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The surface correction to the low-temperature form of the specific heat of ferromagnetic films is dis-
cussed. It is pointed out that the low-temperature form of the surface correction depends only on the curva-
ture of the bulk spin-wave dispersion relation near £=0, provided the exchange interactions between the
spins are short-ranged in a sense described in the text. Hence, the surface correction to the magnon specific
heat is insensitive to changes in the exchange constants in the film surfaces. We carry out the discussion
with a simple method that does not require the use of Green’s functions.

I. INTRODUCTION

N the usual discussions of the thermodynamic prop-
erties of crystals, one computes the various quanti-
ties by taking the mathematical limit of allowing the
volume of the crystal to become infinite. In this limit,
the specific heat of the solid becomes proportional to
the volume V of the crystal. For a crystal of finite size,
the form of the specific heat obtained by allowing ¥V to
become infinite provides only a first approximation to
the actual specific heat of the material. The first correc-
tion to the “infinite-volume” specific heat is propor-
tional to the surface area of the crystal. One should be
able to observe the surface corrections to the thermo-
dynamic properties of crystals by performing experi-
ments on collections of small particles, so the total
surface-to-volume ratio of the sample is large.

Theoretical treatments of the surface correction to
the phonon specific heat have been discussed by a num-
ber of authors.! More recently, the contribution to the
surface specific heat from magnons in simple models of
semi-infinite ferromagnets? and antiferromagnets® have
appeared.

In the calculations just cited, specific models of
semi-infinite crystal lattices have been employed. It is
generally assumed that the layer of surface atoms is
identical in structure to a similar layer of atoms in the
bulk, and that the appropriate force constants are also
the same in the surface layer as in the bulk. While it
often does appear that the geometrical arrangement of
the atoms in the surface layer is the same as in the
appropriate bulk atomic planes, it is evidently true that
there can be large changes in the interatomic coupling
constants. Comparison between calculations of the
mean-square displacement of atoms in the surface
layer of crystals and low-energy electron-diffraction
(LEED) measurements of the mean-square displace-
ments indicate that the force constants in the surface
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layer are considerably smaller than the bulk values of
the force constants.? Recently, the sublattice magneti-
zation in the surface of the antiferromagnetic crystal
NiO has been measured.® These measurements indicate
that the exchange interactions between Ni spins in the
surface layer are strongly reduced, compared to the
bulk values.

From the preceding discussion, it is clear that the
theoretical models employed so far in the study of sur-
face corrections to thermodynamic properties of crys-
tals are severe idealizations of the conditions realized in
practice. One must explore the effect of changes in the
interatomic coupling near the surface in order to obtain
a complete description of the surface corrections.

The purpose of the present paper is to examine the
surface specific heat of a ferromagnetic film, within the
framework of a discussion that allows for changes in the
exchange constants in the surface layer. In an earlier
work,? the surface correction to the specific heat of a
simple cubic ferromagnet with a (100) free surface and
nearest- and next-nearest-neighbor exchange interac-
tions was examined. It was found that the surface
specific heat was proportional to the temperature 7" in
the low-temperature region. This work confined its at-
tention to a specific geometry and presumed the ex-
change constants in the surface layer assume their bulk
values. Recent experimental measurements of the
specific heat of small yttrium-iron-garnet (YIG) par-
ticles® in the liquid-helium temperature range show
a contribution to the specific heat that is linear in the
temperature. This portion of the specific heat has ten-
tatively been attributed to the surface correction to the
bulk specific heat. However, the magnitude of the ap-
parent surface term is very large compared to the
theoretical result of Ref. 2. One might expect that the
surface specific heat could be enhanced by a softening
of the exchange constants in the surface layer. How-
ever, the present work indicates that if the alteration of
the exchange constants is confined to the surface layers
only, then the leading term in the low-temperature sur-
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1 SPECIFIC HEAT OF FERROMAGNETIC FILMS

face specific heat is independent of these changes in the
exchange constants. Indeed, the surface specific heat
depends (in the low-temperature limit) only on the
curvature of the bulk spin-wave dispersion relation near
k=0. The physical reason why the low-temperature
form of the surface specific heat is insensitive to changes
in the exchange interactions in the surface layer is that
the spin waves that make the dominant contribution to
the specific heat for 7<<Curie temperature 7' have
a long wavelength compared to the lattice constant.
These waves are not strongly affected by the alteration
of the properties of a single atomic layer of spins. Thus,
it appears difficult to explain the data on the specific
heat of small YIG particles in the liquid-He tempera-
ture range as a surface effect, so long as alterations in
the exchange constants are confined to within a small
number of atomic layers of the surface.

The spins in the surface layer of a ferromagnetic
crystal may also be subjected to strong pinning fields.
The presence of a pinning field inhibits the motion of
spins in the surface layer, and, hence depresses the sur-
face correction to the specific heat. The effect of a sur-
face pinning field on the specific heat has been explored
in another work.” We shall ignore the effect of surface
anisotropy fields in the present paper.

In Sec. IT we explore the nature of the spin waves in
a ferromagnetic film that consists of NV layers of spins.
It is assumed that the range of the exchange interac-
tions in the direction normal to one of the layers is
sufficiently short so that a spin in a given layer is cou-
pled only to spins within the same layer, and to spins
within the layer just above and just below the layer
in question. We discuss the surface modes, as well as
the bulk waves, presuming that the exchange interac-
tions within the surface layer may differ in value from
the bulk exchange constants. In Sec. III we use the in-
formation contained in Sec. II to construct an expres-
sion for the surface specific heat. This may be done
without making specific assumptions about the range
of the intraplanar exchange interactions, or the geo-
metrical arrangement of the spins within one of the ¥
layers. Provided the exchange interactions differ from
the bulk value only within the two surface layers, no
detailed assumptions about the magnitude of the
changes need be made. As remarked earlier, the low-
temperature form of the surface specific heat (the term
linear in 7)) may be expressed entirely in terms of the
parameters appropriate to the bulk spin-wave disper-
sion relation for this case.

