namely,

u=u„exp( —s'), w —wp ——v2u ds exp( —s') . (48)

I' (2n+1)I'(2P+1)/I' (2n+2P+1)

LI'( +1)r(P+ I)/I'( +Py1)3
'

(53)

In verifying that (48) is a solution to (47), note that
du/ds= —2 su, dw/ds=v2u, du/dw= (du/ds)/(dw/ds)
= —42s, and finally,

(d/dw) (du/dw) = %2ds/dw =——1/u.

At the left-hand end of region III, (48) gives

era, OPn
) ~p, n=

epg, pu&

where I'(x) is the well-known y function. For n))1,
P&)1 the use of Stirling's approximation gives

up= um exp( —sp'), (49) »1, P»1: R=L(P/ )(I+P/)&"'
where u2 is given by (44) because of our requirement of
continuity of u at m».

Since u increases monotonically with zv in regions I
and II, from (36) and (43), it follows that u must reach
its maximum, u= u at s= 0, inside region III. Hence s2
must be negative: sp ———

t s2 l. Further the boundary
condition 8=0 at x=1., that is, u=0 at z=m, corre-
sponds to s.=s(w.) = ~ in (48). Thus, at w=w„(48)
can be written as

For (wa„)))(po„), ri»nii, pr„,i/E@, and for n~ p& iplVa

and @~&p, „, I„,a&I„,a so that n))p. Further, if pa p is
large enough that P))1, then F~(P/pr)'~' which,
inserted into (54), gives (52). Thus Ashley's more
general threshold result (53) reduces precisely to our
very simple derived result (52) in the appropriate limit.

We return to the finite-current problem. Writing
w, = (w, —wp)+ (wp —wi)+wi and using (37), (45),
and (50), we obtain

w, —wp ——v2up exp(sp')
—l»l

ds exp( —s') . (50)
w, =&2up exp (sp') ds exp( —s') —Inup(aC+E)

For the voltage vIII across region III, we have

dsu(dw/ds)
where, from (44)

+ (C/D) (a—ln (1+a)}, (55)

—l»l u = -'EP—1+(1+4/E')'"). (56)

=upP exp(2sp') ds exp( —s'), (51) Since e.= pr+err+errr we have, from (38), (46), and
—vol »l (51),

where we have used (48) and the identity e = (C'/D)(-'a' —a+ ln(1+ a)}

ds exp( —2s') = ds exp( —s').
+ (up —aC)+E lnup (aC+E)

—l»l —V2l s2l

ds exp( —s')

e(po', )I.na, p pa, p

(4rr)"'
(52)

At sufficiently low currents, regions I and II occupy a
negligible fraction of the insulator. Therefore, in the
limit of vanishing current we can extend region III
right up to the anode, that is, take wp= 0,

~
sp

~

= pp and
&iir=p. in (50) and (51). This gives the threshold
voltage

+up' exp (2sp') ds exp( —s') . (57)

Equations (55) and (57), used in (34), gives a
parametric representation for the I—V characteristic
with esp~ as the variable parameter. Further detailed
results require numerical computation. The I—V char-
acteristic for one choice of parameters is shown in Fig.
3; the corresponding parameter values are e/pp ——12,
u„=u„=10' cm'/V sec, na, p

——pg, p= 5X 10" cm ',
(pp )=10 ', an.d (~p.„)=10 ' cm'/sec, corresponding to
a= 1, C=8= 5.8&(10 ', and 0= 2.3)& 10 '.The threshold
voltage is (e,/wP) rH ——0.28 and the turn-around voltage
is (e,/w, ')~=2.1)&10 ', the turn-around current being
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Fro. 3. Prototype universal current-voltage characteristic (solid line) for double injection into an insulator with a single set of

recombination centers partially ulled in thermal equilibrium. J~ 1/m. and U ~we/~o .

