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Surface Corrections to the Specific Heat of Ferromagnetic Films*
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The surface correction to the low-temperature form of the specific heat of ferromagnetic films is dis-
cussed. It is pointed out that the low-temperature form of the surface correction depends only on the curva-
ture of the bulk spin-wave dispersion relation near k=o, provided the exchange interactions between the
spins are short-ranged in a sense described in the text. Hence, the surface correction to the magnon specific
heat is insensitive to changes in the exchange constants in the Qlm surfaces. We carry out the discussion
with a simple method that does not require the use of Green's functions.

I. INTRODUCTION
' 'N the usual discussions of the thermodynamic prop-
- - erties of crystals, one computes the various quanti-
ties by taking the mathematical limit of allowing the
volume of the crystal to become infinite. In this limit,
the specific heat of the solid becomes proportional to
the volume V of the crystal. For a crystal of finite size,
the form of the specific heat obtained by allowing U to
become in6nite provides only a 6rst approximation to
the actual speci6c heat of the material. The first correc-
tion to the "infinite-volume" specific heat is propor-
tional to the surface area of the crystal. One should be
able to observe the surface corrections to the thermo-

dynamic properties of crystals by performing experi-
ments on collections of small particles, so the total
surface-to-volume ratio of the sample is large.

Theoretical treatments of the surface correction to
the phonon specific heat have been discussed by a num-

ber of authors. ' More recently, the contribution to the
surface specific heat from magnons in simple models of
semi-infinite ferromagnets' and antiferromagnets' have
appeared.

In the calculations just cited, speci6c models of
semi-infinite crystal lattices have been employed. It is

generally assumed that the layer of surface atoms is

identical in structure to a similar layer of atoms in the
bulk, and that the appropriate force constants are also

the same in the surface layer as in the bulk. While it
often does appear that the geometrical arrangement of
the atoms in the surface layer is the same as in the
appropriate bulk atomic planes, it is evidently true that
there can be large changes in the interatomic coupling
constants. Comparison between calculations of the
mean-square displacement of atoms in the surface

layer of crystals and low-energy electron-diffraction

(LEED) measurements of the mean-square displace-
ments indicate that the force constants in the surface
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layer are considerably smaller than the bulk values of
the force constants. 4 Recently, the sublattice magneti-
zation in the surface of the antiferromagnetic crystal
NiO has been measured. ' These measurements indicate
that the exchange interactions between Xi spins in the
surface layer are strongly reduced, compared to the
bulk values.

From the preceding discussion, it is clear that the
theoretical models employed so far in the study of sur-
face corrections to thermodynamic properties of crys-
tals are severe idealizations of the conditions realized in
practice. One must explore the effect of changes in the
interatomic coupling near the surface in order to obtain
a complete description of the surface corrections.

The purpose of the present paper is to examine the
surface specific heat of a ferromagnetic film, within the
framework of a discussion that allows for changes in the
exchange constants in the surface layer. In an earlier
work, ' the surface correction to the specific heat of a
simple cubic ferromagnet with a (100) free surface and
nearest- and next-nearest-neighbor exchange interac-
tions was examined. It was found that the surface
specific heat was proportional to the temperature T in
the low-temperature region. This work confined its at-
tention to a specific geometry and presumed the ex-
change constants in the surface layer assume their bulk
values. Recent experimental measurements of the
specific heat Of small yttrium-iron-garnet (YIG) par-
ticles' in the liquid-helium temperature range show
a contribution to the speci6c heat that is linear in the
temperature. This portion of the specific heat has ten-
tatively been attributed to the surface correction to the
bulk specific heat. However, the magnitude of the ap-
parent surface term is very large compared to the
theoretical result of Ref. 2. One might expect that the
surface specific heat could be enhanced by a softening
of the exchange constants in the surface layer. How-
ever, the present work indicates that if the alteration of
the exchange constants is con6ned to the surface layers
only, then the leading term in the low-temperature sur-
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face specific heat is independent of these changes in the
exchange constants. Indeed, the surface specific heat
depends (in the low-temperature limit) only on. the
curvature of the bulk spin-wave dispersion relation near
k=O. The physical reason why the low-temperature
form of the surface specific heat is insensitive to changes
in the exchange interactions in the surface layer is that
the spin waves that make the dominant contribution to
the specific heat for T«Curie temperature T, have
a long wavelength compared to the lattice constant.
These waves are not strongly affected by the alteration
of the properties of a single atomic layer of spins. Thus,
it appears dificult to explain the data on the specific
heat of small YIG particles in the liquid-He tempera-
ture range as a surface effect, so long as alterations in
the exchange constants are confined to within a small
number of atomic layers of the surface.

The spins in the surface layer of a ferromagnetic
crystal may also be subjected to strong pinning fields.
The presence of a pinning field inhibits the motion of
spins in the surface layer, and, hence depresses the sur-
face correction to the specific heat. The effect of a sur-
face pinning field on the specific heat has been explored
in another work. ~ We shall ignore the effect of surface
anisotropy fields in the present paper.

In Sec. II we explore the nature of the spin waves in
a ferromagnetic film that consists of E layers of spins.
It is assumed that the range of the exchange interac-
tions in the direction normal to one of the layers is

sufficiently short so that a spin in a given layer is cou-
pled only to spins within the same layer, and to spins
within the layer just above and just below the layer
in question. We discuss the surface modes, as well as
the bulk waves, presuming that the exchange interac-
tions within the surface layer may differ in value from
the bulk exchange constants. In Sec. III we use the in-
formation contained in Sec. II to construct an expres-
sion for the surface specific heat. This may be done
without making specific assumptions about the range
of the intraplanar exchange interactions, or the geo-
metrical arrangement of the spins within one of the E
layers. Provided the exchange interactions differ from
the bulk value only within the two surface layers, no
detailed assumptions about the magnitude of the
changes need be made. As remarked earlier, the low-
temperature form of the surface speci6c heat (the term
linear in T) may be expressed entirely in terms of the
parameters appropriate to the bulk spin-wave disper-
sion relation for this case.

