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Calculations of the Griineisen Parameter for Some Models of the Solid*

ALBERT C. HQLT AND MARvIN Ross
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(Received 23 September 1969)

Using a fixed interatomic potential function, we calculate values of the Gruneisen parameter by means of
five computational models. The models compared are Monte Carlo, Lennard-Jones-Devonshire cell model,
lattice dynamics, Dugdale-MacDonald, and Slater. The last three models use the harmonic form of the
intermolecular potential, while the first two use the full form. Consequently, some conclusions can be drawn
on the importance of anharmonic forces in rare-gas crystals.

I. INTRODUCTION

&HE Gruneisen parameter y, defined as
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is an extremely useful quantity in high-pressure physics.
This parameter allows the extraction of a maximum of
information from a minimum of data, which is a special
virtue for experimental conditions where data are often
difficult to obtain. In practice, ' a and b are approxi-
mated by the use of the Gruneisen equation of state, '

(aP) p
y=V—
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(2)

* Work performed under the auspices of the U. S. Atomic En-
ergy Commission.

'M. H. Rice, R. G. McQueen, and J. M. Walsh, Solid State
Phys. 6, 1 (1958).

If Eq. (1) is taken as the definition of p then Eq. (2) is strictly
valid only if p is independent of E.

3 C. G. Horton, Am. J. Phys. 36, 93 (1968).This review article
contains extensive references to the more recent work on lattice
dynamics and on the Gruneisen parameter for rare-gas crystals.
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where the quantities (AP) Tr and (AE) rr are changes in
pressure I' and internal energy E at constant volume,
and y is usually assumed to be a function of V only.
Thus, from a knowledge of the Gruneisen parameter, an
isotherm at one temperature can be made to supply
additional neighboring isotherms. To obtain the Grun-
eisen parameter, I', E or I', T information is needed at
more than one temperature. However, for systems under
very high pressures and temperatures this information
is generally at a premium, and it is for this reason that
the Gruneisen parameter was desired in the first place.
Because the Gruneisen parameter is such a useful quan-
tity and is so difficult to obtain experimentally, a con-
siderable amount of theoretical effort has been expended
in its calculation. ' A theoretical model requires specific
assumptions about the interatomic forces and the nature
of the solid at high pressure. The correctness of the
model is then tested by comparison of prediction with

experiment. However, since very little experimental
data are available, the theoretical situation must neces-
sarily be unclear.

The purpose of the present paper is to present calcu-
lations of pressure and the Gruneisen parameter for a
number of equations-of-state models and compare these
results with those of the Monte Carlo method which is,
in principle, an exact method of generating the thermo-
dynamic properties of a solid. In this method, the atoms
are assumed to interact by some specified interatomic
potential. Periodic boundary conditions are used, and
the atoms are moved about by using a well-established
procedure. 4 The averages over these moves or Markov
chain gives the ensemble averages and thermodynamic
properties of the model systems. In a previous publica-
tion, ' Monte Carlo isotherms for solid argon were pub-
lished using a pairwise additive intermolecular potential
that was obtained from an analysis of high-pressure
experiments in which liquid argon was shock compressed
to 365 kbar and a density twice that of the liquid.

This potential was of the form

where

n = 13.5, r*=3.85 A, and e/k = 122.0'K.

Using the method outlined in the next section it is also
possible to calculate the Gruneisen parameter. The
values of the pressure and Gruneisen parameter calcu-
lated by the Monte Carlo method involve no approxi-
mations other than those of the Monte Carlo method.
Consequently, because we know the exact form of the
intermolecular potential, it becomes possible to provide
a detailed check of approximate theories which calcu-
late the pressure and the Gruneisen parameter. Using
this same intermolecular potential, we have calculated
these properties by means of lattice dynamics, ' the
Lennard-Jones-Devonshire model, ' and the equations

W. W. Wood and F. R. Parker, J. Chem. Phys. 2/, 720 {1957).' M. Ross and B. Alder, J. Chem. Phys. 46, 4203 (1967).
6 M. Born and K. Huang, DymarrIical Theory of Crysta/ Lattices

(Oxford University Press, London, England, 1964).' J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley R Sons, Inc., New York,
1954).
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of Dugdale and MacDonald' and Slater. ' We have com-
pared these results to those of the Monte Carlo calcula-
tions for the same potential. The method of lattice dy-
namics is also an exact method but for the harmonic
approximation of the pair potential. Consequently, for
the harmonic form of the potential PEq. (3)), we have
calculated by lattice dynamics the pressure and p for
the same system as in the Monte Carlo calculations,
which used the full potential, and can thereby evaluate
the importance of the anharmonic corrections to these
properties. The calculations for these models are describ-
ed in Sec. II, and the results are discussed in Sec. III. All
the calculations described in Sec. II were made in the
context of classical physics, and as such are strictly
valid for high temperature.

