
P HYSI CAL REVIEW B VOLUM E 1, NUM B ER 6 15 MARCH 1970

Third-Order Elastic Moduli of Strontium Fluoridet
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(Received 16 June 1969)

The complete set of the second- and third-order elastic moduli of single-crystal strontium fluoride was
determined from measurements of sound velocity and its changes under uniaxial and hydrostatic compres-
sion at room temperature. The values of the measured third-order elastic moduli in units of 10"dyn/cm2 are
C111———82.1, C»2= —30.9, C144= —9.5, C1« ———17.5, C1» ———18.1, and C456= —4.2. The experimentally
measured third-order elastic moduli were compared with the theoretically calculated ones, and agreement
was found. Conclusions pertaining to the lattice forces interactions in strontium fluoride are presented. The
measured values of the third-order elastic moduli are correlated with the thermal expansion.

INTRODUCTION

SKVKRAI, studies of the third-order elastic moduli
(TOEM) of the alkaline-earth fluorides have been

published during recent years. '— These materials are
interesting from the aspect of their lattice dynamics,
having the Quorite structure, viz. , not every atom in the
lattice is a center of symmetry. Thus, the possibility of
relative motion of the different sublattices under strain
arises, and even in the case of central forces interactions
only, the Cauchy relations may be violated. As the
complete set of the TOEM for CaF2 and BaF2 has
previously been reported, it seems to be of interest to
carry out similar measurements on other members of the
group of alkaline-earth Quorides. With this in mind the
present work was undertaken. It reports measurements
of the second-order elastic moduli (SOEM) around room
temperature and of the TOKM at room temperature.
The experimentally measured TOEM are compared
with theoretically computed values, and some con-
clusions pertaining to the atomic forces in the SrF2
lattice presented.

EXPERIMENTAL

The samples used in the present work were single
crystals of SrF2 purchased from Optovac Inc. The
crystals were cube shaped, sizes 16)&17&&20 mm ap-
proximately, their faces corresponding to the (110),
(110), and (001) crystalline planes. The crystals were
hand lapped until the faces were parallel within a few
parts in 10', and then the orientation of the faces was
checked by x-ray Laue backreQection. The faces were
found to correspond to the crystalline planes within ~'.

Strontium ftuoride, being cubic, has three independent
SOEM (Crt, Cqs, and C44) and six independent TOEM
(C111 Cits C144 Ctss Cl», and C4ss), Brugger's defini-

f Based on a thesis submitted by S. Alterovitz to the Tel Aviv
University in partial fulfilment of the requirements for a Ph. D.
degree.' P. S. Ho and A. L. Ruoff, Phys. Rev. 161, 864 (1967).' C. Wong and D. E. Schuele, J. Phys. Chem. Solids 28, 1225
(1968}.' D. Gerlich, Phys. Rev. 168, 947 (1968).' C. Wong and D. E. Schuele, J. Phys. Chem. Solids 29, 1309
(1968).' S. Alterovitz and D. Gerlich, Phys. Rev. 184, 999 (1969).

j.

tions' for the TOEM being used throughout. The
SOKM were determined from the absolute value of the
sound velocity, while the changes in this velocity under
uniaxial and hydrostatic compression yield the TOEM.
With the available samples, five different sound-propa-
gation modes were available for the determination of the
SOEM, while 14 different combinations of propagation
modes and pressure direction~ were available for de-
termining the TOEM. Both sets of moduli were then
computed by a least-square fit.

The sound waves were generated by means of X- and
I'-cut crystalline quartz transducers, operating at their
fundamental frequency of 15 MHz. The transducers
were bonded to the samples with phenylsalicylate
(salol).

In order to prevent the cracking of the samples during
the uniaxial compression, and to eliminate dislocation-
line movement which might falsify completely the re-
sults, '' the stress level was kept very low, never
exceeding 15 kg/cm'. Also, the samples were irradiated
with an x-ray dose of 5000 R prior to the start of the
measurements. Such irradiation creates additional pin-
ning centers for the dislocation lines, thus preventing
their motion. '

The absolute value of the sound velocity was deter-
mined by the McSkimin pulse-superposition method, ""
the changes in the sound velocity, by the frequency-
modulated pulse-superposition method. "' The temper-
ature of the sample being investigated was monitored
carefully all the time, and all results were normalized
to 295'K.