II. EFFECT OF FREE SURFACES ON SPIN-WAVE
SPECTRUM OF THIN FILMS

In this section, we discuss the properties of spin waves
in a ferromagnetic film constructed from X atomic
layers of spins. We assume each layer lies parallel to the

7Leonard Dobrzynski and D. L. Mills, Phys. Rev. (to be
published).

J~(S„,O)= J~(Si„O)=J(6„,0) —AJ(S„,O).

In this last expression, the quantity —AJ(6„,0) is the
change in the exchange interaction between two spins
separated by 6» within one of the surface layers. We
choose the sign convention so that when AJ&0, the ex-
change interactions have been softened.

We now write down the equations of motion of the
spin deviation operator 5+(I) associated with the spin
at the 3th lattice site. The equations will be linearized
in the sense of spin-wave theory by replacing the com-
bination 5'(l)S+(I') by 55+(I'). We then consider eigen-
solutions for which the time dependence of 5+ is given
by exp( —iQt). Finally, we note that for the 61m, the
translational symmetry of the Hamiltonian in the x and
y directions is maintained. Thus, we seek solutions of
the Bloch form in the x and y directions. We write

where
5+(i) = exp(ik, I, —iQ/) s(l,),

k„=ak,+yk„.

(2 1)

By employing Eq. (2.1) and noting the earlier remarks
about the range of the exchange interactions, one may
easily derive a set of E equations from which the coeK-
cients s(l,) may be determined. We write the results in.
the form

Qs(l, )= Lb,(0)+2b~(0) —bo(k„))s(l,)—b~(k„)Ls(l,+1)+s, (l,—1)i l.W1, E (2.2a)

z-y plane, and we label the planes with the index l,= 1,
2, , E. We suppose the Hamiltonian has the usual
Heisenberg form, with isotropic exchange interactions
between ions with spin angular momentum 5. Since the
Hamiltonian is invariant under spin rotations, we may
allow the saturation magnetization to be directed along
any convenient axis. We choose to orient the saturation
magnetization parallel to the s axis. Let J~,(8»,8,) be
the magnitude of the exchange interaction between
a given spin located in the plane l„and its neighbor
located at the position

5= 6f)+Q,
relative to the given spin, where the vector

S„=ib,+gb„
We shall assume that the exchange interactions in t,he
film have the following properties:

(1) The range of the exchange interaction in the di-
rection normal to the plane is one interplaner distance,
i.e. , the exchange constant Jt,(6~~,h,)=0 unless 8,=0
or 6,= &a, where a is the distance between adjacent
planes.

(2) The exchange interactions assume their bulk
value everywhere except for the interactions between
two spins within the surface layers l, =1 and l,=E.
We denote the "bulk" values of the exchange interac-
tions by J(5/], 8,), and we write Jq(S, , ,O) and J~(6, , ,0)
in the form
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and for the surface layers,

Qs(1) = (bp(0)+ bi(0) —bp(k„) js(1)
LLSp(0) —Abp(k[~) js(1) by(k~~)s(2), (2.2b)

Qs(E) = [bp(0)+br(0) —bp(k~~)gs(E)
—tlap(0) —hbp(k„)fs(E) —br(k]~)s(1V —1). (2.2c)

We have defined the quantities

bl (kl I) + Q J(g / a)eikll sll (2.3a)

and
Abp(k()) =5 Q AJ(S(, 0)e'k"'» (2.3b)

One has b4(k, ~) =b ~,(k~~), and for all geometries of
interest in the present work, the b~,'s will be real. For
later discussions, it will be convenient to write Eqs.
(2.2) in a more compact form by introducing an iV&&1V

matrix D(k~, ) with matrix elements Dg, t(k») so that
Eqs. (2.2) become

Qs, (l,) =P D4t, (k„)s,(l,') .
LZI

(2.4)

We now proceed to a discussion of the properties of
the solutions to Eqs. (2.2).

There are two classes of solutions to the equations of
motion of interest in the present paper. These are the
bulk modes, in which the spin deviation extends
throughout the slab, and surface modes for which the
spin deviation is localized near the surfaces. Consider
the surface modes 6rst. Let us 6rst examine surface
modes in a sample semi-infinite in extent. Ke imagine
that E~~, while the plane l, = 1 remains in the x-y
plane. Then consider a solution of Eqs. (2.2) of the form

s(l,) =Ce "'*. (2.5)

Substitution of this form into Eq. (2.2a) requires the
frequency 0 of the mode be given by

Q=bp(0)+2bt(0) bp(k[, ) 2b&(k„) cosh(ga). (2.6)

For surface spin waves to exist, the quantity p must
be less than unity in value. We shall give some brief
examples of situations were this occurs in the discus-
sions below. For the moment, we assume y(1.The fre-

quency of the surface mode is thus

Q (k ) bp(0) +2bt(0) —bp(kj () (y '+y) . (2.8)

Note that in the present system the bulk spin-wave dis-

Upon inserting Eq. (2.5) into Eq. (2.2b), we obtain a
second relation between 0 and the attenuation constant
q. Elimination of the frequency then yields the result

bt(k„)
e ~'=— =—y(k„) . (2.7)

bt(0)+P~bp(0) —d bp(k„)]

persion relation Q&(k», k,) may be written in the form

Qg(k„,k,) = bp(0)+ 2bt(0)

bp(k~~) 2bt(k~~) cos(k,a) . (2.9)

For a given value of k„, the lowest bulk spin-wave fre-
quency is obtained by setting k, =O in Eq. (2.9). The
difference between the surface mode frequency and the
frequency of the bottom of the bulk band associated
with a given value of k„ is thus

Qe(k„,0) —Q, (k„)= bt(k[, )(1—y)'/y. (2.10)

In the study of the low-temperature speci6c heat, we
shall be interested in modes with long wavelength com-
compared to the lattice constant. The quantity y —+ 1 in
the limit as k„~0. Thus, when

~
k„a~((1, one can ex-

pand y in a power series in k». The leading term will be
quadratic in k„:

y(k„)= 1—(k„a)'f(k„)+
where f(k„) is a function only of the direction of k~~.