II. EFFECT OF FREE SURFACES ON SPIN-WAVE
SPECTRUM OF THIN FILMS

In this section, we discuss the properties of spin waves
in a ferromagnetic film constructed from N atomic
layers of spins. We assume each layer lies parallel to the
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2~y plane, and we label the planes with the index I,=1,
2, «++, N. We suppose the Hamiltonian has the usual
Heisenberg form, with isotropic exchange interactions
between ions with spin angular momentum S. Since the
Hamiltonian is invariant under spin rotations, we may
allow the saturation magnetization to be directed along
any convenient axis. We choose to orient the saturation
magnetization parallel to the s axis. Let J,,(8,,,8.) be
the magnitude of the exchange interaction between
a given spin located in the plane /,, and its neighbor
located at the position

o= 5n+§»52
relative to the given spin, where the vector
8” = :ﬁax-l-ysy N

We shall assume that the exchange interactions in the
film have the following properties:

(1) The range of the exchange interaction in the di-
rection normal to the plane is one interplaner distance,
i.e., the exchange constant J;,(8:,,8,)=0 unless 8,=0
or 8,=:ta, where ¢ is the distance between adjacent
planes.

(2) The exchange interactions assume their bulk
value everywhere except for the interactions between
two spins within the surface layers /,=1 and I,=N.
We denote the “bulk” values of the exchange interac-
tions by J(81,,8.), and we write J1(5,,0) and Jx(5,,,0)
in the form

J1(8:11,0) =T 5 (811,0) = J (8:1,0) — AT (5,,,0) .

In this last expression, the quantity —AJ(8,,,0) is the
change in the exchange interaction between two spins
separated by &;; within one of the surface layers. We
choose the sign convention so that when AJ>0, the ex-
change interactions have been softened.

We now write down the equations of motion of the
spin deviation operator S*(l) associated with the spin
at the /th lattice site. The equations will be linearized
in the sense of spin-wave theory by replacing the com-
bination S*(1)S*(l’) by SS+(I'). We then consider eigen-
solutions for which the time dependence of St is given
by exp(—iQ¢). Finally, we note that for the film, the
translational symmetry of the Hamiltonian in the x and
y directions is maintained. Thus, we seek solutions of
the Bloch form in the x and y directions. We write

S*() = exp(iky; -1, —iQ6)s(l.) , (2.1)
where

k” ::@kz_*‘j;ky.

By employing Eq. (2.1) and noting the earlier remarks
about the range of the exchange interactions, one may
easily derive a set of IV equations from which the coeffi-
cients s(/,) may be determined. We write the results in
the form

Qs(l:) = [00(0)+251(0) —bo (k1) Is (2.)

—b(ki)[sCAD+s.0.—1)] L1, N (2.2a)
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and for the surface layers,

Qs(1)= [06(0)+6:(0) —bo(k1) Js(1)

—[[Abo(0) = Abo(kin) Is(1) —bs(ki)s(2),  (2.2b)
Qs(NV) = [56(0)401(0) —bo(kii) Is(IV)
—[Abo(0) — Abo(kyy) Js (V) —b1(ks)s(V —1).  (2.2¢)
We have defined the quantities
b, (ki) =S X J(811,l.a)e1-du1 (2.3a)
and
Abo(k”) =S Z AJ(B]],O)E’”‘“’SH. (23b>

o1

One has by, (k)= b_1,(ki), and for all geometries of
interest in the present work, the b,.’s will be real. For
later discussions, it will be convenient to write Egs.
(2.2) in a more compact form by introducing an N XN
matrix D(k;) with matrix elements Dy, (ki) so that
Egs. (2.2) become

Qs.(1.) =§_‘7 Dy, (ki)s.(L). (2.4)

We now proceed to a discussion of the properties of
the solutions to Egs. (2.2).

There are two classes of solutions to the equations of
motion of interest in the present paper. These are the
bulk modes, in which the spin deviation extends
throughout the slab, and surface modes for which the
spin deviation is localized near the surfaces. Consider
the surface modes first. Let us first examine surface
modes in a sample semi-infinite in extent. We imagine
that N —o, while the plane I,=1 remains in the x-y
plane. Then consider a solution of Eqgs. (2.2) of the form

s(l,) = Ce~ute, 2.5)

Substitution of this form into Eq. (2.2a) requires the
frequency @ of the mode be given by

Q= b0(0)+2b1(0) —bo(ku) _Zbl(k“) COSh(qd) . (2.6)

Upon inserting Eq. (2.5) into Eq. (2.2b), we obtain a
second relation between Q and the attenuation constant
¢g. Elimination of the frequency then yields the result

bl(kll)
bl(o) +[Ab0(0) ‘*Abo(ku)]

For surface spin waves to exist, the quantity v must
be less than unity in value. We shall give some brief
examples of situations were this occurs in the discus-
sions below. For the moment, we assume y<1. The fre-
quency of the surface mode is thus

Qs (ki) = b0(0)+261(0) —bo(kir) (v~ 7).

Note that in the present system the bulk spin-wave dis-

— g0 —

=vy(k,). @.7)

(2.8)
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persion relation Qz(k;,k.) may be written in the form

Qp(kii,k.) = bo(0)+28:(0)
—bo(ki) —2b1(ky;) cos(k.a).

For a given value of k;;, the lowest bulk spin-wave fre-
quency is obtained by setting k,=0 in Eq. (2.9). The
difference between the surface mode frequency and the
frequency of the bottom of the bulk band associated
with a given value of ki, is thus

Qp(kit,0) —Qo(ki) = ba (ki) (1 —7)*/v.  (2.10)

In the study of the low-temperature specific heat, we
shall be interested in modes with long wavelength com-
compared to the lattice constant. The quantity y — 1 in
the limit as k;; — 0. Thus, when |k, ,¢|<1, one can ex-
pand v in a power series in k;;. The leading term will be
quadratic in k;:

(k)= 1—(k”a)2f(fe“)—l— Tty

where f(£,) is a function only of the direction of ki
Thus from Eq. (2.10), one sees quite generally that the
frequency of the surface mode differs from Qgp(k;;,0)
only by terms of order (k1a).* This feature of the sur-
face-magnon dispersion relation has been noted in
earlier studies of specific geometries.®>*® We shall find
it useful in Sec. III to use the fact that to lowest order
in (k@) one has

(2.9)

Qs(kir) = Qp(ki1,0).