The absolute value of the sound velocity was de-
termined from the round-trip travel time t. The latter
was deduced from the following equation":

T=pt pP/360 f+rr—/ f (1)
6 K. Brugger, Phys. Rev. 133, A1611 (1964).
'R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604

(1964).' Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).' K. Salama and G. A. Alers, Phys. Rev. 161, 673 (1967)."R.Gordon and A. S. Nowick, Acta Met. 4, 514 (1956).
"H. J. McSkimin, J. Acoust, Soc. Am. 33, 12 (1961).
'2 H. J. McSkimin and P. Andreatch, Jr., J. Acoust. Soc. Am.

34, 609 (1962)."H. J. McSkimin, J. Acoust. Soc. Am. 3V, 864 (1965).
"H.J.McSkimin and P. Andreatch, Jr., J.Acoust. Soc. Am, 41,

1052 (1967).
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TABLE I. Round-trip travel time of the sound for different propagation modes in SrF2.

Mode No.
Propagation

direction

[110]
[001)
[110)
L110)
[001]

Polarization
direction

[110]
[001]
[110]
Looi]

(001}plane

Length
(cm}

1.6506&0.0001
2.0414&0.0001
1.6506&0.0001
1.6506&0.0001
2.0414+0.0001

Transit time
(@sec)

6.326&0.002
7.564&0.002

10.802+0.002
12.090+0.002
4.958&0.002

pP2

(10"dyn/cm')

11.650&0.007
12.463+0.005
3.996~0.002
3.190~0.001
3.187+0.001

TanrE II. SOEM oi SrI'2 at 295'K. (Units are 10"dyn/cm'. )

Present results
Gerlich~

12.461+0.005
12.36

C12

4.463&0.011
4.314

C44

3.1874+0.0010
3.132

gS

7.130+0.009
6.996

a Reference 15.

Here, T is the measured inverse resonant frequency,

P =2, f is the sound wave frequency, and P is the phase
angle associated with the reflection of the sound wave at
the transducer and bond. The angle P was calculated as
a function of the frequency around 15 MHz, utilizing
the mechanical impedances of the sample, bond, and
transducer. The calculation was performed assuming no
phase shift in the bond (tanBilt=0), which is well

obeyed for salol bonds. (Their B,lt values are up to 1'.)
The resonant frequency corresponding to e=o was
deduced by carrying out three sets of measurements of
T for every propagation mode. The first two were for 12.5

I t
'

]
'

I
'

I

p=2 and p=3 at different values of I and a fixed fre-

quency f. The third one was for p =2 at different values
of e, but at a frequency of 0.9f. From these three sets of
measurements and the computed values of the P's, the
time t was found. The accuracy obtained was better
than one part in 104.

The uniaxial stress was generated by means of a
manually operated home-made press, and measured by
a factory-calibrated load cell. Lead shims were placed

TABLE III. Material parameters for SrF2 at 295'K.
12.2

X-ray density&

Specific heat at constant pressure"
CoefEcient of linear thermal expansion
Isothermal bulk modulus

4.278 gm/cm'
69.8 J/mole deg
1.82)&10 ~ deg '
6.946 && 10"dyn/cm' 1i.9

a Reference 15.
b Reference 16.

TABLE IV. Values of (pod")'~ 0 for the different
propagation modes.

Propa- Polar-
Mode gation ization
No. direction direction

1 [1107 [1107
2 [110] [110)
3 L110] L001]
4 [001) [001)
5 [001) [110)
6 [001) [110)
7 [110) [110)
8 [iio) [110)
9 [110] [001)

10 [001] [110]
li [1107 [110)
12 [110] [110]
13 [001] Looi]
14 [110) [0017

Stress
direction

[001)
[001)
[001)
[110)
[110)
[110)
[1io)
[110]
[110]

Hydrostatic
Hydrostatic
Hydrostatic
Hydrostatic
Hydrostatic

(pPV2) '&=o

0.735 &0.033
0.0693&0.0066
0.453 &0.003
0.950 a0.028
0.540 &0.006
0.172 &0.013

—0.780 ~0.036
—0.0929+0.007

0.0949&0,0024
0.9328&0.0022
5.317 &0.012
0.1200&0,0006
4.687 &0.008
0.9409&0.0024

I-x
' 11.3

4.0
CD

CD

CO

Lal 3.7

3.4

3.1 E l

0 15 30
E

I

[100]

l &, I, t

45 80 60 40 20

Itto]

e ~

[oat

Fn. 1. Values of pv2 for some directions of high symmetry.
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TABLE V. TOEM for SrP2 at 295'K. (Units are 10"dyn/crn .)