Thus from Eq. (2.10), one sees quite generally that the
frequency of the surface mode differs from Q&(k„,0)
only by terms of order (k„a).4 This feature of the sur-
face-magnon dispersion relation has been noted in
earlier studies of specific geometries. ' We shall And

it useful in Sec. III to use the fact that to lowest order
in (k„a) one has

Q, (k„)=Q&(k~/, 0).

Let us turn to brief discussions of specilc geometries to
illustrate the points made in the preceding discussion.

(i) The simple cubic ferromagnet with a (100) sur-
face, nearest-neighbor exchange J~, and next-nearest
exchange J2, with exchange constants equal to the bulk
value everywhere: This is the case considered in Ref.
8. For this case, one has

hbp(k„) =0, —
br(k( t) Jy+ 2Js (coskga+ coskva) )

v = b~(k~ ~)/br(0) .

Clearly, one has y&1 for all k and k„so one has a sur-
face mode present, provided Js/0. One finds (note
that our dednition of the exchange constants differs from
that of Ref. 8 by a factor of 2)

Qa(kii, 0) —Qe(kii)
= 16SPss/(Jr+4Js) j(sin'-', k.a+sin'-,'k„a)'.

(ii) The simple cubic ferromagnet with a (11()) sur-
face, nearest-neighbor exchange J& only, with no changes
in the exchange constants: For this geometry, one
"breaks" two bonds non-normal to the surface in form-

8R. F. %allis, A. A. Maradudin, I. P. Ipatova, and A. A.
Klochikhin, Solid State Commun. 5, 89 (1967).' B. N. Filipov, Fiz. Tverd. Tela 7, (1966) LEnglish transl. :
Soviet Phys. —Solid State 9, 1098 (1967)j.
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s(l )—uei7oza4+ pe-zLza4 (2.11)

for particular values of k,. Insertion of this form into
Eq. (2.2a) shows that the eigenfrequency Q&(k„,k,) is
that given in Eq. (2.9). One determines the allowed

values of k„as well as the ratio n/P, by requiring the
function s(l,) to satisfy the equations of motion for the
spins in the surface layers (l,= 1 and l, = 1V). Consider
erst Eq. (2.2b), which describes the motion of the spins
in the lower surface layer at 1,= 1. Upon employing the
expression in Eq. (2.9) for the frequency Q&(k„,k,) with

Eq. (2.2a), one finds

L1 —2y(k„) cos(k,a)]s(1)+y(k»)s(2) = 0, (2.12)

ing the film surface. Then we find

y(k„)= cos(ak./V2)

Qe(k][ 0) —Qe(k„) = 16S'Jp sin'(k, a/2v2) .

The gap between the bulk manifold and the surface
branch is highly anisotropic in this case.

(iii) The simple cubic ferromagnet with a (100) sur-

face, nearest-neighbor exchange only, with exchange
constants in the surface layer reduced by the amount
hJ: This geometry has been considered by Fillipov. '
One Gnds for this case that

y(k„)= {1+2(AJ/J)$2—cosk.a—cosk„a] '}.
Thus, for all k, and k„, one has y(1, provided that the
exchange interactions in the surface layer are softened

(AJ) 0). Also,

Qe(k„,0) —Qe(k«)
(sin'-'k a+sin'-,'k„a)'

=16SAJ
1+4(AJ/ J)(sin'-'k, a+sin'-'k u)

From the above examples, one sees that the present
formulation of the surface-mode problem allows one to
easily determine the dispersion relation and attenuation
length for a variety of geometries, provided the ex-

change constants differ from their bulk value only in

the surface layer, and provided the range of the ex-

change interactions in the direction normal to the sur-

faces has a suKciently short range. As we mentioned
earlier, one sees from the examples that in the long-

wavelength limit, the surface branch is depressed below

the bulk value by an amount proportional to (k~~a)4.

Also, for surface modes to split off below the bulk mani-

fold associated with a given value of k~„either one must
"sever" bonds non-normal to the surface in forming the
surface layer Lexamples (i) and (ii)] or one must soften
the exchange interactions in the region of the surface
Lexample (iii)].

Next we consider the bulk excitations of a film of
Gnite thickness (i.e. , spin-wave modes in which the spin
deviation extends throughout the 61m). In addition to
the surface solutions just discussed, the equations of
motion admit bulk solutions in which

where the quantity y(k, &) has been introduced in Eq.
(2.7). After insertion of Eq. (2.11) into Eq. (2.12), we
find

p(k, ) e ik,—a

p ~(k„) e+z7zza
(2.13)

p(k )e
—'

z

g-i2Nk z&

p 1 y(k, )e+zkza
(2.14)

The values of k, permitted by the boundary condi-
tions for a given value of the wave may be obtained by
equating the right-hand sides of Eqs. (2.13) and (2.14),
and then solving the resulting equation for k, . Ke find

2y(k( )) ezk za 72(k) ()e
—z7zza

e+i2Nkz+-

2y(k), )—e '"* —7'(k„)e*'"*
(2.15)

We introduce a phase angle &p(k, ~,k,) as follows:

2y(k~~) e'~za &&(k«)e—zIzza y(k&, k )e zPB(k—[( kz)

Explicitly, one has

ye(k„,k,)

( sin(k, a)L1 & (k, [)]
=tan-'~ (2.16)

(2y(k~[) P1+p (k~~)] cos(k,u))

Equation (2.15) then becomes

gi2g~za —g
—i2y&(kl (»z)

The allowed values of k„which we denote by k, (n),
are then the solutions of the equation

ak, (n) = (x/N) n —E—'q e[k„,k, (n)],
n=0, 1, 2, . (2.17)

where the angle y~ is defined above.
%e shall base our study of the surface specific heat

presented in Sec. III on the properties of the surface
modes discussed earlier in the section, and on the dis-
tribution of the allowed values of k, determined by
solving Eq. (2.17). Note one point before proceeding.
Suppose we consider a solid of infinite extent, con-
structed by placing atomic planes parallel to each other.
Let us then study the excitation spectrum of the solid
by applying periodic boundary conditions in the z direc-
tions, i.e., we require

s(l,) = s(l,+IV) .