(1/te. )sr ——0.13. At the point labeled n, region I occupies
almost 2% of the insulator, region II 1%, and region
III 97%; essentially 100% of the applied voltage is
across region III. At point P, regions I and II occupy
14 and 7%, respectively, of the insulator but still
absorb negligible voltage; region III occupies 79% of
the insulator and absorbs 100% of the voltage. At point

y, region I occupies 48% of the insulator and absorbs
4% of the voltage, region II occupies 26% of the
insulator and absorbs 14%%uo of the voltage, and region III
occupies 26% of the insulator and absorbs 82% of the
voltage. At point 8, region I occupies 56% of the
insulator and absorbs 8% of the voltage, region II
occupies 29% of the insulator and absorbs 33% of the
voltage, and region III occupies 15% of the insulator
and absorbs 59% of the voltage. The dashed curve in
Fig. 3 is the neutrality-determined solution (regions I
and II assumed to fill the insulator), which, extrapolated
to zero current yields an infinite threshold voltage. '

The physical origin of the negative resista, nce is
easily understood and was discussed in I.At low current

levels, the very short hole lifetime r„& constitutes a
"recombination barrier" to penetration of the insulator

by the injected holes. As the current increases, more and
more of the insulator, working out from the anode, is
converted, by hole capture, into a region of long hole
lifetime ~&. Penetration of this region by holes is possible
at lower voltage drop, hence the decreasing voltage with
increasing current. In terms of the regional-approxima-
tion analysis, with increasing current the low-voltage
region I grows at the expense of the higher-voltage
regions II and III.

Because of the empty recombination centers there
will also be, in this problem, a threshold voltage for
one-carrier electron space-charge-limited current Row,
namely, the trap-filled-limit voltage" VTi.L= epics oL'/2e
= L'/2Ii~t„n, in the notation of (53). For n))p))1 and

+it, o)Xz/2, VTir (1/wP)'"VTFL(VrFL. In this case
there will be no electron space-charge current preceding
the double-injection current. %here VTpL(V» the
trap-filled limit, ' electron space-charge-limited I—V
characteristic will be observed prior to the onset of
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double injection. [This initial regime in the current-
voltage characteristic did not emerge from our analysis,
nor from Ashley's, ' because of our neglect of thermal
reemission of electrons from the recombination centers
back into the conduction band, assumption (iv). That is,
with empty centers pz s present initially, and the
thermal reemission of electrons neglected, electron
injection is suppressed until holes are also injected. ]
Since the trap-filled limit electron flow prior to double
injection completely fills the recombination centers, we
would expect the double-injection regime in the I—V
characteristic to be described by the analysis of Sec. III.

I l II
l

NEUTRALITY
I

!INJECTED,
PLASMA

!
X=O Xt

m l I2
I—& TRANSITION FRFE-

L R EG ION I ELECTRON
SCLC

& II(J = Jn}, AR
™
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I I

Xp Xp

rl=N~ pR=Z — pR= ~ I e d

ed6

Fio. 4. Schematic regional-approximation diagram for the
problem of double injection into an insulator with a single set of
recombination centers completely ulled in thermal equilibrium.

(e/e) (d 8/dx) =p+ pg n. —(2')

Hereafter, when we refer to the defining Eqs. (1)—(6)
it is understood that (2') replaces (2). The same
assumptions (i)—(vi) made in the previous problem are
again made here.

The analytic tractability of this problem, demon-
strated in I with the additional assumption of local
neutrality, no longer obtains when this assumption
is dropped. We therefore resort once again to the
regional-approximation method to obtain an approx-
imate analytic solution. At low currents this is a four-
region problem as illustrated schematically in Fig. 4.
Entering at the anode, at @=0, local neutrality obtains
in the first two regions, I and II, and indeed these two
regions are very similar to their counterparts in the
previous problem. In region I, the recombination
centers have been largely depopulated by hole capture:
pn~»~ and n&»g. Region I ends at x=xi, where

n(xi) =»g. In region II, the electron transfer from the
recombination centers to the conduction band is
incomplete: »ii&n))p. Region II ends where the

assumption of local neutrality runs out of self-con-
sistency, that is, at x=xs, where n(xs) = (e/e)(d8/dx)2.
Regions III and IV, encompassing the remaining
volume of the insulator, are dominated by space charge.
In region IV, adjacent to the cathode at x=L, the
recombination centers have their thermal occupancy,
that is, they are completely filled, and so the negative

"M. A. Lampert, Phys Rev. 103, 164.8 (19561.