Cv/Nk Ã (( ) )—
( ) +1.5 (4)

Monte Carlo

Inasmuch as pressures and energies over a wide range
of conditions have already been reported for this poten-
tial, it will suffice here to detail only the calculations of
the Gruneisen parameter. This was done by calculating
Cv and V(BI'/BT) v separately for each 5000 or 10 000
configurations and using Eq. (1a) to obtain y over this
range. The y's shown in Table I and Fig. 1 represent
an average p over approximately 300 000 configurations.
The error estimate represents the standard deviation of
these results. The expressions for Cv and V(BI'/BT)v
are

II. CALCULATIONS

In this section, we outline the methods used in making
the calculations for the various models. These calcula-
tions were made as a function of volume to high com-
pression using a pairwise additive intermolecular poten-
tial. For the limiting case of infinite compression, the
idea of a pairwise additive intermolecular force loses its
usual meaning. This is true because when an inert gas
is compressed along an isotherm to extreme densities,
the energy gap between the filled valence and empty
conduction bands will disappear at some volume, the
system will become metallic, and the valence electrons
will no longer be in closed shells but will move almost
freely in a conduction band. One of us' has shown that
this transition to metallic behavior occurs at about 12
cc/mole for xenon and 4.5 cc/mole for argon. Conse-

quently, in the limit of extreme compression, the system
must be regarded as a system consisting of a uniformly
distributed electron gas and positive ions rather than a
system of neutral atoms. In this limit (V —+ 0) Kop-
yshev' has shown that the effect of the screening of the
nuclei by the electrons becomes negligible and that the
limiting value of p is ~. The limiting behavior may also
be seen from an alternative point of view. The most
likely limiting form of the pairwise intermolecular re-

pulsive force'0 is p(r)=e "/r At normal . densities the
exponential dominates, and for simplicity 1/r is con-
sidered a constant. But in the limit of V ~ 0, &f (r) = 1/r.
For the harmonic solid, with ions interacting by means
of a 1/r" potential, y =6n+-', so that the value of y at
extreme compressions will be 2, in agreement with

Kopyshev. Accordingly, we calculate p for each of the
models down to a volume of 5 cc/mole and then extra-
polate to y=-,'.

8 M. Ross, Phys. Rev. 1'll, 777 (1968).
9 V. P. Kopyshev, Soviet Phys. —Doklady 10, 338 (1965).
'0 N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd.

18, Xo. 8 (1948); K. S. Pitzer, Quantum Chemistry (Prentice-Hall,
Inc. , Englewood Clips, N. J. 1954), p. 202.

—1, 5

where we have used the notation of Wood' whose paper
provides the details for the Monte Carlo calculations.
The ( ) in these equations indicate the ensemble or
Ma, rkov chain averages, and S is the number of par-
ticles in the Monte Carlo calculation. In our calculations
S was 108. The quantity V is the total potential energy
of a configuration and is given by

The compressibility of a configuration is given by

1 By(r,,)Pr;;—
6SkT '&J Br;,

(6)

An alternative method of calculating the Gruneisen
parameter would be to fit a number of Monte Carlo
isotherms to a Grtineisen-type equation of state. This
has been done by Jacobs" using the high-temperature
gaseous isotherms of Fickett and Wood. "However, this
procedure is equivalent to taking a numerical derivative
of the pressure and is inherently less accurate than the
exact procedure described here.

"S.J. Jacobs, in Proceedings of the Twelfth Symposium on Com-
bustion (The Combustion Institute, Pittsburgh, 1969), p. 501.

"W. Fickett and W. W. Wood, Phys. Fluids I, 204 (1960).

Harmonic Approximation

In the harmonic approximation, one may define indi-
vidual normal-mode Gruneisen parameters' by means of
the equation

(7)
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TABLE I. Calculated Griineisen parameters.