Then the only solutions of the equations of motion are
bulk solutions, with k,a= n7r/E. The information about

If Eq. (2.2c) is rearranged in the fashion just de-
scribed, one obtains

L1—2y(k~ ~) cos(k,a)]s(Ã)+y(k, ~)s($—1)=0.

This equation yields a second condition on the ratio of
ntop:
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the effect of forming a, real surface, with exchange con-
stants altered in the surface layer, and spins in the sur-
face coupled to fewer neighboring spins than spins in
the bulk, is then contained in the surface spin-wave
spectrum, and in the deviation in allowed k, values for
bulk waves away from the values nn. /1V appropriate to
periodic boundary conditions applied in the s direction.
The latter information is thus contained in the angle
pe(k», k,) defined in Eq. (2.16),

III. SURFACE CORRECTIONS TO SPECIFIC
HEAT OF FILM

Q, (k„,k,) = D,k.'+D„'k„'+D,k,'. (3.1)

In this section, we consider the magnon contribution
to the specific heat of the film discussed in Sec. II. It
has been pointed out~ that when the thickness of the
film is large compared to the wavelength of a spin wave
with energy k&T, then the specific heat may be written
as a sum of two terms, one proportional to the volume
and a correction term proportional to the surface area.
Suppose that we consider a large crystal in which the
spin-wave dispersion rela, tion assumes the long-wave-
length form

degenerate. We suppose the film is sufficiently thick so
that the niodes may be presumed to be degenerate. In-
deed, it is easy to see that the specific heat may be de-
composed into a bulk and a surface term only in this
limit. The contribution of the surface magnons to the
internal energy is thus given by the quantity U, (T),
where

U.(T)=2h P Q, (k&,)nfQ, (k„)j, (3 3)

where the sum over k and k„ranges over the appropri-
ate two-dimensional Brillouin zone. To compute the
low-temperature limiting form of U, (T), one may re-
place Q, (k„) by its long-wavelength limit, then convert
the sums over 0, and k„ to integrals and extend the
upper limits of integration to infinity. In Sec. II, we
noticed quite generally that in the long-wavelength
limit

Q.(k„)= Qe(k», 0)+terms of order (k„a)'.
Thus, in Eq. (3.3), we replace Q, (k~~) by Qa(kii, 0). ~e
assume the the surface is normal to the s axis, and use
the long-wavelength form of Q(sk~~, 0) given in Eq. (3.1).
If the total surface area of the film is 5, one then
obtains

Then the low-temperature form of the volume specific
heat is given by the well-known expression"

5 (keT)'
U.(T) =—t-(2)

47r h(D, D„)'" (3.4)

(k T)3/215'-(-,')
C„(T)= U ke

32m."' (D.D„D ) '"
for the low-temperature form of the surface spin-wave

(3.2) contribution to the internal energy. The surface magnon
contribution to the specific heat is thus

Now let us consider the form of the specific heat of
a film with the properties described in Sec. II. We shall
compute the specific hea, t by first calculating the low-
temperature form of the magnon contribution to the
internal energy of the film, and then differentiating this
quantity with respect to temperature. If one considers
a material with excitations that obey Bose-Einstein
statistics, then the internal energy U of the ma, terial is

given by the expression

U(T) =h g Q.»(Q.),

where the symbol n denotes the set of quantum num-
bers of the mode, and

n(Q) = fe"e".—1$—' with P= (k»T)—'.
In Sec. II, we noticed that there are two classes of

excitations in the film: the surface magnons and bulk
modes in which the spin deviation extends throughout
the slab. First consider the contribution to the specific
heat from the surface modes. For a given value of the
wave vector k«parallel to the surface, one has two sur-
face modes. In the limit of large film thickness, one mode
is associated with each surface, and the modes are

'0 C. Kittel, Quantum Theory of Solids (John Wiley R Sons, Inc. ,
New York, 1963), p. 55.

5
~.(T) =—t-(2)k.

2~ h(D,D„)'~2
(3 5)

We turn next to the contribution to the specific heat
from the bulk modes. For the model films considered,
the dispersion relation of the bulk modes is given in Eq.
(2.9), where, as we have seen, only certain discreet
values of k, are allowed by the boundary conditions.
We denote the allowed values of the frequency by
Qefk», k, (n)j, where the integer n labels the allowed
values of k,. The bulk-mode contribution to the specific
heat is thus

UB(T) = h Q g Qafk)(, k, (n)$»(Q&fk&&, k, (»)j) .

U.(T)

«Qafki, k, (»)j»fQe(k, i,k,)g

I ~Iu p

(d»
dk.