Clli

—82.1+1.1 —30.9+0.5
C123

—18.1+1.2
C144

—9.51+0.66

C166

—17.5&0.3

C456

—4.21+0.28

between the sample and the pressurizing surfaces in
order to prevent the application of shear stresses to the
sample. The hydrostatic compression was generated by
a nitrogen-gas compressor, and measured with a Bourdon
gauge.

RESULTS

TABLE VI. Pressure derivatives of the effective SOEM (pv') of
SrF2 at 295'K.

(BC11/M') Z

5.25+0.04

(aC1~/M') T

4.52+0.07

(BC44/M') y

1.07&0.03

Table I presents the values of the round-trip travel
time t for the five different modes in our crystals. From
the latter data, the three SOEM are calculated by a
least-squares fit and are shown in Table II. The results
agree very well with earlier ones. "From the SOEM, the
value of pv' in any direction may be calculated, where p
is the density, and v is the sound velocity. The values of
pv' for some directions of high symmetry are shown in
Fig. 1. Here 3 refers to the longitudinal mode, 1 and 2

refer to the slow and fast shear modes, respectively.
Figure 1 bears out the elastic anisotropy of SrF2. The
material parameters of SrF2, required in the computa-
tion of the SOEM and TOEM are shown in Table III.'

The changes in the sound velocity under hydrostatic
and uniaxial compression are summarized in Table IV
and Figs. 2—4. The graphs represent the measured
reciprocal resonant frequency for the 14 different com-
binations of propagation and stress direction as a
function of the applied stress. The straight lines are the
least-squares 6t to the experimental data. From the
slopes of these lines, the pressure derivatives at zero
pressure of psW', viz. , (psW')'t s, are determined. Here,
pp is the zero-pressure density, t/t/' is the "natural"
velocity. The values of (psW')'t e are presented in
Table IV. As can be seen from the graphs, the changes
in sound velocity are linear up to the highest applied
uniaxial stress, which is a necessary condition (hut not
suflicient), that no dislocation-lines motion has oc-
curred. From the values of (psW')'p s the six TOEM
are computed, the results being shown in Table V. From

Mode Propagation
No. direction

Polarization
direction

d Int/dT
(10-6 deg-~)

TABLE VII. Temperature dependence of the sound travel time for
the different propagation modes.

15]25

'
15i2D

'24385,

1 [110]
2 [001]
3 [110]
4 [110]
5 [001]

[110]
[001]
[110]
[001]

(001) plane

Cl,
Cl1
CI

C44

C44

108.36
85.83
63.44

134.75
134.24

24180
e

12550 t

12545

TABLE VIII. Temperature derivatives of the SOEM of SrF2 at
295'K. (Units are 10 'deg '.)

(6 InCn/&T) 3, (6 InCq2/6T) r, (6 InC44/&T) „
Present results —1.915&0.006 —2.79+0.03 —2.90+0.02
Gerlich' —1.6 &0.16 —3.8 &0.4 —2.7 +0.3

a Reference 15.

TABLE IX. Comparison of uniaxial and hydrostatic data.
(Units are 10'1 dyn/cm'. )

hl t

Q 29.9100

X

2%9 050

29.9000

I

215045

21.6040

t.1101 SHEAR t110] POL A R I Z E0

. I I 1 1 I t 1

50 100 150 200 250

Hydrostatic
Uniaxial

C111+2C112

—143.4&0.8—161.6&9.8

C144+2C166

—46.5%0.6—45.7&2.1

C111 C123

—65.1&1.7—69.7+7.3

PRESSURE (Kg/cm&)

FIG. 2. Reciprocal resonant frequency as a function of hydrostatic
pressure for diA'erent propagation modes.