III. RECOMBINATION CENTERS COMPLETELY
FILLED, INITIALLY

This is the problem originally studied in I (under the
assumption of local neutrality). There is a single set of
recombination centers lying

sufficiently

below the Fermi
level that, effectively, they are completely occupied in
thermal equilibrium. The energy-band diagram of
Fig. 1 illustrates the situation if we relocate the level
F., (or Fs) such that Fs—E,))kT. As in the previous
problem, we again assume o-„))o. .

Equations (1)—(6) describe equally well the present
problem if, in the Poisson equation, we now take
p~, =0, that is, if we write

space in this region is necessarily in the conduction
band, hence free to carry current. An immediate
conclusion is that at arbitrarily low voltage a trap-free
one-carrier (electron) space-charge-limited current can
flow through the insulator. This is in marked contrast
to the previous problem, where the trapping of space
charge at low current levels led to a voltage threshold
for current flow. In this respect, our use of assumption
(iv) in this problem has less drastic consequences than
in the previous problem. Region III is a transition
region needed to match the local-neutrality-dominated
region II to the free-electron space-charge-dominated
region IV.

We proceed to a detailed consideration of the four
regions.

Region J. (0&x(xi):n&»~, pe»e, .

This region is essentially identical to region I of the
previous problem. The Eqs. (7)—(12) hold if only we
replace nz, s by»z, that is, take pii s=0. At the right-
hand end of region I we have, in place of (13)—(15),

xi ~ ni n(xi)»R
x= (S/T) (a—ln(1+a) }, S= J/ep„»ir (59)

Si——aS, Vi = (S'/T) {-,'u' —a+ in (a+ 1)}, (60)

with T given by (10). Note that S replaces Ss in
(1o)-(12)

The current and voltage at which region I just fills
the insulator is again denoted by J~, V~ and are given

by

J~=h(a) (e»~L/»), V~= [I/g(a)](L'/~. rh), (61)

with r&, given by (9), h(u) and g(u) by (16).Note, from
(16) and (61), that Vsr is the same for both problems.
Once again, J~ and U~ mark the high-current low-

voltage end of the negative-resistance regime. Remark-
ably, the Jsr, Vsr given by (61) are exactly the same as
obtained from the rigorous neutrality theory of I
[Eqs. (89) and (810)].

With J~, Vsr now given by (61), (17) holds precisely
as written. Equations (18) and (19) hold. with S
replacing Ss '. (20) holds with»ii replacing nn, s.
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dn elVa(vo. „)
dx. (62)

The solution satisfying the boundary condition:
n=Ez at x=xi (continuity of n across the plane xi), is

Region II. (xi&x&x2): erg)n))p.
This region is the counterpart of region II of the

previous problem. The characteristic differential equa-
tion for this region is obtained directly from (25) by
taking pz v 0, n——a p=Eg'.

The field intensity h is given by

X,(v~„)
8 —= -+ (x—xi).

ep„e ep„Sg p„
(64)

Just as with the previous problem, the right-hand
terminus x2 of region II is taken where the neglected
space charge overtakes the retained terms in the
Poisson equation:

X=X, . n, =n(x, )=(E/e)(d8/d x),=pii, =pi(x, ). (65)

For the voltage drop Vi~ across region II we have

J Z,(v~„)
(x2—xi)+ (x2—xi)'. (66)

ep Sg 2py
eiVa(v~„)

(x—xi) . (63) Taking x2 ——L in (65), this defines a critical current
and voltage, J& and V&, given by the following:

eXg'(vo. )'L
JN A=

2ap„{—',—aA+ (A/8) La —ln(1+a) 7)

6 VOp VO~

8=G
2eap„(vo-„)

cVn(vo )L'P(-' —a'A')+(A'/B)Pa' —a+in(1+a)])

p„{-,' —aA+ (A/8) La —ln (1+a)])'