~ Qe(k(, k,)nfQs(k„, k,)j. (3.6)
kdk,

When the film is sufficiently thick, the sum over n may
be replaced by an integration, to a very good approxi-
mation. '
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ps(k„,n) = de)
IbLQ —n, (k„,k,)).

dk, )

Equation ~ .(3 6) then becomes

rted the integral over n
u

'
/

we have conver e
is

f 1 to introduce a quantity
erk, . Notet a e

a function ofk . Itwillbeuse u oin r
ps(k„,n) defined by

ion &&'& to the density of states definedPa
is ust the density o s a es( ~

with eriodic oun
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'
n concerning e c

from the fact t ag
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i h-
'

s in the surface are cou
the bulk. To verify the first st te-

"&(k„,n) i o E . ( .8):ment, one may insert p/

—z k dQ Qe(n)p, (k„,n).U.(T) = ~
a~a~ o

(3 8)
Us&'i(T) =

OQ (Bnq-'
dn n~(n)(

Bkz

dk, n, (k„,k,)i.gn, (k„,k,))

dk. Qs(kt, k )vins(k„, kz)7.
&~Ay

si nihco, nce of the last statement clear,To make the significs, nce o e a
we can conver t the integral over, ac
the rule

+n/a
dk, m 1 Bqg

de lV TV Be dk, —+Q.

it is apparent that the quantity

61 th texcitations in the m w'

the surface and wiith fre,uency e wee
t't in the discussionThis will prove to be a use q

'
ieful uan i y i

that follows.
ession for dk, /dn may be obtaine dA convenient expr

from Eq. (2.1,. i7~. Differentiation o eac s'

equation gives

vf 1 Ops zdk,

&V &V Bk, de

denote the thickness of the filmThus, if we let I.=Ea eno e

dn L 1 Ops

dk, m 7r Bkz

kt~ Q) we havethen or ef th density of states ps( „,

Q= —
f

+- St Q —Q(k„,kz))ps(k, )=-I(

I- BQ) ' 1t'Bk )8pz~=- —
I

+-I
~ Bk,) vr(BQ) dk,

=ps&" (k„,n)+Ape(k„, n) .
In this last expression, wwe de6ne

Thus~

Us«&(T) =k P ns(k„,k,)rs/ns(k„, k, ).
It:sky&z

U «& T) represents the contnbution
1 h 1 hener roportiona to eto the internal energy p to e

of U (T)
in the standar iscu

(0)wave theory. If the low-tempera ure
'6 t is obtained from itsand the specific ea is o

11 k own re ult of Eqtemperature derivativ, h - n'e thewe-n

We now turn

tes coming from p~ is

h h h i d s y f
'd the bulk continuum is given ystates insi e e

L/Bn""'"'""'=.
~iak.)

(39 ) 1 B(p~
Aps(k„, n) =— (3.10)

1(ak.)ay~
aps(k„, n) =—

~
. II that(3.9b) w ere wwe recall from Sec.

1 8(pgg

7

x BQ
(3.9c)

q gg(k, (,k,)

s ( ~)L —~'( ))

t ste we note that q may be expressed
k through Eq

' (2.9).as a function of t' of 0 by eliminating, r

v(

rite the frequencies of the bulkIt will be convenient to write t e re
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(p(k„,n) = 0, 0(n& Q, (k, i)

=2m, Q, (ki))(n&n (kii)

=pi+ps(k„, n), Q (k„)(n&n~(k„)
= pg, QM(k, )) (Q& ~ . (3.13)

We have introduced two arbitrary constants p& and p&

in Eq. (3.13), and &pz(k~&, n) is the phase angle defined

in Eq. (3.11), with k, eliminated in favor of Q by using

Eq. (3.12).Until this point, the expression in Eq. (3.13)
with the two arbitrary constants q ~ and q 2 is consistent

with the existing constants that have been placed on

the density of states. In a moment, we shall consider

additional constraints placed on p by two sum rules.

These sum rules will allow p~ and q~ to be uniquely

determined.
To appreciate the importance of the precise value

of y~ and q2, let us consider the variation of q~ in the

region (Q,n~). At the bottom of the bulk band (b,= 0),
the argument of the tan ' on the right-hand side of Eq.
(3.11) vanishes. This quantity also vanishes at the top
of the band (k,a=~). Furthermore, the numerator is

positive everywhere. The denominator has a single zero

when k, =k,o, where

cosh, a= (2y) '(1+7')&1.

For k, &k,', the denominator is negative, while it is

positive for k, &k,'. For definiteness, we choose the

modes in the form

Q(k„,k,) = A (k„)—B(k„) cos(k,a), (3.12)

where the coefficients A and B defined in Eq. (3.12)
may be obtained from Eq. (2.9).

We have demonstrated that Eq. (3.10) is valid inside
the bulk frequencies, i.e., for

Q~(kryo)

&n& Qss(k r) &

where Q„(k~,) =A(kii) —B(k») is the minimum bulk
spin-wave frequency associated with a given value of

k„, and Q~(k~~) =A(k„)+B(k„) is the maximum bulk

frequency for a given k~~. We now extend the definition

of the phase angle q ~ outside the open interval fn, n~j
by writing 3p&(k„,n) in the form of Eq. (3.10) for all

frequencies from zero to infinity. This may be done by
noting that the phase angle p must be a constant )and
hence ay/an= oj in regions where the density of states
is zero. Furthermore, we see that p must have the follow-

ing two properties:

(i) There must be a jump of 2m. in p at the surface
spin-wave frequency Q, (k«). This means the change in

density of states will have a 8-function singularity, with

a weight corresponding to two states.
(ii) In the open interval fn, n~g, q must exhibit the

frequency dependence of that deduced from the right-

hand side of Eq. (3.11).

Ke shall choose q so that q
—=0 in the interval from

Q=o to Q,(k„), where Ap must vanish. Then the most

general form possible for the phase angle that enters the

formula for the density of states is the following:

branch of the tan ' function so that p~(k», b, = 0)= 0.
Then as b, increases from 0 to 7r/a, the angle p~ be-
comes negative, passing through ——,'x when k,=k, ('~,

and becoming equal to —m. when k, =7r/a. With this
information in hand, one may see that for general values
of pi and q», p(k, &,n) may have jump discontinuities at
0 and Q~. These jump discontinuities contribute 8
functions to the change in density of states. Since the
strength of the 8 functions at 0 and Q~ depend on p~
and p2, we must pin down the value of these quantities
in an unambiguous fashion.