"D. Oerlich, Phys. Rev. 136, A1366 (1964).
"A. C. Bailey and B.Yates, Proc. Phys. Soc. (I.ondon) 91, 390

(1967).
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TABLE X. Comparison of the experimental and theoretical values of the TOEM of SrF2. (Units are 10"dyn/cm2. nn: nearest-neighbor
interaction; nnn: next-nearest-neighbor interaction. )

Experimental
Rigid-ion model, nn and nnn
Shell-model, nn and nnn
Rigid-ion model, nn only

C111

—82.1—68.5—68.5—62.2

C112

—30.9—36,5—36.5—37.1

C12~

—18.1—23.6—23.6—24.2

C144

—9.5—12.8—9.8—11.2

C166

—17.5—22.2—20.1—19,5

C466

—4.2—5.2—6.2—2.3

24.31904

2 4.31896

24.3)888

24.31B80
O
X
UJ

o 23.07392—
I~OSa

4

fA1 23,07388

12.71674
6

[110] SHEAR ['l10] POLARIZED

[I I 0] LONGITUDINAL

12.71670

the hydrostatic data alone, the pressure derivatives of
the effective SOEM, viz. , (ptI')'z 0, may be calculated
by a least-square fit, and are shown in Table VI.

In order to normalize all measurements to 295'K, the
temperature derivatives of the SOEM are required.
They were determined from the temperature variation
of t over the temperature range 273—300'K. In this
range the changes were found to be linear, the results
being shown in Table VII. From the five experimentally
measured derivatives of the travel time, the three
temperature derivatives of the SOEM are computed by
a least-square fit, and shown in Table VIII, together
with similar data deduced from earlier measurements. "

In order to ascertain that no dislocation-lines motion
has occurred during uniaxial compression, the uniaxial
data alone were utilized to determine the six TOEM.
The latter were used to form the three linear combina-
tions which are determined by the hydrostatic runs
a»ne, »z, C111+2+112 f-"144+2C166 ~111 f:123
latter were then compared with the similar results
deduced from the hydrostatic measurements. The com-
parison is shown in Table IX, and as can be seen, the
agreement between the two sets indicates that probably
no dislocation-lines motion has occurred.

The errors in the quantities obtained by a least-
square fit are the standard deviations multiplied by

0.675. This was found to be the largest error, including
all possible sources of error like temperature drift,
uncertainties in the measurement of frequency, stress
and temperature, and errors in the relative orientation
of the propagation direction, polarization, and stress. It
was also found that carrying out the least-square fits
either with equal weights or with weights equal to the
reciprocals of the standard deviations did not change
the results materially.

TABLE XI. Cauchy relations for SrF2.

C42 jC44

1.401

C112/C166

1.766

C123/C144

1.903

C144/C466

2.259

TABLE XII. Comparison of the values of &L and pJI from elastic
and thermal-expansion data.

DISCUSSION

A. Comparison arith Theory

Assuming a model of central-forces interaction, con-
sisting of Coulombic interaction throughout the lattice
and exchange forces between nearest and next-nearest
neighbors, Srinivasan'7 has evaluated theoretically the
TOEM for the Quorite structure. In his calculation he
had used force parameters taken from a shell-model

calculation by Axe,"the latter calculation having been
done to explain the difference between the measured
values of C~~ and C44 for the alkaline-earth Ruorides.
For his calculation, Axe" had used an erroneous shell

charge for the cation, as pointed out by Dick,"and also

neglected the core-core interaction in the evaluation of
the shell correction to the rigid-ion model.

We have recalculated the TOEM by Srinivasan's
procedure, but using the correct force parameters and
taking into account the core-core interaction. The
calculation was carried out for three models: (i) rigid-
ion model, assuming the spring constant E~ of the shell-

core interaction in fluorine to be infinite, and the shell

I

10

STRESS [ILg/cm&]

I

15
Elastic

Thermal expansion

PL
0.74

0.74 (30'K)

+II
0.95

1.62 (270'K)

FIG. 3. Reciprocal resonant frequency as a function of uniaxial
compression in the L001j direction for ditferent propagation
modes.