Let us turn to brief discussions of specific geometries to
illustrate the points made in the preceding discussion.

(i) The simple cubic ferromagnet with a (100) sur-
face, nearest-neighbor exchange J;, and next-nearest
exchange J,, with exchange constants equal to the bulk
value everywhere: This is the case considered in Ref.
8. For this case, one has

Aby(ki)=0,
bi(k) = J 1427 2(cosk a4+ cosk,a) ,

v=b1(ki1)/61(0).

Clearly, one has y<1 for all 2, and %, so one has a sur-
face mode present, provided J,7%0. One finds (note
that our definition of the exchange constants differs from
that of Ref. 8 by a factor of 2)

Qp(ky1,0) — Qs (ki)
=16S[J22/(J1+4J ) I(sin®sk ,a+sin?3k,a)?.

(ii) The simple cubic ferromagnet with a (110) sur-
face, nearest-neighbor exchange J; only, with no changes
in the exchange constants: For this geometry, one
“breaks” two bonds non-normal to the surface in form-

8 R. F. Wallis, A. A. Maradudin, I. P. Ipatova, and A. A.
Klochikhin, Solid State Commun. 5, 89 (1967).

9 B. N. Filipov, Fiz. Tverd. Tela 7, (1966) [English transl.:
Soviet Phys.—Solid State 9, 1098 (1967)].
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1 SPECIFIC HEAT OF

ing the film surface. Then we find

v(ki) = cos(ak./V2)
and
QB(k“,O) “‘"Qs(k“) = 1652.]12 Sm4(kza/2\[2_) .

The gap between the bulk manifold and the surface
branch is highly anisotropic in this case.

(iii) The simple cubic ferromagnet with a (100) sur-
face, nearest-neighbor exchange only, with exchange
constants in the surface layer reduced by the amount
AJ: This geometry has been considered by Fillipov.?
One finds for this case that

y(ky)= {1+42(AJ/J)[2—cosk.a—cosk,a]™'} .

Thus, for all %, and k,, one has y<1, provided that the
exchange interactions in the surface layer are softened
(AT >0). Also,

QB(k“,O) —'Qs(kll)
(sin?3k,a-+sin23%,a)?

14+4(AT/T)(sin?2k,a+sinZk,a)

From the above examples, one sees that the present
formulation of the surface-mode problem allows one to
easily determine the dispersion relation and attenuation
length for a variety of geometries, provided the ex-
change constants differ from their bulk value only in
the surface layer, and provided the range of the ex-
change interactions in the direction normal to the sur-
faces has a sufficiently short range. As we mentioned
earlier, one sees from the examples that in the long-
wavelength limit, the surface branch is depressed below
the bulk value by an amount proportional to (kna)*
Also, for surface modes to split off below the bulk mani-
fold associated with a given value of k;;, either one must
“sever’’ bonds non-normal to the surface in forming the
surface layer [examples (i) and (ii) ] or one must soften
the exchange interactions in the region of the surface
[example (iii) J.

Next we consider the bulk excitations of a film of
finite thickness (i.e., spin-wave modes in which the spin
deviation extends throughout the film). In addition to
the surface solutions just discussed, the equations of
motion admit bulk solutions in which

5(1.) = agibeolsf- Beiksals (2.11)

for particular values of .. Insertion of this form into
Eq. (2.2a) shows that the eigenfrequency Qg(ki,k.) is
that given in Eq. (2.9). One determines the allowed
values of k., as well as the ratio /B, by requiring the
function s(/,) to satisfy the equations of motion for the
spins in the surface layers (/=1 and /,=N). Consider
first Eq. (2.2b), which describes the motion of the spins
in the lower surface layer at /.= 1. Upon employing the
expression in Eq. (2.9) for the frequency Qz(kii,k.) with
Eq. (2.2a), one finds

[1—2y(k) cos(ka)Js(1)+(ki)s(2)=0,

(2.12)
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where the quantity (ki) has been introduced in Eq.
(2.7). After insertion of Eq. (2.11) into Eq. (2.12), we
find

a v(ki) —eik=e

8 (ki) —etikee )

If Eq. (2.2c) is rearranged in the fashion just de-
scribed, one obtains

[1—2y(ky) cos(k.a)s(N)+y(ky)s(N—1)=0.

This equation yields a second condition on the ratio of
a to B:

(2.13)

1 _,Y(k“)e—ikza

—— —p—12Nkza .
1_7(1(”)6'1"’”0:6

(2.14)

The values of %, permitted by the boundary condi-
tions for a given value of the wave may be obtained by
equating the right-hand sides of Egs. (2.13) and (2.14),
and then solving the resulting equation for k,. We find

2’Y(k1 l) _eikza_,y2(k“)e——ikza

e+i2Nkza — .
27(1(] I) _emikza_,y2(k“)eikga

(2.15)

We introduce a phase angle ¢(ki,k.) as follows:
2’)/(1(1 |) —e“""’——')ﬂ (k] [)e~ik’a= r(k“,kz)e_i*"B (k]2k2) .

Explicitly, one has

SZ’B(k“)kz)

sin(k.a)[1—v2(ky)]
=tan™! > . (2.16)
2v(kn) —[1+~2(kn) ] cos(k.a)
Equation (2.15) then becomes

£i2Nka— g=120p (k|| ks) |

The allowed values of %, which we denote by k.(n),
are then the solutions of the equation

ak.(n)= (x/N)n—N-"pp[kn,k.(n)],

n=0,1,2, --- (2.17)

where the angle ¢g is defined above.