Let us consider the eigenvalue equation studied in
Sec. II. Equation (2.4) will be a convenient form for our
present purposes. These equations form a set of E)($
linear eigenvalue equations. For a given value of k„,
one thus must have precisely E eigenvalues. Thus, if
p(k„,n) is the density of normal modes associated with
a given value of k~~, we must have

dn p(k„,n)

for all klan. We write

1va "~ (ak) 1

/+ — dQ
&an) ~ an

t).' g +la

dk, +—Lp(k„, Q= ~)—p(k„, n=o)7

= iV+ (1/m) p2,

where p& has been introduced in Eq. (3.13). Hence, we
need

q2 —=0

for this last result to be an identity.
We need one more constraint to fix the value of py.

A second sum rule on the perturbed density of states
may be obtained from Eqs. (2.4). I.et Q (k&~) denote
one of the 1V eigenvalues of Eq. (2.4). Then

Q Q.(k()) = dn Qp(k~ ~ Q) =T1D(k~ ~)
= p D[ t (k~~) .

The trace of the matrix D(k„) may be computed ex-
plicitly by making use of Eqs. (2.2). One has

TrD(k„) =Et bo(0)+2bi(0) —bo(ki) j
—2Lb, (o)+~b.(0) —~b, (b„)j

—=XA (k„)—B(k„)/y(k„) .

We have employed the definitions of the quantities
A(kt~) and B(k«) introduced in Eq. (3.12), and the

p(kii, Q) =ps"'(k„,n)+— (k„,n),
m BQ

where p&'(k«, n) is given by Eq. (3.9a), and is nonzero
only in the interval from 0„to Q~. Noting that I.=Sa,
we have
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lation re lace Q, (k») by Q (k&&), the contribution in Eq.quantity yg 1& e n
1 25%%u' f th f - o t ib-(3.17) just cance s o oshows that

tion to the specific heat. Thus,

dQ Qps'(kii, Q) =%A (k&,) .

We thus obtain a second constraint on the angle p.

3S (ksT)'
U, (T)+aU ' (T) = f.(2)

ay B(k„)
dQ Q (k(),Q) =-

aQ
'

y(k)
(3.14) C,(T)+ACs "&(T)= t —(2)ks

The integral on the left-hand side of Eq. (3.14) may be
evaluated exp icit y. isl l Th' calculation is presented in the
Appendix. From Eq. (A3) of the Appendix, one as

dQ 8p—Q (k„,Q)
7I. 80

I'inall, we consider the contribution rom
'
inside the

bulk spin-wave continuum. Deno g
~ ~

notin this contribution
by AU»&'&(T),

0~(kt)) dQ g~
gU, i» = k p — (k„,Q)QN(Q), (3.19)

BQ

(" ) ~( ~~)

1+——
y(kii) ~ 2 )

Upon equating the right-hand sides of Eqs. (3.14) and

(k Q) is defined in Eq. (3.11).In what follows,
h 11 onl consider the low-temperature oi

EUs&'&(T). Consequently, the upper limit o e i g
in Eq. (3.19) eventually will be replaced by infinity. We
first convert the integral in Eq. (3.19) from an integral
over requency oi t an integral over the variable e,=k,a.
We recall Eq. (3.12) and write

(Py= ~7l .
~ ~

We have thus determined the frequency variation of
the phase ang e p &1, , inl (k Q) including the magnitude of the

at the maximum and minimum frequencies o e3ump a
bulk continuum. The angle y(k~~, Q) has a j p
mtude —2ir at Q=Q (k, &) and Q=Q»r(k&&). Wemaynow

d ith the calculation of the change in speci cprocee wi
heat that results from the redistribution oof the bulk
eigenvalues.

redistribution inThe change in internal energy irom re is ri
modes is thusIre

da, (k„,|&,)
80,

AUs&2& =—Q

&&LA (k[[) B(k[~) cos0 ]UPI (k[[) B(k~[) cosa

d' ion below we shall omit reference toIn the discussion e ow,
actness. After corn-in the various quantities, for compactness. ter com-

puting the derivative alii/aa„one has

A —8 cos0,

quency of the bulk

k"&" &dQa
AUs T =k ,, ) e(). (. 6) =

(1+,)QS(i&i&+

There are two contributions to qE . (3.16). One comes
from the jump discontinuity of &p(k», Q) at Q= Q (k„,
and the second has its origin in the frequency variation

(k Q) in the bulk continuum from Q (k~~) to
as a Um dls-Qir(k~~). V on noticing that p(k&&, Q) has a j p

continuit of —', 7r at Q (k&&), the quantity aq (k„,Q)/aQ
contains the term —-,'xbz..—0 tl . us,
contribution to A Us(T) is

h
=——2 (1—~')

Xe(A Bcos0,)—
+ (A —8)+B(1—cos8,)

dg
(1—y) '+2y (1—cosa,)

&&nL(A —8)+B(1—cosa,)].

AUs"'(T)= —P Q„(k,~)eLQ ( j/)]. ( .3.17)
2 kgb

If one compares this expression wit„qE . 3.3, one
sees that in the low-temperature limit, where one may

We now convert the sum overr k and k to an integral.
Let 5 be the total surface area of the sa pm le recallt at
there are two surfaces), and let 8,==k a 8 =k„c, where

ace. Thussured in the direction normal to the surface.

AUs&2&(T) =—
2 (2') sg2

+ dag 1 —y')L(A 8)+B(1—cosa, )]iig(A —8)+.B(1—cosa,)]—
(1—y')+2y (1—cosa,)



A (k„)—B(k„)= Dgk~'+ D„k„'=P,8g'+P„8„',

where

and

Further, de6ne

One then has

P,= D,a', P„=D„a'

8.=k.a, 8„=k„a.

p*= k&(k~ ).