"R.Srinivasan, Phys. Rev. 165, 1054 (1968).
J. D. Axe, Phys. Rev. 139, A1215 (1965).
B. G. Dick, Phys. Rev. 145, 609 (1966).
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24.31894

I
I

I l
'

l
'

I
'

l

24.31890

23.00475—

23.00471

'I

0

12.71706

12.71702

UJ 30.04500,

U- 30.04492

UJ 30.0450,'

K

30.04 48

110 LONGITUDINAL

X
X

1.2
LLI

Clo
X

0.9

0.6

15.1 9 464
0.3

15.1 9 460

10
I

15

sTREss [Kg/cm']

FzG. 4. Reciprocal resonant frequency as a function of uniaxial
compression in the $110] direction for different propagation
ITlocles. [100] [»0]

l J l I l

0 15 30 45 SO 60 40 20

9 - 8

0

[ooi]

charge I's to be zero; (ii) shell model, with nearest- and
next-nearest neighbor interaction, assuming k2 ——SX10'
dyn/cm and 7g= —1.9; (iii) rigid-ion model, with
nearest-neighbor interaction only, which is the simplest
model that can be assumed. For all models, the repulsive
potential was taken to be of the form Ar ", where r is
the distance between the intera, cting ions, and A and
m are constants. The constant 1z was in the range 6—12,
and is found that varying e from 6 to 12 changed C»& by
3% while the remaining TOEM changed even less. In
Table X, the three sets of TOEM calculated on the
basis of the above models are shown, together with the
experimental data. The computation was done as-
suming m=9.

As can be seen from Table X, the agreement between
the experimental and theoretical TOEM is quite good,
especially bearing in mind that we are concerned with
quantities which are measured by a second-order effect,
and the simplicity of the model. It should also be
pointed out that the theoretical calculation is for O'K,
while our measurements were done at 295'K. However,
the change in the TOEM between room temperature
and O'K is believed to be small (less than 10/o) for the
alkaline-earth fluorides. This is based on the measure-
ments4 done for CaF~ and BaF~ at 298 and 1.95 K, in
which the three combinations of the TOEM obtained
from hydrostatic measurements varied by less than 2/o
over the above temperature range.

FIG. 5. Mode p's as a function of crystalline direction.

It is noteworthy that the rigid-ion model as used here,
has only three parameters, C», C», and m, and being
insensitive to e, is indeed very simple, and yields a
surprisingly good agreement between experiment and
theory for five out of the six TOEM (except for C»&).
The reason for such a good agreement is that the Sr-F
interaction is much stronger that the F-F (60 times
larger), a fact that is obvious from the last row of
Table X, where the F-F interaction is neglected. The
value of C»~ is made up of contributions from the
second nearest and farther neighbors, and the calcula-
tion will therefore yield a value which is smaller than the
experimentally measured one. The same situation ex-
ists' ' in the case of CaF~ and BaF2. A similar behavior
for C»~ is also found in the case of alkali halides. "
Thus, it may be tha, t C»& contains contributions from
more distant neighbors than other TOEM in all cubic
crystals.

The values of the ratios of the SOEM and TOEM
which should have been equal to unity were the Cauchy
relations obeyed, are shown in Table XI. It is obvious
that the Cauchy relations are violated for SrF2, although
the values of the SOEM and TOEM can be explained
by a model of central forces interactions only. The
reason for this violation must therefore be the relative

"P. B. i hate, Phys. Rev. 139, A1666 (1965).
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motion of the sublattices under stress, which is possible
in the case of the Ruorite structure.

B. Griineisen y's

From the values of the SOEM at room temperature
and O'K together with their pressure derivatives
(Table VI), the mode Griineisen y's y, (i = 1, 2, 3) and
the low- and high-temperature limits of their thermal
average pl, and p& may be evaluated. '" The p s for

"D.E, Schuele and C. S. Smith, J. Phys. Chem. Solids 25, 801
(1964).