We shall base our study of the surface specific heat
presented in Sec. III on the properties of the surface
modes discussed earlier in the section, and on the dis-
tribution of the allowed values of k., determined by
solving Eq. (2.17). Note one point before proceeding.
Suppose we consider a solid of infinite extent, con-
structed by placing atomic planes parallel to each other.
Let us then study the excitation spectrum of the solid
by applying periodic boundary conditions in the z direc-
tions, i.e., we require

s@)=s(+N).

Then the only solutions of the equations of motion are
bulk solutions, with k.a=#nw/N. The information about
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the effect of forming a real surface, with exchange con-
stants altered in the surface layer, and spins in the sur-
face coupled to fewer neighboring spins than spins in
the bulk, is then contained in the surface spin-wave
spectrum, and in the deviation in allowed %, values for
bulk waves away from the values nr/N appropriate to
periodic boundary conditions applied in the z direction.
The latter information is thus contained in the angle
en(ki,k,) defined in Eq. (2.16),

III. SURFACE CORRECTIONS TO SPECIFIC
HEAT OF FILM

In this section, we consider the magnon contribution
to the specific heat of the film discussed in Sec. II. It
has been pointed out” that when the thickness of the
film is large compared to the wavelength of a spin wave
with energy k57, then the specific heat may be written
as a sum of two terms, one proportional to the volume
and a correction term proportional to the surface area.
Suppose that we consider a large crystal in which the
spin-wave dispersion relation assumes the long-wave-

length form
Qp(ki,k.)= D.k,>+ D,k + D.k.2. 3.1)

Then the low-temperature form of the volume specific
heat is given by the well-known expression!®

1) (kaT)"

7 . (3.2)
32032 (D,D,D,)!?

CAT)=V

Now let us consider the form of the specific heat of
a film with the properties described in Sec. IT. We shall
compute the specific heat by first calculating the low-
temperature form of the magnon contribution to the
internal energy of the film, and then differentiating this
quantity with respect to temperature. If one considers
a material with excitations that obey Bose-Einstein
statistics, then the internal energy U of the material is
given by the expression

UD)=%y Qn(Q),

where the symbol « denotes the set of quantum num-
bers of the mode, and

n(@)=[e#e— 1]

In Sec. II, we noticed that there are two classes of
excitations in the film: the surface magnons and bulk
modes in which the spin deviation extends throughout
the slab. First consider the contribution to the specific
heat from the surface modes. For a given value of the
wave vector k;; parallel to the surface, one has two sur-
face modes. In the limit of large film thickness, one mode
is associated with each surface, and the modes are

Wlth 6: (kBT)_l .

10 C, Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1963), p. 53.
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degenerate. We suppose the film is sufficiently thick so
that the modes may be presumed to be degenerate. In-
deed, it is easy to see that the specific heat may be de-
composed into a bulk and a surface term only in this
limit. The contribution of the surface magnons to the
internal energy is thus given by the quantity U,(7),
where

Us(T)=2h 2. Qu(ki)n[Q(kn)],

kaky

(3.3)

where the sum over &, and &, ranges over the appropri-
ate two-dimensional Brillouin zone. To compute the
low-temperature limiting form of U,(7), one may re-
place Q,(kyi) by its long-wavelength limit, then convert
the sums over %, and %, to integrals and extend the
upper limits of integration to infinity. In Sec. II, we
noticed quite generally that in the long-wavelength
limit
Q, (ki) = Qp(ki1,0)+terms of order (k,a)4.

Thus, in Eq. (3.3), we replace 2,(ki;) by Qz(k;;,0). We
assume the the surface is normal to the z axis, and use
the long-wavelength form of Q5(k;;,0) given in Eq. (3.1).
If the total surface area of the film is .S, one then
obtains

S (ksT)?
Us(T)=—¢(2)

PRy DD (3.4)

for the low-temperature form of the surface spin-wave
contribution to the internal energy. The surface magnon
contribution to the specific heat is thus

S kT
Cs(T) =2‘§(2)k3— (3.5)

- W(D,D,)2

We turn next to the contribution to the specific heat
from the bulk modes. For the model films considered,
the dispersion relation of the bulk modes is given in Eq.
(2.9), where, as we have seen, only certain discreet
values of k. are allowed by the boundary conditions.
We denote the allowed values of the frequency by
Qp[ki,k.(n)], where the integer # labels the allowed
values of £.. The bulk-mode contribution to the specific
heat is thus

Us(T)=# 3 2 Qu[ku,k(n) Jn{ ki, k(n) 1} .

kzky n

When the film is sufficiently thick, the sum over # may
be replaced by an integration, to a very good approxi-
mation:

Us(T)

=h Z ) anB[klkaz(n)]”’[QB(kll;kz)]

kaky J g

=% 3 dk.

kzky /o

(ﬁ>9(k k)n[Qp(ki, b 3.6
I B (K11, zn[ B( 11, z)] ()

2z
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In this last step, we have converted the integral over »
to an integral over k.. Note that the quantity dn/dk, is
afunction of k;;. It will be useful to introduce a quantity
oe(ki1,Q) defined by

0 d
(ke ) = f dk(d—;’—)a[sz—szxk,,,@)l 3.7)

z

Equation (3.6) then becomes

0

UN(T)= % / 09 U @ps(ln ). (3.8)

zhy

From Eq. (3.8), it is apparent that the quantity
o5(k,1;,2)dQ may be interpreted as the number of bulk
excitations in the film with wave vector k;, parallel to
the surface and with frequency between @ and Q4-dQ.
This will prove to be a useful quantity in the discussion
that follows.

A convenient expression for dk./dn may be obtained
from Eq. (2.17). Differentiation of each side of this
equation gives

dk, m 19

YB
a—=————(ku,k:(n))
dn N N n
™ 1 (9(,03 dkz
= _(kn,kz)— .
N N Ok, dn

Thus, if we let L= Na denote the thickness of the film
dn L 10d¢p
—=—t——"(kn,%.),
dk, ™ m Ok,

then for the density of states pp(k;;,2) we have

Lo\t 1 r~° Qdo¢p
pa(ki, Q) =“<”—) +‘/ dk:——0[Q—Q(kii,k.) ]
™ (')kz m™Jo (")k

LzoQ\t 1 akz a‘PB
e

T\0k, T\ / dk,
=pp®(k,;,2)+Aps(k), D).