V
(cc/mole) M. C.

Z (o'K)
(LJD) full (LJD)p H (LJD)Ho LD (kbar)

24.19
22.73
19.53
17.97

2.7o(~o.1)
2.42
2.25
2.15

2.63
2.53
2.32
2.22

2.66
2.55
2.33
2.22

2.95
2.75
2.40
2.27

2.89
2.69
2.37
2.24

24.19
22.73
19.53
17.97

o.o7 (ao.05)
1.29
8.08

15.50

Pressure at
0.03
1.28
8.05

15.46

65oK (khar)'
0.04
1.29
8.06

15.47

0.23 0, 18
1.42 1.38
8.11 8.08

15.51 15.48

—1.75
—0.54

6.12
13.46

a Monte Carlo pressures for this potential are reported in Ref. 5.

closely spaced volumes and taking the appropriate
differences. By performing the average indicated in Eq.
(8), we obtain yLn. Values of pm are given in Table I
and Fig. 1.

In order to make a comparison with the Monte Carlo
pressure, the pressure has been calculated for the classi-
cal harmonic approximation using Eq. (2),

P(65'K) =P(0)+p(hE'/V) i and (AE) v=3RX65,

which is exact in this case.
Using the pair potential of Eq. (3), we can write the

total energy of the lattice at O'K as

where v is the normal-mode frequency of the eth nor-
mal mode and y is the corresponding Gruneisen param-
eter. For temperatures high enough to permit the as-
sumption of equipartition of energy among the modes,
the Gruneisen parameter for the whole crystal will be
the average of the individual y 's for all the normal
modes)

where E is the number of particles in the crystal.
We have calculated OLD for a 108-particle lattice with

periodic boundary conditions in the following way: At
a given volume, we use the exponential-6 potential of
Eq. (3) to calculate the coupling parameters for the
first four complete shells of neighbors. This method of
determining the coupling parameters is commonly re-
ferred to as the quasiharmonic approximation. The
3)&3 dynamical matrix'" is calculated and diagonalized
for 107 wave vectors in the first Brillouin zone of the
lattice. The 321 eigenvalues are the squares of the nor-
mal-mode frequencies for the lattice. Finally, we calcu-
late the derivatives of the normal-mode frequencies
given in Eq. (7) by repeating the process for several

3.0—
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FIG. 1. Comparison of & as a function of volume at 65'K calcu-
lated by means of the Slater formula (S), lattice dynamics (LD),
and the LJD cell model (LJD). The circles are the results of
Monte Carlo calculations and the X is the value measured by
Peterson et gl. (Ref. 15). The bars indicate the experimental or
computational error. The curve labeled 12-6 was calculated by
means of the LJD cell model using the Lennard-Jones 12-6
interatomic potential.

where the sum is over all the neighbors of atom 1. The
pressure at O'K is

(10)

The results for P(65'K) are shown in Table I.
The Monte Carlo calculation and the lattice dynamics

calculation have both been made for 108 particles with
periodic boundary conditions. Both are exact calcula-
tions and differ only in that the Monte Carlo calcula-
tions make use of the full interatomic potential, whereas
the lattice dynamics method uses only the harmonic
form of the interatomic potential so that by comparing
the two results, one may determine the importance of
the anharmonic contributions to the Gruneisen param-
eter and to the pressure.

In addition to calculating OLD and I' for comparison
with other calculations, we have investigated two other
problems by means of the lattice dynamics calculations.
First, we have considered the number dependence of y.
Since all the calculations listed in Table I are for 108-
particle systems (with periodic boundaries), one may
ask how well such a small system represents a real crys-
tal with 10" particles. This question is most easily
answered by means of the lattice dynamics calculation
because to increase 2V, one simply considers wave vec-
tors more closely spaced in the Brillouin zone. We
calculated values of OLD for systems of 108, 256, 500,
and 864 particles at each of the volumes given in Table
I. These values indicate that pLn is linear in 1/1V with a
slope of —0.007 and the value for yLn(1V= ~) agrees
with yLn ($= 108) to three significant digits. This result
leads us to believe that 108 atoms in a Monte Carlo cal-
culation will also be an adequate representation for
determining the properties of the in6nite system. Fi-
nally, we have investigated the distribution of the

y 's about the average. These results are given in Table
II. At each volume, we round off the p 's to two sig-
nificant digits and tabulate the number of y 's having
each value. The individual parameters lie in a fairly
narrow range near the average p, and they tend to con-
verge on the average value at the high densities. At the



CALCULA TlON GRUNEISEN PARAME TER FOR SOME MODELS 2703

lower densities, the y 's for the transverse modes are
smaller than those for the longitudinal modes, so that
the distribution exhibits two separate maxima. This
may be represented by

',y~+3y„-y~~y, at lower densities,

y, =y& at high densities.