AUg&'&(T)

Now, we are interested only in the low-temperature
form of DUJ3~' (T). We thus may extend the limits on
all integrals to inanity. Furthermore, only values of

8„8„,and 8,((1 will be important because of the Sose-
Einstein factor. Hence, we replace cos8, by 1—~~8,'.
Furthermore, the combination A(k~, ) B—(k«) is the
frequency of a bulk spin wave of wave vector k„propa-
gating parallel to the surface. When k and k„are small,
and the x and y directions suitably chosen, we have seen
that one has

DUs&'&(T)

Sk tp, 2m' lr

dE E4n(E') d p d8
(2-)"'~p.p, 0 0

sin'8(o, cos' p+ o.„sin2 p)
X . (3.22)

cos'8+P,E' sin'8(0. , cos'p+o„si.n'p)'

Next, consider the integration over the angle 8. When
E«1, the quantities p,E'0, „' are very small compared
to unity. In this limit, the integrand is sharply peaked
about the midpoint 8——,'x. This means physically that
the dominant contribution to hU~('& comes from the
bulk waves that propagate nearly parallel to the sur-
face. The values of k, that are most important are values
of k, & ak„', where k„'=k '+ k„'. In the limit E'«1, an
approximate value of the integral may be obtained by
replacing cos8 by (2n. —8), its value near br, and sin8
by unity. Then

d8 sin'8

cos'8+LP, ' 'E(0. cos'p+a. „sin'p) 7'

2(2~)'a'

Now let

(1 V')(P.8-.'+P,8,'+P.8.')
d'8

(1—y)'+y8 '

Xn(g P;8 ). (3.20)

Then

+" dq

2+LP ll2K(. . . )72

=~/p, ' "E(0,cos'q+a. „sin2q) .

K;=P n8;, i=xys

Then, after a bit of rearranging,

6Us"'(T)=—Sk(P.P,)-'" "
2(2m)'a'

de E'n(E') dp

».&"(T)= — (P.P,P.)
2(2m.)'a'

X d'K E' n(E') . (3.21)
(1 v)'+vP* 'E'—

Next, consider the form of y. Recall that y is a func-
tion of the wave-vector components k„=xk,+gk„.
Thus, in our present notation, y depends only on E and
K„. Furthermore, when the spins in the surface layer
are coupled to fewer neighbors than spins in the bulk,
with the possibility of softened exchange constants in
the surface layer, we have seen that &(k„)(1.We insert
an expansion for y valid for small E' and E„into Kq.
(3.21), since these are the only values important in the
low-temperature limit. By orienting the E and E„
axes properly, this expansion can be placed in the form

7= 1 (r,E,' 0„K„'+~— —.

Sb(P,P„) '~' +"

2(2~)'a'

X (K,'+K„')n(K, '+K„') . (3.23)

Then

E,=p, 'I'ak, and E„=p„'"ak„.

DUs&" (T) = —k
2(2m)'

X(D.k, '+D„k„')n(D,k '+D„k„'). (3.24)

We now notice that in the long-wavelength limit

Q„,(k, ()=D,k '+D„'k„',

I.et us now transform the integral to an integral over
k and k„, using the relations

We then decompose the integral over jK~ and an,

integral over the direction of K:
and S is the total surface area of the film (i.e., twice the
area of one of the surfaces). Equation (3.24) may then
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be rewritten in the form

AU ~'~(T) = —6 Q Q„(k„)eLQ (k,)j.

Thus, the total change in internal energy from the
presence of the free surfaces is the sum of three terms:

DU, & '= DU, +EUs&"+AU/&'&= 'h—U-, (T).

The frequency shifts of the bulk waves cancels out
precisely 4 of the contribution from the surface mag-
nons. The total low-temperature surface specific heat
is thus 75%%up of the amount contributed. by the surface
waves alone:

kgT5
C, -' (r) =-,'C, (r) =—f (2) (3.25)

8m- h(D.D„)'"

IV. DISCUSSION

The result in Eq. (3.25) has been obtained by Green's-
functions methods in earlier treatments. " As we re-
marked earlier, the previous work has ignored changes
in the exchange constants in the surface layer, and has
also confined its attention to very specific geometries.

mean spin deviation with distance from the surface was
computed for a model which ignores changes in exchange
constants near the surface. It was found that within
a distance of roughly (T,/T)'~' lattice constants of the
surface, the mean spin deviation is roughly twice the
bulk value. The result of the present work suggests that
the behavior of the mean spin deviation may not be
sensitive to changes in the exchange constants of the
surface layer. While we have not attempted to compute
the effective value of T~ for an ensemble of spins in a
small ferromagnetic particle, it appears difficult to see
how the very large decrease in the observed Tj could be
accounted for in the framework of the theoretical model
just described.

If the increase in specific heat and T» ' observed in
small YIG particles are indeed associated with an in-
crease in the mean spin deviation near the surface of
the material, then we feel the current theoretical models
may represent a considerable oversimplification of the
effect of the surface on the properties of small magnetic
particles. It would be extremely useful to perform a
measurement of the magnetization of the spins in the
surface layer of a ferromagnetic crystal, perhaps by
I.RED techniques of the type used recently in the study
of a,ntiferromagnetic NiO. '

The purpose of this paper has been to point out that
the expression for the surface specific heat derived in
earlier work may be applied to a rather wide variety of
geometries, provided the alterations in exchange inter-
actions are confined to the surface layer. One must re-
place the single exchange constant D relevant to cubic
crystals by the quantity (D,D„)'~', where D, and D„
are the exchange constants appropriate to propagation
of bulk waves along the two principal directions parallel
to the surface.

As we remarked earlier, recent measurements of the
specific heat of small YIG particles indicate the presence
of a term linear in the temperature. However, the mag-
nitude of the observed linear term is roughly 30 times
larger than the prediction of Eq. (3.26). It thus appears
difficult to account for the size of the observed term by
assuming it is a surface effect, and using a model which
assumes that alterations in the exchange constants a,re
confined to only the surface layer.