some directions of high symmetry are shown in Fig. 5,
where P denotes the azimuthal angle, t7 denotes the
colatitude, ys refers to the longitudinal mode, and y~ and

y2 refer to the slow and fast shear modes, respectively.
In Table XII, yl, and y~ are shown together with the
values deduced from thermal expansion. " As can be
seen, there is a good agreement between the two sets for
yl. , while the values of y~ disagree. This is also the
case' —' for CaF2 and BaF2, and is probably due to the
contributions of the optical modes to the thermal ex-
pansion value of yII.
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Self-Consistent-Field Approach to Lattice Dynamics*

W. C. KERR AND A. SJOLANDERf'

Argonne Eationa/ Laboratory, Argonne, Il/inois 60430
(Received 2 September 1969)

The self-consistent-field theory of lattice dynamics is examined with particular emphasis on the physical
assumptions entering this approach. The solution of the basic equation is generalized beyond that of earlier
treatments to include damping and the corresponding frequency shifts of the collective modes. The ex-
pressions found for the damping and frequency shifts contain renormalized anharmonic force constants
but otherwise are essentially the same as those derived in conventional perturbation theory.

I. INTRODUCTION

VARIETY of physical problems concerning the
dynamics of many-body systems has been treated

in a self-consistent-held (SCF) approach. In this method
complicated many-body interactions are replaced by
some simplifying effective field. The form of this field
depends, of course, on the particular system being con-
sidered. For example in the random-phase approxima-
tion' for the high-density electron gas, one introduces
the time-dependent self-consistent Hartree potential as
the effective potential acting on an electron. In discuss-
ing the dynamics of spin systems in the molecular-6eld
approximation, ' one replaces the interaction between
the spins by a self-consistent magnetic field acting on
the individual spins. Phase transitions in ferroelectrics'
and transitions from one lattice structure to another'
have been handled in a similar self-consistent-field
approach.

The traditional theory of lattice dynamics' has failed
for solid helium because of the large zero-point vibra-

* Paper based on work performed under the auspices of the
U. S. Atomic Energy Commission.

f On leave of absence from the Institute of Theoretical Physics,
S-402 20 Goteborg 5, Sweden.

'D. Pines and P. Nozieres, The Theory of QNantum Liguids
(W. A. Benjamin, Inc. , New York, 1966), Vol. I.

2 S. V. Tyablikov, Methodsin the Quantum Theory of Magnetism
(Plenum Press, Inc. , New York, 1967).' P. B. Miller and P. C. Kwok, Phys. Rev. 1'75, 1062 (1968).' N. Boccara and G. Sarma, Physics 1, 219 (1965).' M. Born and K. Huang, Dynamica/ Theory of Crysta/ Lattices
(Oxford University Press, Oxford, England, 1954).

tions, ' and therefore other approaches have been pro-
posed. ' " Brenig" was the first to suggest a SCF
approach, and this has been further developed by Fred-
lein and Werthamer (FW)" and by Gillis and Werth-
amer (GW)." Because of its mathematical simplicity
and its flexibility to incorporate many physical effects,
it is particularly interesting to pursue this method.

The aim of this paper is erst to reexamine the theory
of FW and GW. By solving their basic equation in a
diferent way, we are able to elucidate more clearly the
physical assumptions going into this approach. Second
we generalize our method of solving their basic equa-
tion to include phonon-damping sects.

The outline of this paper is as follows. Section II
contains the formulation of the SCF approach. Our
method of solving the basic equation of motion is
presented in Sec. III. In order to prove that the physical
assumption made in Sec. III is identical to the more
mathematical assumption of GW, we briefly discuss in
Sec. IV their solution of the basic equation of motion.

'F. W. de Wette and B. R. A. Nijboer, Phys. Letters 18, 19
(1965).' T. R. Koehler, Phys. Rev. Letters 18, 654 (1967).' T. R. Koehler, Phys. Rev. 165, 942 (1968).

~ P. Choquard, The Anharmonic Crystal (W. A. Benjamin, Inc. ,
New York, 1967).

H. Horner, Z. Physik 205, 72 (1967)."W. Brenig, Z. Physik 171,60 (1963)."D. R. Fredkin and N. R. Werthamer, Phys. Rev. 138,
A1527 (1965).This paper will be referred to as I'W.' N. S. Gillis and N. R. Werthamer, Phys. Rev. 16/, 607
(1968); 173, 918(E) (1968).This paper will be referred to as GW,