Here, y, and y& are, respectively, the average longitudi-
nal and transverse parameters.

Since the anharmonic terms will be more important
at the lower densities and the harmonic approximation
will become more valid at the higher densities, this
suggests that y, /y& when anharmonic terms are non-
negligible and y, =y& when the anharmonic terms are
negligible.

I'cc/mole)
17.97 19.52 22.73 24.19

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

28
174
93
26

28
138
72
77
6

12
52
78
60
39
62
12
6

12
16
60
78
36
36
51
14
12
6

TABLE II. Distribution of normal mode y's at four volumes.

Slater and Dugdale-MacDonald

Two widely used methods of calculating the Grun-
eisen parameter are those of Slater,

O'P/BV'
QSL= —2V1TT 2

BP/BV

and Dugdale and MacDonald,

8'(PV'")/8V'
1TI 1

PDM
8(PV'")/BV

(12)

Using Eq. (10) in Eqs. (11) and (12) allows us to cal-
culate the Slater and Dugdale-MacDonald y's for this
pair potential. These results are shown in Fig. 1.

III. DISCUSSION

The results in Table I and Fig. t show clearly that
for the classical solid the LJD model using the full
potential or the anharmonic potential is in good agree-

Lennard-Jones-Devonshire (LJD) Cell Model

The LJD model is a, one-particle model of the solid.
Each atom moves independently of its neighbors in a
field obtained by summing the interatomic pair poten-
tial over all the stationary neighbors and then taking a
spherical average of this potential. The spherical aver-
age of the potential field was then taken over the first
four shells of nearest neighbors using the pair potential
of Eq. (3). The Gruneisen parameter was calculated by
evaluating V/R(BP/BT) v and Cv/R and using Eq. (1).
The calculations are listed in Table I as (LJD)q„~~ and
are shown in Fig. 1. Since most calculations of the
Gruneisen parameter make use of a harmonic model,
calculations were carried out using the harmonic ap-
proximation to theLJD cellpotentiallistedas(LJD)no.
Calculations were also made using the next higher ap-
proximation, which is the harmonic term, plus first an-
harmonic term which in the spherical approximation is
0(r4). The latter is listed as (LJD)~n in Table I.

ment with the results of the Monte Carlo calculations.
The LJD model using only the harmonic potential isin
good agreement with the results of the lattice dynamics.
Both lattice dynamics and LJD harmonic models are
not in agreement with Monte Carlo results at low den-
sity, but are in agreement at the higher densities where
the harmonic approximation presumably becomes valid.
This convergence occurs at about 18 cc/mole. These
results show that in the case of rare-gas crystals at
classical temperatures and relatively low pressures, the
anharmonic corrections are not negligible and should be
included if an accurate intermolecular force is to be de-
rived from the measured properties of the crystal by
lattice dynamics calculations. A comparison of the
Dugdale-MacDonald equation to that of Slater shows
the Dugdale-MacDonald equation to be superior, but
both are in poor agreement with the lattice dynamics
calculations except at very high compressions where all
the results converge.

It is noteworthy that our detailed calculations sup-
port the assumptions made by Pastine" in the deriva-
tion of an approximate formula for OLD. Noting that
the inadequacy of the Slater formula is due primarily to
the fact that it treats p& and pt as if they had the same
volume dependence, I'astine treated them separately
by assuming that p& and p& could be closely approxi-
mated by the longitudinal and transverse p's for a single
phonon propagation direction, the principal axis of the
crystal. The fact that we observe that the individual
longitudinal and transverse p's lie in a fairly narrow
range about their respective averages lends credence to
Pastine's assumption. Moreover, for V=24.19 cc/mole
(themostsensitive test of these assumptions among our
calculations) we have calculated the average y~ and y,
for phonons traveling along the principal axis of the
crystal to be 3.16 and 2.80, respectively. The weighted
average y$/3+2', /3is 2.92 which is indeed very close to
OLD=2.89 for this volume.