In this last expression, we define

z

L/oQ\!

PB(O)(kn,Q) =—<——> (39&)
7 \0k,

and

1/0k\9d¢s

I L
T\9Q/ 9k,
2o (3.9

=, 3.9¢

T J$)

where in the last step we note that ¢ may be expressed
as a function of Q by eliminating &, through Eq. (2.9).
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The contribution ps® to the density of states defined
in Eq. (3.92) is just the density of states of a solid of N
atomic layers, with periodic boundary conditions im-
posed in the 2z direction. The second term App contains
the information concerning the change in density of
states resulting from the fact that the exchange con-
stants in the layer may differ from their bulk values,
and that spins in the surface are coupled to fewer neigh-
bors than spins in the bulk. To verify the first state-
ment, one may insert pz® (k;;,2) into Eq. (3.8):

hL 0 LA
UM =— 3 [ a0 Qn(SZ)(-—)
m kzky /g ok,

hl T/a

= Z dkz QB(k”,kz)n[QB(k”,kz)]
T kzky Jo
nL +rla

= Z dkz QB(kll,kz)n[QB(kH,kz)]-

27 koky J _n/a

To make the significance of the last statement clear,
we can convert the integral over £, back to a sum using

the rule
L +7/a
——/ dk.— Y.
2 J—rla k2
Thus,
UsO(T)=h 2 Qp(kik)n[Qp(ki,k.)].

Eokykz

It is clear that Up©®(T) represents the contribution
to the internal energy proportional to the volume that
one encounters in the standard discussions of spin-
wave theory. If the low-temperature form of Up®(T)
is computed, and the specific heat is obtained from its
temperature derivative, the well-known result of Eq.
(3.2) results.

We now turn to the contribution to App(k;,) ex-
hibited in Eq. (3.9¢). It is now clear that the change in
density of states coming from Apgp is associated with
alteration of the frequency distribution of bulk modes
that results from the change in environment felt by
spins in the surfaces.

From Eq. (3.9¢), we see that the change in density of
states inside the bulk continuum is given by

1d¢s
App ki, Q) =——,
m™

(3.10)
[e19]

where we recall from Sec. II that
op(ki,k2)
sin(k.a) [1—v2(k
=mn~1< (k) [ ") ) (3.11)
2y (k) —[1+?(k)] cos(k.a)

It will be convenient to write the frequencies of the bulk
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modes in the form
Qk,,k.)= A (ki) —B(k,) cos(k.a), (3.12)

where the coefficients 4 and B defined in Eq. (3.12)
may be obtained from Eq. (2.9).

We have demonstrated that Eq. (3.10) is valid inside
the bulk frequencies, i.e., for Qu.(ku)<Q@<Qu(k:),
where @, (ki)=A4(k;)—B(k) is the minimum bulk
spin-wave frequency associated with a given value of
ki, and Qu (k)= A (ki,)+ B(ky) is the maximum bulk
frequency for a given k;;. We now extend the definition
of the phase angle ¢ outside the open interval [ Q,,Qar]
by writing Aps(ki;,2) in the form of Eq. (3.10) for all
frequencies from zero to infinity. This may be done by
noting that the phase angle ¢ must be a constant [and
hence d¢/0Q2=0] in regions where the density of states
is zero. Furthermore, we see that ¢ must have the follow-
ing two properties:

(i) There must be a jump of 27 in ¢ at the surface
spin-wave frequency Qs(kir). This means the change in
density of states will have a §-function singularity, with
a weight corresponding to two states.

(ii) In the open interval [Qm, 2], ¢ must exhibit the
frequency dependence of that deduced from the right-
hand side of Eq. (3.11).

We shall choose ¢ so that ¢=0 in the interval from
Q=0 to Q,(ky), where Ap must vanish. Then the most
general form possible for the phase angle that enters the
formula for the density of states is the following:

o(ki,2)=0, 0< 2L Q(kiy)
=2r, Qk;)<QL Qo (ki)
= o1+ on(ki,Q), Qo (ki) <@L Qp (ki)
= s, QM(k”)<Q<°0 .

We have introduced two arbitrary constants ¢; and ¢,
in Eq. (3.13), and ¢p(k;;,?) is the phase angle defined
in Eq. (3.11), with %, eliminated in favor of 2 by using
Egq. (3.12). Until this point, the expression in Eq. (3.13)
with the two arbitrary constants ¢; and ¢, is consistent
with the existing constants that have been placed on
the density of states. In a moment, we shall consider
additional constraints placed on ¢ by two sum rules.
These sum rules will allow ¢; and ¢» to be uniquely
determined.

To appreciate the importance of the precise value
of ¢ and s, let us consider the variation of ¢ in the
region [Qn,Qa]- At the bottom of the bulk band (k.= 0),
the argument of the tan—" on the right-hand side of Eq.
(3.11) vanishes. This quantity also vanishes at the top
of the band (k.a=w). Furthermore, the numerator is
positive everywhere. The denominator has a single zero
when k,=£k.% where

coskta= (2y) (143 <1.

For k.<k,°, the denominator is negative, while it is
positive for k.>k.° For definiteness, we choose the

(3.13)
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branch of the tan™ function so that ¢p(k, £.=0)=0.
Then as %, increases from O to 7/a, the angle ¢z be-
comes negative, passing through —3= when k,=#%,©,
and becoming equal to —= when k,==/a. With this
information in hand, one may see that for general values
of o1 and ¢, ¢(ki;,22) may have jump discontinuities at
Q,, and Q. These jump discontinuities contribute §
functions to the change in density of states. Since the
strength of the é functions at Q,, and @, depend on ¢y
and g, we must pin down the value of these quantities
in an unambiguous fashion.