(67)

where Vii = Vi+Un(x2=L).
For J~(J(J~ (or V~) V) VM), xi(L(x~ and x~ must be replaced by I. in (66). Combining (66), as changed,

with (60) we obtain for the I Vcharacte—ristic

J~&J&Jw. V =V~{(J/J~)'+ f(a)(J/J~)(1 J/J~))+U—Tn(1 J/JM)', —

a{a—ln(1+a))
f(a) =,

-,'a' —a+in(1+ a)

(vo„)L'Iir g
~u &

2p,„r-,,i (vo „)Xg
(68)

J~&J&J~ and VTH))U~.

V~V~ (J/ Jia)2+ VTH(1 —J/ J~)2 (69)

The current-controlled negative resistance is clearly
exhibited by (68) and (69), namely, voltage decreasing
monotonically as J increases from J& to J~. Equations
(68) and (69), practically speaking, have the identical
physical content as the rigorous neutrality solution of
I, namely, (A14) and (A15), and are very much simpler.

If the neutrality solution is estrapolated, beyond its
domain of validity, down to zero current, it gives a
threshold voltage for current Row, namely, VTH, hence
the subscript "TH." In actuality, for J(J~, x2(L
and we must take space charge into account by way of
including further regions in the problem,

Note that f(a) is almost a constant, of order unity;
it varies from 2 at a«1 to 2 at a))1. Comparing the
coefficients UTn and V~ in (68), we have, from (61)
and (16), VTrr/VM= (2g(a))(vov)/(va „). From (16),
g(a) decreases monotonically from -', at a«1 to 1/a at
a))1. Thus, unless u is very large, VTH))V~. In this
case, (68) can be further simplified to

Region III. (x2&x&x3): Na))pa=n))p.
The current equation in this region, p being negligible,

is given by (22). Space charge is taken into account
via the Poisson equation (2') which here becomes

(e/e) (d h/dx) =p~ —n. (70)

dpg esca(vo„)"dx. (71)
pB

The main role of the space charge in this region is to
"turn the field around. " The field increases mono-
tonically in regions I and II and decreases monotoni-
cally in region IV; hence it must have a maximum in

region III. Despite this important role of the space
charge e(pii —n), it is nevertheless true that pii=n
throughout region III:p~ 2

——n2 a,t the left-hand end of

region III and pa 3= 2n3 at the rig—ht-hand end of region
III (see the discussion of region IV). Thus, so long as
we are not dealing with the difference n p~, it is-
legitimate to replace n by pii in studying region III.
Since the derivation of (62) nowhere involved the
difference pz —n it is legitimate to replace n by pa in

this equation:
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Equation (71) has the solution

eX,(~o,)
S $2 ~

GJPz(x) Pn, 2 2'„
w, elV g'(vo~)'L.

V. (77)
w. ' ltI ii(va„)L'.The spatial dependence of 8 in region III is given by

the solution to the differential equation (70) here
rewritten as (e/e)(dh/dx)+J/ep„h —pn=0, with pn
given by (72). Actually, we need not solve this differen-
tial equation since our main concern about region III,
in this paper, is the voltage drop across it,

The separate regions are now characterized as follows.

Region I. (0&w&wi):

Equation (10), characterizing this region, and its
solution (11) Lwith 5, given by (59), replacing 50,
given by (10)],becomesx3

hdx.Vux =

In terms of these variables, the dimensionless current-
voltage characteristic is given by a plot of 1/w, versus

(72)

In order to obtain Vziq it suffices to use a simple inter-
polation scheme to approximate h (x), namely, a
quadratic (parabolic) expression, as discussed below.

Region IV. (x3&x&L): n))pii))p.