Up to this point, we have refrained from a comparison
of our results with those of experiment in order to em-

» D. J. Pastine, Phys. Rev. I38, A767 (1965).
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shown in Fig. 1 is also in good agreement with
calculations.

Peterson et a/. l5 have also measured y as a func-
tion of temperature at zero pressure. These results are
shown in Fig. 3. The experiments show a distinct maxi-
rnum, with the y increasing with temperature at
low temperatures and decreasing with increasing tem-
perature at high temperatures. Ke have attempted to
reproduce this curve by using the following method: Let

28

f

30 32 34 36 38

Molar volume, cm
3

vo~z. (V)T) =pLo(V, T)+Ay(V, T)z,,n,

Ay(V, T)zzz&=&(V, T)f zz y(U, T)Ho,

3 (N—1)

(13)

FIG. 2. The Monte Carlo &'s, scaled to represent xenon p's are
compared to an experimental curve (Ref. 14). yz,o(V, T) = P y [hv /(e""" —1)j/

TABLE III. Calculations of anharmonic corrections
to the lattice dynamics y.

('K)

4
10
20
30
40
50
60
70
80

V
(cc/mole)

22.557
22.563
22.645
22.804
23.026
23.296
23.611
23.983
24.435

PLD

2.446
2.538
2.614
2.659
2.698
2.740
2.786
2,84i
2.910

—0.017—0.043—0.079—0.117—0.159—0.206—0.260—0.324—0.401

2.429
2.495
2.535
2.542
2.539
2.534
2.526
2.517
2.509

~ J. R. Packard and C. A. Swenson, J. Phys. Chem. Solids 24,
1405 (1963).

"O. G. Peterson, D. N. Batchelder, and R, O. Simmons, Phys.
Rev. 150, 703 (1966).

phasize the importance of comparing models for an
exactly known potential rather than having to infer
a potential from experiment. However, the usefulness
of this work will be extended if it can be shown to be
directly applicable to the actual volume dependence of
real systems. To our knowledge the most extensive mea-
surements of y as a function of volume are those of
Packard and Swenson" for xenon. These results are for
temperatures above the Debye temperature and thereby
allow a direct comparison with our classical calcula-
tions. The calculations of y in Table I have been for a
potential simulating argon, and the results may be
scaled to one simulating xenon by the use of the cor-
responding states scaling law. 7 We have used the ratios
of the triple-point volumes to obtain the corresponding
xenon volumes and the ratio of the triple-point tem-
peratures to obtain a xenon isotherm temperature which
becomes 125.15'K and is above the Debye temperature.
Since y is a dimensionless quantity, it does not scale.
The results of y as a function of volume compared to
experiments for xenon are shown in Fig. 2. The agree-
ment is within the experimental (&0.1) and computa-
tional error, and it is significant to note that both curves
have the same variation with respect to volume. An
experimental measurement of Peterson et al."for argon

3 (N—1)
hv./(e"""r—1) . (14)

a=1

These calculations were made at the temperatures and
volumes along the I' =0 equilibrium curve, as measured
by Peterson et al. In other words, the calculated Grun-
eisen parameter y„~, will be equal to the quantum-
mechanical lattice dynamics p plus an anharmonic cor-
rection hy(V, T) based on the LJD model in which the
anharmonic contributions are taken to be the difference
between an LJD calcula, tion made with the full poten-
tial and one made in the harmonic approximation. This
approximation is equivalent to expressing the free en-

ergy as

where
F(V)T) =Fzo(V, T)+AF(V, T)LJD,

DF(V, T)L~D=F(V, T)z~u —F(V,T)Ho. (15)

The LJD model is a classical model and cannot be used
at low temperatures where quantum effects are impor-
tant. However, for argon at low temperatures where
quantum effects are important, the anharmonic correc-
tions are small, and only become important at the
higher temperatures where quantum effects become
negligible. Consequently, the approximations made in
Eq. (13) should be adequate. A more correct procedure
would be to calculate Ay using a quantum cell model,
or a model similar to Zucker's" which calculates thermal
properties for the quantum-mechanical anharmonic os-
cilla, tor. The results of using Eq. (13) are shown in Fig.
3 and Table III, and the curve with the anharmonic cor-
rections display the same qualitative trend as the experi-
mental results while the curve without the corrections
continues to rise. The agreement between calculations
and experiment (&0.1) must also be considered good.
The largest qualitative disagreement occurs at the
highest temperatures where the experimental values
drop off more steeply than the calculations. However,
it is in this region that the experiments have their largest
uncertainty which the authors report to be &10%%u~. Un-