Recently, measurements of the longitudinal nuclear
relaxation time of the Fe57 nucleus in small YIG par-
ticles have appeared. "At 4.2'K, in zero magnetic field,
it is found that in particles with a diameter of 5 p, , Ti
is smaller by roughly two orders of magnitude than the
value of T& in the bulk crystal, at the same field and
temperature. In an earlier work, ' the varia, tion of the

APPENDIX

Ke shall evaluate the integral that appears on the
right-hand side of Eq. (3.14). We consider

7l Q

~M

dQ Q (k[[)= dQ p(k(( Q) . (A1)
BQ m p

d= —2(Q —Q,) ——(Q~ —Q )—
~mr gQ—ps(Q)

B(1—y)' 2B d8 8Q——
v ~(8)

p F88

(1 ~)2 2 B wB=B+y — d8 sln8pg(8)—,
— (A2)

The last equality in Eq. (A1) follows after a partial
integration, noting from Eq. (3.13) that q (k„,0)=—0
and y(k~~, Q) = 0 for Q) Q~, since we have seen y2 ——0.
In the discussion below, v e suppress the explicit refer-
ence to lr„, in the quantities that appear, in order to
make the equations more compact. Then from Eqs.
(3.13) and (A1),

"The coeKcient of the surface speci6c heat exhibit in Ref. 2 is
in error by a factor of 2. See the discussion in Ref. 7, and A. A.
Maradudin and D. L. Mills, J. Phys. Chem. Solids 30, 784(E)
(&we).' S. M. Meyers, H. Meyer, and J. P. Remeika (unpublished).

where 8= k,a.
To obtain Eq. (A2), we have expressed Q, Q„and

Q~ in terms of A, 8, and y, and we have converted the
integral from an integral over frequency to one over the
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variable 8= k,a. Let

7l p

1
= ——cos8ps(8) +— d8 cos8

p 7l

d8 cos8(1 —y')

vr 2y cos8 —(1+y')

1 I3

d8 sin8&p~(8) =— d8 —(cos8) ps(8)
80

The remaining integral may be obtained from standard
integral tables'.

1+y' —2y cos8 1—y'

Hence

d8 sin8q n(8) = —(1+y),

~2 $ ~4

2P 2' P (1+y') —2y cos8

and we obtain

& = —(&/V) L1+ (2V/~) (~t —s~)l. (A3)
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Properties of the Ni-Ir Alloy System

E. BUcHER, W. F. BRINKMAN) J. P. MAITA, AND A. S. CooPER

Bell Telephone Laboratories, Murray Hill, Rem Jersey 07974

(Received 25 August 1969)

Measurements of the lattice parameter, electronic specific heat, magnetic susceptibility, and Debye
temperature are presented in the Ni-Ir alloy system from 0 to 100 at.% Ir. This system forms an uninter-
rupted series of solid solutions over the entire concentration range. No ordering nor decomposition could
be observed after annealing for several days at temperatures between 500 and 1100'C.The system develops
a sharp peak in the electronic specific heat versus concentration at 85 at. % Ni, a concentration slightly
higher than the critical concentration determined magnetically (81 at. /o ¹).A weak anomaly was found
also in the T' term of the low-temperature specific heat around the same concentration. Generally, no low-
temperature anomaly, such as was predicted by the early paramagnon theories, was detected down to
1.5'K. The susceptibility was measured on the paramagnetic side only up to 79 at. 'P& Ni, where a spontaneous
moment develops at low temperature.

I. INTRODUCTION

A MONG the transition-metal binary alloys the
Ni-Ir system is one of the few cases which has not

yet been explored. Nevertheless, this system presents
some interesting aspects related to the questions of
paramagnons. ' ' In this respect, its behavior differs re-
markably from the isoelectronic system Ni-Rh which
we investigated earlier. ' We shall discuss this difference
briefly after presenting structural and electronic data of
the Ni-Ir system.

II. RESULTS

A. Lattice Parameters

Prior to our investigation of the electronic properties,
the phase diagram of the Ni-Ir system had to be'¹F. Berk and J. R. SchrieGer, Phys. Rev. Letters 17, 433
(1966).

'S. Doniach and S. Engelsberg, Phys. Rev. Letters 17, 750
(1966).

3 E. Bucher, W. F. Brinkman, J. P. Maita, and H. J. Williams,
Phys. Rev. Letters 18, 1125 (1967); W. F. Brinkman, E. Bucher,
H. J. Williams, and J. P. Maita, J. Appl. Phys. 39, 547 (1968);E.
Fawcett, E. Bucher, W. F. Brinkman, J. P. Maita, and J. H.
Wernick, ibad 40, 1097 (1969). .

established. Using powder x-ray diffraction, we found
that the system exhibits complete solid solubility over
the entire range of concentration. Figure 1 shows the
lattice parameter a of the fcc lattice and the molar
volume V~ as a function of the Ir concentration, both
showing a positive deviation from linearity. This be-
havior is identical with Ni-Rh, except that the differ-
ence in lattice constants between the end members is
even larger in Ni-Ir. The formation of complete solid
solutions is not self-evident. This can be demonstrated
by considering the corresponding Rh alloy systems.
While Rh forms complete solid solutions with Ni, 4

Pd, ' ' and Cu, 4 7 at least at high temperatures, Ir shows
decomposition in alloying with Pd and partial im-
miscibility with Cu ' in the solid state. Special attention
was therefore paid to the possible occurrence of ordered
phases or decomposition, but no indication of either

H. L. Luo and P. Duwez, J. Less Common Metals 6, 248
(1964).

5M. Hansen and K. Anderko, Constitution of Binary Alloys
(McGraw-Hill Book Co., New York, 1958).

R. P. Elliott, Constitution of Binary Alloys First Supplement
(McGraw-Hill Book Co., New York, 1965).' See Ref. 6 in Ref. 8.

s K. Raub and K. Roschel, Z. Metallk. 60, 142 (1969).