Only the injected free electrons are of significance in
this region, so that the Poisson equation (2') simplifies
to

u+A
=BdW ) I—A ln =BR ) (78)

satisfying u=0 at w= 0. A and 8 are given in (67).
The right-hand end of region I is characterized by

(58)—(60). For wi corresponding to xi, and ui to hi,
we have

wi ——(A/8) {a—ln(1+a)), ui ——aA. (79)

(e/e) (d h/dx) = —n. (73) The dimensionless voltage vi across region I is, from

(60),
The current equation is again given by (22). The two
equations (22) and (73) describe one-carrier (electron)
trap-free space-charge-limited current injection. It is
easy to check' that their solution, corresponding to
injection at the cathode at x=I., is

vr = (A'/8) {-,'a' —a+in(a+1)) .

Region II. (wi&w&w2):

(80)

Equation (62), characterizing this region, and its
solution (63), become

du/dw= 1, u —ui=w —wi, (81)

RIld

Je) 1

~2e'p„) (L—x) '~'

(74)

with ui and wi given by (79).
The right-hand end of region II is characterized by

(65). For w2 corresponding to X,, and u2 to 82, we have

w2 ——-,'—aA+ (A/8) {a—ln(1+a) ), up=-,'. (82)

As the distance from the cathode increases, n(x)
decreases as specified by (74). Finally, n gets small
enough that it is comparable to the (neglected) trapped-
hole density pii. Thus, a reasonable criterion to fix the
left-hand end of region IV is

x=$3:

Pa, 3=Ping(xa) = ', n3'= ,'n (-x3) = —-(e/2e) (d h/dx) 3. (75)

The dimensionless voltage

across region II is, from (81),

~ir = 2 (l —a'A')

Region III. (w2(w&wg):

(83)

x=x+zv, 8= 8+u, V = V+v,

2'„J
x+= 8+=

eXii'(oo~)'- eA ii(iio,)
(76)

4a'@~J'

e'Xn'(i o „)'

For further mathematical discussion it is convenient
to switch to dimensionless variables:

or
—,'(du/dw) 3 (du/dw) 2

=2(wg —w2)

4(w. —w3)"'=1+2(w3 —w2) .

As previously noted we shall obtain the voltage drop
e~iz across region III through approximation of the
field I by an interpolation scheme. This scheme
naturally devolves around the quantities u2, w2 and

u3, wa. The former are given in (82). Using (75) in

(72) we obtain the important relation
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Any number of interpolation schemes for n are possible
and useful. We have found convenient the following
scheme. Let u= Uz(w) be the equation for the tangent
to the curve u =u(w) in region II at w =wz, correspond-
ingly, u= Uz(w) is the tangent to the curve u=u(w)
in region IV at m= v@3. Then

Uz(w) nz+ (w wz) (du/dw)2 uz+ (w wz) I

The voltage drop zzzz, using (88), is

w3

udw =-,' (uz+uz) (w, —wz)

Region IV. (zoz&w&zo, ):

1 1
+ — 1+ (w, —w,)'. (89)

6 2(w, —wz) zzz

dn)
U, (w) =u3+(w —wz)

i
=uz

dwi3 2 (w4 —wz)

(85) Equations (73) and (22), characterizing this region,
and their solution (74), become

where we have used (81) and (90).
Further, let zz(zo) and p(w) be two linear weighting

functions:

= —1, u= (w.—w)"',

(90)

783—'R2
(86) 2(w, —w)"'

where zz+p=1, zz(wz)=0 and zz(wz)=1, p(wz)=1 and
p(wz) =0.

Then our interpolation approximation is &iv= udw=-', (w, —wz)z'z.

satisfying u, =u(w, )=0, that is h(L) =0.
The voltage across region IV is

(91)

u(zo) = Uz(zo)n(zo)+ Uz(zo) p(zo)

or, substituting from (85) and (86),

K'g —3)
u(w) = (uz+w —wz)

ZV g
—'Ro

78 —ZOg K' —ZVg

uz — . (88)
2(w. —wz)zz' (wz —wz)

Note that u(wz) = uz and u(w&) =u&, assuring continuity
of the b 6eld across the connecting planes x=x2 and
x= x3

We are ready now to collect all of the results. The
I Vcharact—eristic is given by a plot of 1/w, versus
v,/w, '. Writing zo, =zoz+ (zoz —zoz)+(w, —wz), we have
from (82) and (84)

1 1

w, —1—aA+(A/8)(a —1n(1+a))+(y+1)z (92)

y= (w, —wz)"'.