"I. J. Zucker, Phil. Mag. 8, 987 (1958).
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fortunately, the magnitude of the error leads to the
possibility that this experimental decrease in p may be
spurious. Our calculations indicate it to be at least
qualitatively correct. A similar behavior in the high-
temperature variation of Gruneisen parameter was ob-
tained by Feldman et ul. '7 using a semiempirical model.
The change in y with temperature along the equilibrium
curve arises from two contributions. First, the tem-
perature increases and second, the crystal expands. In
order to separate these two effects, we have used Eqs.
(13) and (14) to calculate y as a function of temperature
but at a fixed volume, V=24.19'K. These results are
in Fig. 3. They show that the increase in y at low
temperatures is due primarily, though not exclusively,
to the thermal expansion. At higher temperatures and at
constant volume, p is decreasing more rapidly with in-
creasing temperature than is the curve at the equilib-
rium volumes. At the high temperatures, the general
trend is for y to increase with expansion (see Fig. 1).
Consequently, there is some cancellation, with the an-
harmonic terms dominating. Thus, the high-tempera-
ture decrease results primarily from the increasingly
important contribution of the anharmonic terms. The
quantity Ap is linear with T at low temperatures, in
agreement with theoretical predictions. '

From the theoretical considerations and the analysis
of high-energy atomic scattering data, the exponential
form of the rare-gas potential is known to be a better
representation of the repulsive interaction between
closed atoms than is the inverse power potential. Never-
theless, because of its mathematical simplicity and its
apparent adequacy near the minimum of the interac-
tion curve, the Lennard-Jones 12-6 potential is the most
widely used rare-gas intermolecular potential. In the
case of a 12-6 potential, y of 2.89 was calculated at 65'K
and V=24.19 cc/mole using the LJD model with
s/0 = 119.76'K and r*=3.822 A. However, the y calcu-
lated varies but slowly with volume, and at highest com-
pressions where only the repulsive forces are important
becomes &=Lse+s$=2.33. From an analysis of a
considerable amount of shock data, it is known that in
general p varies more rapidly with compression and
consequently infers that the inverse 12 power potential
is inappropriate for highly compressed materials. This
would appear to be verified by a p curve for this poten-
tial shown in Fig. 1 wherein it is seen that calculated

"C.Feldman, J. L. Feldman, G. K. Horton, and M. L. Klein,
Proc. Phys. Soc. (London) 90, 1182 (1967).
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values for the 12-6 potential vary much more slowly
than experiment and, of course, approach an incorrect
limiting value for y at in6nite compressions.

The question necessarily arises as to whether on the
basis of this work any generalizations can be made as
to the functional variation of y with volume. It would
appear that for closed-shell systems, such as rare gases
and ionic materials in which the equation of state at
high compressions are determined primarily by the
closed shell repulsive forces, the linear approximation
y=CV+ys, in which ps has the correct limiting value
at V=O, will be appropriate. C is a constant and could
be determined from a known y at some V. Empirical
relations of the form y =CV" have been used. However,
we wish to point out that these relations neglect a con-
sideration of the limiting form of p at V =0 and must lead
to incorrect results at very high compression. We do not
believe that the present work can be directly extended
to metals because of the sensitivity of y to the exact
form of the potential; however, the arguments concern-
ing the importance of the correct limiting value of y are
valid for all systems of matter and should be taken into
account, particularly in geophysical applications where
extreme compressions are common.
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FIG. 3. Comparison of calculated p's with those measured (Ref.
15) at I"= 1 atm. The curve labeled OLD is a quantum-mechanical
p obtained from lattice dynamics at the same temperatures and
volumes as the experiments using Kq. (15). A similar calculation
at constant volume is OLD, V=24.19 cc/mole. The curve labeled
p, & is the lattice dynamical &, &LD, which has been corrected
for anharmonic effects using Kq. (14).