Let us consider the eigenvalue equation studied in
Sec. I1. Equation (2.4) will be a convenient form for our
present purposes. These equations form a set of N XN
linear eigenvalue equations. For a given value of ki,
one thus must have precisely NV eigenvalues. Thus, if
o(k;;,) is the density of normal modes associated with
a given value of k;;, we must have

o0

N =/ d p(k”,ﬂ)
0
for all k;;. We write

1 d¢
p(ki, @) =pp@ (ki, )+ —(ki1,2),
T 082

where pg’(k;;,Q) is given by Eq. (3.9a), and is nonzero
only in the interval from Q,, to Q. Noting that L= Na,
we have

Na 9 ok 1 r* do
N=——/ dﬂ(—)—l——/ dQ—
T Jom o0 T Jo o
Nag 7le 1
2 / Qb ek, 2= o) — p(kn, 2=0)]
™ 0 ™

=N+(1/7)¢2,

where ¢, has been introduced in Eq. (3.13). Hence, we
need
=0

for this last result to be an identity.

We need one more constraint to fix the value of ¢;.
A second sum rule on the perturbed density of states
may be obtained from Eqs. (2.4). Let Q4(k;) denote
one of the NV eigenvalues of Eq. (2.4). Then

l=1

% 0u(ki) = / " 42 90k ©) =TrD(kn) = 3° Dua(ks).

The trace of the matrix D(k,;) may be computed ex-
plicitly by making use of Egs. (2.2). One has
TrD (ki) = N[ 56(0)+261(0) —bo(ki1) ]
—2[51(0)+ Abo(0) — Abo(ky1) ]
=NA(ki)—Bk)/v (k).

We have employed the definitions of the quantities
A(k;;) and B(k;) introduced in Eq. (3.12), and the
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quantity y(ky) defined in Eq. (2.7). A short calculation
shows that

1374
/ dQ ngo(k||,9)=ZVA (k“).

Qm

We thus obtain a second constraint on the angle ¢:

1 o B(ky)
- dQ Q k”,ﬂ _— T . 3.14
/0 < = G

T Y(Kn

The integral on the left-hand side of Eq. (3.14) may be
evaluated explicitly. This calculation is presented in the
Appendix. From Eq. (A3) of the Appendix, one has

/ ~—Q—(k“,s2)

_ B(ku)r 2’Y(ku)/ om
- 7(k,,)|_T —( e )] (3.15)

Upon equating the right-hand sides of Egs. (3.14) and
(3.15), we have

—3
P1=2m.

We have thus determined the frequency variation of
the phase angle ¢(k;;,$2), including the magnitude of the
jump at the maximum and minimum frequencies of the
bulk continuum. The angle ¢(k;;,2) has a jump of mag-
nitude —37 at Q= Q. (k) and Q= Qy(k,;). We may now
proceed with the calculation of the change in specific
heat that results from the redistribution of the bulk
eigenvalues.

The change in internal energy from redistribution in
frequency of the bulk modes is thus

QuE1) dQ o
— —Q(k”,ﬂ)ﬁn(ﬂ)

Q3+ T

AU(T) =% % (3.16)

There are two contributions to Eq. (3.16). One comes
from the jump discontinuity of ¢(k;,2) at Q= Q. (k,),
and the second has its origin in the frequency variation
of ¢(k;,2) in the bulk continuum from Q,(k;) to
Qu(ki). Upon noticing that ¢(k;,©2) has a jump dis-
continuity of —4w at Q.(ki;), the quantity d¢(k,,,Q)/0Q
contains the term —3wd[Q—Q.(ki)]. Thus, the first
contribution to AUR(T) is

7
AUT) === T Gulknmli)].

kaky

3.17)

If one compares this expression with Eq. (3.3), one
sees that in the low-temperature limit, where one may

AU®(T)=
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replace Qs(k;) by Q.(ky), the contribution in Eq.
(3.17) just cancels 259, of the surface-wave contribu-
tion to the specific heat. Thus,

UL(T)+AU <1><T>—3~;( s
P 6r  wDLD)
and
39
() =— — .
CUD+ACHID) =% Qb= (19

Finally, we consider the contribution from inside the
bulk spin-wave continuum. Denoting this contribution
by AUs®(T),

2 dQ dp
— ——Q—(k,.,Q)Qn(SZ) )

Qmr) T

AU =1'Y

kzky

(3.19)

where ¢p(k;;,2) is defined in Eq. (3.11). In what follows,
we shall only consider the low-temperature form of
AUE®(T). Consequently, the upper limit of the integral
in Eq. (3.19) eventually will be replaced by infinity. We
first convert the integral in Eq. (3.19) from an integral
over frequency to an integral over the variable 6,=k,a
We recall Eq. (3.12) and write

[/
AUp® =— Z

T kaky

6.)

X[A (kn)—B(ky) cost, Jn[A (kn)—B(ky) cosb,].

In the discussion below, we shall omit reference to ki,
in the various quantities, for compactness. After com-
puting the derivative d¢p/86., one has

A —B cosb,
(14-+2) —2v cosb,
Xn(4 —B cosb,)

h T
AUs0=— 3 () [ as.
0

T kzky

/
=—— 3 (-7

21 kzky
+m
X f a6

We now convert the sum over &, and %, to an integral.
Let S be the total surface area of the sample (recall that
there are two surfaces), and let 8,=%,a, 0,=k,a, where
a is the spacing between adjacent atomic planes, mea-
sured in the direction normal to the surface. Thus,

(A —B)+B(1—cos8,)
(1=7)*+2v(1—cosb.)
Xn[ (4 —B)+B(1—cosb.,)].

2(2m)%q* ).

St /” 301 —y2)[ (4 —B)+B(1—cosb,) In[ (4 —B)+B(1—cosb.)]