From (91), ~zv= 2y'/3. From (89), ozzz= 5y'/3+4y
—4+1/48y. Inserting these into the voltage relation:
zP, = vz+azz+zIzzz+ozv we obtain finally, from (83) and
(80),

l (-.' a'A')+ (A'/8) ( l a' —a+»(a+1))z+l y'+—'y'+-'y —l+1/48y

L
—1 —aA + (A /8) (a —ln(a+1) )+(y+1)']z

(93)

The relations (92) and (93) give a parametric
representation of the I—V characteristic in terms of the
single parameter y and the material constants a, A,
and 8, defined. in (67).

In terms of the dimensionless variables the critical
point J~, VII on the I—V characteristic becomes

(1 h(a)8 v, 8
~w~ zz aA w4 zz ag(a)

(94)

The I—V characteristic obtained with the assumption
of local neutrality (only regions I and II in the insulator)
is given by (68) or (69), where we further note the useful
relations V/Vzz= (m, /w, z)/(e, /w, z)zz, J/Jzz ——(1/w, )/

(1/w, )zz, and VTH/Vzz=ag(a)/28. Corresponding to
the voltage threshold VTH, (o,/w, ')Tzz=-,'.

The electron trap-free square law, J=9ezz„Vz/8L',
becomes 1/w, = (9/4) (v,/w, z)'.

The full I—V characteristic, (92) and (93), is compared
with the neutrality-based characteristic (68) for two
cases in Fig. 5. The solid straight line of slope two in
the figure is the electron trap-free square law. The two
solid curves are neutrality-based characteristics and
the two dashed curves are the corresponding full
(space-charge-included) characteristics. The material
parameters chosen for the lower pair of curves were
e/eo ——12, 14 =Iz„=104 cmz/V sec, Nzz= 10" cm ',
(vo )=9X10 " cm'/sec, and (vo„)=3X10 ' cm'/sec,
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FIG. 5. Prototype universal current-
voltage characteristics for double
injection into an insulator with a
single set of recombination centers
completely fIlled in thermal equilib-
rium. J cx: 1/m, and V ~ v,/m. '. The
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assuming neutrality; the dashed
lines are those obtained including
space charge.

g IO-I

ELECTRON
TRAP- FREE SCL

CURRENT J & V~
t I

IO' IO IO
t IOO

as might pertain to a silicon experiment at liquid-
nitrogen temperature. The corresponding dimensionless
parameters are a=1, 3=10 ', and 8=3&(10 4. For the
upper pair of curves the changes in the material
parameters are (va„)=10 ' cm'/sec and (ra~)=10 ';
correspondingly A = 3)& 10 4 and h = 10 '.

Some further particulars are of interest. On the lower
dashed curve, at point o., the electron space-charge
region IV occupies 83% of the crystal and absorbs 81%
of the applied voltage. The transition region III takes
up the rest of the crystal and the applied voltage, both.
Regions I and II are negligible. Going to point P, the
neutrality regions I and II are now in the picture.
They take 32% of the crystal width, though only 2%
of the voltage. Region III takes 43% of the width and
"12% of the voltage, region IV, 25% of the width and
26% of the voltage. At point y, regions I and II now
occupy 55% of the width and take 5% of the voltage,

region III, 34'% of the width and 80% of the voltage,
region IV, 11% of the width and 5% of the voltage.
At this point, going up on the curve, region IV is
shrinking fast. At point 6 the two neutrality regions I
and II occupy 99% of the crystal width and 98% of the
voltage, the residual width and voltage being in the
transition region III.

IV. SUMMARY

The problem of double injection with negative
resistance due to an injection-level-dependent lifetime
has been studied theoretically, including space charge,
for two pr'ototype models. Earlier studies, valid at low
(or threshold) and high currents have been simplified
and extended. A detailed, approximate picture of the
evolution of the negative resistance at intermediate
currents has been provided through systematic use of
the regional-approximation method.