(1—y®)+2y(1 —cosb,)
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Now, we are interested only in the low-temperature
form of AUs®(T). We thus may extend the limits on
all integrals to infinity. Furthermore, only values of
6., 6, and 6,1 will be important because of the Bose-
Einstein factor. Hence, we replace cosf, by 1—36.%
Furthermore, the combination A (k;)—B(k,) is the
frequency of a bulk spin wave of wave vector k;; propa-
gating parallel to the surface. When k. and %, are small,
and the x and vy directions suitably chosen, we have seen
that one has

A (k[[) -‘B(k”) = kax2+Dyky2=ﬁx0x2+6y0y2 ,

where
ﬁxz thl?, ﬁu: Dva'2
and
0,=Fk.a, 6,=kya.
Further, define
B.=3B(ku).

One then has

AU®(T)
St /d30 (1 —72) (ﬂx0z2+ﬂyay2+ﬁzaz2)
2(2m)%a? (1—=v)* 402
Xn (Z ﬁ,’giz) . (320)
Now let

K;=8:1%0;, i=ux,y,2.

Then, after a bit of rearranging,

AU™(T)=— (B:8,8:)"*

2(27)%a?

1—y
X/d'“’K K2
(1—v) 48K 2

2

n(K?). (3.21)

Next, consider the form of 7. Recall that v is a func-
tion of the wave-vector components ki =&k, +9k,.
Thus, in our present notation, v depends only on K, and
K,. Furthermore, when the spins in the surface layer
are coupled to fewer neighbors than spins in the bulk,
with the possibility of softened exchange constants in
the surface layer, we have seen that v (ki) <1. We insert
an expansion for v valid for small K, and K, into Eq.
(3.21), since these are the only values important in the
low-temperature limit. By orienting the K, and K,
axes properly, this expansion can be placed in the form

y=1—0, K2~ ,K2++--.

We then decompose the integral over |K| and an
integral over the direction of K:

D. L. MILLS 1

AU®(T)

Sh Bz \'2 ® 27 ™
=— ( > f dK K4n(K2)/ dgp/ db
(21)%a%\B.B, 0 0 0

sin®f(o, coso-+oy, sinZe)

cos?0+B.K? sin%0(o, cos®p+o, sin?ep)?

(3.22)

Next, consider the integration over the angle §. When
K1, the quantities 8,K?%,,,? are very small compared
to unity. In this limit, the integrand is sharply peaked
about the midpoint #=~%w. This means physically that
the dominant contribution to AUz® comes from the
bulk waves that propagate nearly parallel to the sur-
face. The values of k, that are most important are values
of k.<ak.?, where ki 2=k.2+£k,2. In the limit KK<1, an
approximate value of the integral may be obtained by
replacing cosf by (37 —6), its value near 3, and sind
by unity. Then

™ df sin®g
/; cos?0+-[B.12K (a, cos?o—+ay, sinZp) ]2

+0 dny
") PHBMEC )T

=7/8,*2K (¢, cos?p-+ay sine).

Then

S/ )L
AUB(”(T)%J—M—/
0

2
dK K (K?) / do
2(2m)22 ( 0

SHEL) [+
_— / dK K,
2027 )

X(K 24K )n(K24K,2). (3.23)

Let us now transform the integral to an integral over
k., and k,, using the relations

K,=pB."%ak, and K,=B,%ak,.
Then

S oo
AU (T) = — / dbadl,
2(27)? J

X (Db +Dyk,2)n(Dok2+Dyk,2) . (3.24)
We now notice that in the long-wavelength limit

Qn (k)= D.k24D,*k,2,

and S is the total surface area of the film (i.e., twice the
area of one of the surfaces). Equation (3.24) may then
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be rewritten in the form

A[//B(W(T):——h, Z Slm(k“)n[ﬁlm(ku)]

kzky

Thus, the total change in internal energy from the
presence of the free surfaces is the sum of three terms:

AU TN =AU AAUP+AUP=1AU(T).

The frequency shifts of the bulk waves cancels out
precisely 2 of the contribution from the surface mag-
nons. The total low-temperature surface specific heat
is thus 759, of the amount contributed by the surface
waves alone:

CLTOm(T) =3C(T) = (B
TOD(T) =2C,(T) =—4(2)—— :
¢ 8 (DD,

(3.25)

The result in Eq. (3.25) has been obtained by Green’s-
functions methods in earlier treatments.!’ As we re-
marked earlier, the previous work has ignored changes
in the exchange constants in the surface layer, and has
also confined its attention to very specific geometries.

IV. DISCUSSION

The purpose of this paper has been to point out that
the expression for the surface specific heat derived in
earlier work may be applied to a rather wide variety of
geometries, provided the alterations in exchange inter-
actions are confined to the surface layer. One must re-
place the single exchange constant D relevant to cubic
crystals by the quantity (D.D,)'?, where D, and D,
are the exchange constants appropriate to propagation
of bulk waves along the two principal directions parallel
to the surface.

As we remarked earlier, recent measurements of the
specific heat of small YIG particles indicate the presence
of a term linear in the temperature. However, the mag-
nitude of the observed linear term is roughly 30 times
larger than the prediction of Eq. (3.26). It thus appears
difficult to account for the size of the observed term by
assuming it is a surface effect, and using a model which
assumes that alterations in the exchange constants are
confined to only the surface layer.

Recently, measurements of the longitudinal nuclear
relaxation time of the Fe’” nucleus in small YIG par-
ticles have appeared.’? At 4.2°K, in zero magnetic field,
it is found that in particles with a diameter of 5 u, T
is smaller by roughly two orders of magnitude than the
value of T in the bulk crystal, at the same field and
temperature. In an earlier work,? the variation of the

11 The coefficient of the surface specific heat exhibit in Ref. 2 is
in error by a factor of 2. See the discussion in Ref. 7, and A. A.
%\Iaradudin and D. L. Mills, J. Phys. Chem. Solids 30, 784(E)

1969).
2S. M. Meyers, H. Meyer, and J. P. Remeika (unpublished).
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mean spin deviation with distance from the surface was
computed for a model which ignores changes in exchange
constants near the surface. It was found that within
a distance of roughly (7',/T)!/? lattice constants of the
surface, the mean spin deviation is roughly twice the
bulk value. The result of the present work suggests that
the behavior of the mean spin deviation may not be
sensitive to changes in the exchange constants of the
surface layer. While we have not attempted to compute
the effective value of 7% for an ensemble of spins in a
small ferromagnetic particle, it appears difficult to see
how the very large decrease in the observed 7' could be
accounted for in the framework of the theoretical model
just described.

If the increase in specific heat and 7'y~! observed in
small YIG particles are indeed associated with an in-
crease in the mean spin deviation near the surface of
the material, then we feel the current theoretical models
may represent a considerable oversimplification of the
effect of the surface on the properties of small magnetic
particles. It would be extremely useful to perform a
measurement of the magnetization of the spins in the
surface layer of a ferromagnetic crystal, perhaps by
LEED techniques of the type used recently in the study
of antiferromagnetic NiO.?

APPENDIX

We shall evaluate the integral that appears on the
right-hand side of Eq. (3.14). We consider

1 de 1 pou
0 oQ 0

™ ™

The last equality in Eq. (A1) follows after a partial
integration, noting from Eq. (3.13) that o(k;,0)=0
and ¢(k;,,2)=0 for @>Qy, since we have seen ¢,=0.
In the discussion below, we suppress the explicit refer-
ence to k;; in the quantities that appear, in order to
make the equations more compact. Then from Egs.
(3.13) and (A1),

o1 r dQ
=2 Q) — (= Q) — / )
T Qu T
B(1—v)? 2B ™ 46 09
T [ Z =)
0% T o m™ 00
1—v)? 2

=—B (A2)

B T
—B<p1——‘/ dé sin0¢3(0) ,
0

107 T T

where 0=*%.a.

To obtain Eq. (A2), we have expressed @, Qs and
Q7 in terms of 4, B, and v, and we have converted the
integral from an integral over frequency to one over the
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variable 8=*F.a. Let

1
I=-

™

™ 1,7 9
/ db sinfop(0) = —— / d6 —(cosb) ¢5(0)
0 0 60

T
T 1 T 6<p13
+~/ df cosf—
0o m™Jo a0
™d§  cosf(1—v2)
+ / R
o m 2v cosf—(1+4~2?)
1—v2

1
= —— cosfez(0)
™

1—~*
=14

™ dé
2y 2y /0 (142 —2vy cosb .
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The remaining integral may be obtained from standard
integral tables:

™ o T
/0 14+v2—2y (:050_1-—72 '

Hence

™

1 T
— / df sinfop(0) = —(147),
0

and we obtain

9= —(B/7)[1+ (2v/m)(er—3m)]. (A3)

1, NUMBER 1 1 JANUARY 1970

Properties of the Ni-Ir Alloy System

E. Bucuer, W. F. BrinkMAN, J. P. Marra, anp A. S. CooPER
Bell Telephone Laboratories, Murray Hill, New Jersey 07974
(Received 25 August 1969)

Measurements of the lattice parameter, electronic specific heat, magnetic susceptibility, and Debye
temperature are presented in the Ni-Ir alloy system from 0 to 100 at.% Ir. This system forms an uninter-
rupted series of solid solutions over the entire concentration range. No ordering nor decomposition could
be observed after annealing for several days at temperatures between 500 and 1100°C. The system develops
a sharp peak in the electronic specific heat versus concentration at 85 at.% Ni, a concentration slightly
higher than the critical concentration determined magnetically (81 at.% Ni). A weak anomaly was found
also in the T® term of the low-temperature specific heat around the same concentration. Generally, no low-
temperature anomaly, such as was predicted by the early paramagnon theories, was detected down to
1.5°K. The susceptibility was measured on the paramagnetic side only up to 79 at.% Ni, where a spontaneous

moment develops at low temperature.

I. INTRODUCTION

MONG the transition-metal binary alloys the
Ni-Ir system is one of the few cases which has not
yet been explored. Nevertheless, this system presents
some interesting aspects related to the questions of
paramagnons.’? In this respect, its behavior differs re-
markably from the isoelectronic system Ni-Rh which
we investigated earlier.’ We shall discuss this difference
briefly after presenting structural and electronic data of
the Ni-Ir system.

II. RESULTS
A. Lattice Parameters

Prior to our investigation of the electronic properties,
the phase diagram of the Ni-Ir system had to be

IN. F. Berk and J. R. Schrieffer, Phys. Rev. Letters 17, 433
(1966).

2S.)Doniach and S. Engelsberg, Phys. Rev. Letters 17, 750
(1966).

3 E. Bucher, W. F. Brinkman, J. P. Maita, and H. J. Williams,
Phys. Rev. Letters 18, 1125 (1967); W. F. Brinkman, E. Bucher,
H. J. Williams, and J. P. Maita, J. Appl. Phys. 39, 547 (1968); E.
Fawcett, E. Bucher, W. F. Brinkman, J. P. Maita, and J. H.
Wernick, zbid. 40, 1097 (1969).

established. Using powder x-ray diffraction, we found
that the system exhibits complete solid solubility over
the entire range of concentration. Figure 1 shows the
lattice parameter ¢ of the fcc lattice and the molar
volume V3 as a function of the Ir concentration, both
showing a positive deviation from linearity. This be-
havior is identical with Ni-Rh,* except that the differ-
ence in lattice constants between the end members is
even larger in Ni-Ir. The formation of complete solid
solutions is not self-evident. This can be demonstrated
by considering the corresponding Rh alloy systems.
While Rh forms complete solid solutions with Ni,*
Pqd,5% and Cu,*7 at least at high temperatures, Ir shows
decomposition in alloying with Pd® and partial im-
miscibility with Cu 8in the solid state. Special attention
was therefore paid to the possible occurrence of ordered
phases or decomposition, but no indication of either

4H. L. Luo and P. Duwez, J. Less Common Metals 6, 248
(1964).

5 M. Hansen and K. Anderko, Constitution of Binary Alloys
(McGraw-Hill Book Co., New York, 1958).
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(McGraw-Hill Book Co., New York, 1965).

7 See Ref. 6 in Ref. 8.
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