
PHYSICAL REVIEW B VOLUM E 1, NUM B ER 6 15 MARCH 1970

First-Principles Calculation of the Bulk Modulus of Diamond*
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A Hartree-Fock-Slater calculation of the total crystal energy of diamond is performed using the orthogon-
alized-plane-wave (OPW) method. Half of the electron-electron interaction energy is subtracted from the
one-electron value so that these terms are counted once. The full OPW wave function is used to calculate
the electron-electron interaction. The results for the equilibrium lattice constant, bulk modulus, and co-
hesive energy are in excellent agreement with experiment.

I. INTRODUCTION

'~OR a long time cellular methods have yielded
binding energies of alkali metals. ' More recently

Brooks' has extended the method to polyvalent metals
and semiconductors. He obtained very good agreement
with experimental cohesive energies for most all metals
with no loosely bound d electrons. His results were much
poorer for the semiconductors. There are two reasons
for this failure: (a) The Wigner-Seitz method does not
take covalent bonding into account; (b) the diamond
atomic cell is highly nonspherical and so any cellular
spherical average is bound to be poor. For this latter
reason not only cellular methods, but also expansion
Inethods Llike the augmented-plane-wave (APW) j
which require muon-tin potentials, must give incorrect
results.

Herring's orthogonalized-plane-wave (OPW) method'
was erst applied to the band structure of diamond by
Herman in 1952.4 This and subsequent OPW studies of
diamond have been successful in explaining the band
structure' and electronic charge distribution' of
d1amond.

At the time this work was begun it was believed that
the OPW method was not suitable for studies of binding
energies. This study, together with the first successful
OPW calculation of the binding energy of a metal, '
shows that the OPW method may be quite successful,
if the calculation is su@ciently careful and exhaustively
detailed.

Much of'the calculation repeats that of GKI. We
have attempted to limit the overlap of GKI with that
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of the present paper. A discussion of the OPW method
and of the sampling technique used are to be found in
GKI. In Sec. II we discuss the total crystal Hamiltonian
and the total crystal energy (TCE). In Sec. III we dis-
cuss the one-electron crystal potential, in Sec. IV the
energy of the 1s eigenvalues of the valence Hamiltonian,
and in Sec. V we obtain our results. The results for the
equilibrium lattice constant, cohesive energy, and bulk
modulus are in excellent agreement with experiment.

II. TOTAL CRYSTAL ENERGY

The total crystal Hamiltonian is

Pn
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In the one-electron theory of crystals an electron
"sees" a Hamiltonian H, i' of

2m
(2.4)
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where P, and r; are the momentum and position of the
ith electron, m is the electron mass, I'„, R„, and 3I are
the corresponding quantities of the nuclear core, and
Z is the atomic number. In calculating the TCE one
usually divides the crystal Hamiltonian into three parts.

I 2574



FIRST —PRINCIPLES CALCULATION OF THE BULK MODULUS 2575

where, in the Hartree-Fock approximation,

p(r )'
V(r;) =e' P —Ze' P — +V (r'), (2 5)

l'~' )r, —r, ) ) R.—r;)

where V, (r,) is the exchange contribution to the ith
electron potential and p(r, ) is the probability density of
the jth electron. For zero temperature one usually
neglects the contribution of lattice vibrations (in par-
ticular the zero-point vibrations) to the crystal energy.
This means that one assumes that the P '/2M term is
negligible and that the positions of the ions, the R„'s,
are Axed. The problem of 6nding the total crystal en-

ergy is then reduced to the problems of ending the elec-
tronic (i.e., electron+electron-ion) contribution to the
crystal energy and of determining the electrostatic en-

ergy of the ions in the neutral crystal. The electronic
contribution TCE, is

TCE,=(H,i+F1,i;. )

=6 Q Q 8(r —R;—~„),
i=1 v=1

(3.3a)

where Z is the nuclear charge, 8; is the position vector
of the ith lattice point, ~ = —~2= saba(1, 1,1) where zi and
~2 are the positions of the two atoms in the unit cell
relative to the lattice point, and E is the number of unit
cells in the crystal. E is taken to be a very large number;
in this limit none of the quantities sought depend
on N.

We write the Fourier transform of (3.3a) as follows:

where V„„,co"'(x) is due to the nuclei at their equi-
librium positions in either the strained or unstrained
lattice, V.„.c'"'(x) is due to the 1s core electrons local-
ized about the nuclei, and V,l '"'(x) is due to the
valence charge density distributed throughout the
crystal:

N 2

p„„,(r) =Z Q P 8(r —R,—~„)
i=1 v=1

(2 6)
puuc(k)

where the sum is over the valence electrons, E; are their
one-electron energies, f, their wave functions, and
U,i,i is the valence-valence potential. The contribu-
tions to this term are listed in Sec. U.

In the present work, the wave function of the core
electron is assumed to be independent of the lattice con-
stant. Still there are two changes in the TCE due to the
1s core electrons. The first, due to core-valence interac-
tions, is already included in TCE,. The second TCE;, the
electrostatic interaction of the ion cores, is described in
Sec. IU. The Coulomb field of the ~= 0 Fourier transform
of the valence charge density is taken together with that
of the ~=0 Fourier transform of the ions as part of
TCEi so that TCE, and TCE; are finite.

III. CRYSTAL POTENTIAL

N 2

= ——6[+ exp(ik R;)$[g exp(ik ~„)], (3.3b)
a3 ~V v=1

where a is the lattice constant, —„'u3 is the volume of a unit
cell, and 4Sa3 is the volume of the crystal. The normali-
zation of the Fourier transform of a function is chosen
such that the Fourier transform is just the matrix ele-
ment of the function between normalized plane waves.
The plane waves are normalized to unity over the
volume of the crystal. The first sum in (3.3b) in the
limit of large E becomes zero when k is not a reciprocal-
lattice vector and is equal to 2V when k= x where x is
a reciprocal-lattice vector. The second sum is just
2 cosx ~ where ~= (isa) (1,1,1).

Therefore,

The potential comes from two types of interactions,
the direct Coulomb and the exchange.

Ke 6rst consider the Coulomb interaction. In atomic
units Poisson's equation is written as

V.„.c'"'(r) =Sirp.„,(x)/il'

=Sm )& cos(x ~).
g 2+3

(3 4)

V'V(r) = Sirp(r) (3.1a) The charge density due to the 1s core electrons is

and the Fourier transform of Poisson's equation is
(3.5a)

O'VCoui(k) Slrp(k) (3.1b) i—1 v=1

Since the matrix elements of the potential are taken be-
tween plane waves, the Fourier transform of the smooth
part of the valence charge density is calculated without
ever calculating the smooth part in real space.

The Coulomb potential may be divided into three
parts, corresponding to three charge densities:

Vooui(&) V Coul(&)+ V Coul(&)+ V' icoul(&) (3 2)

4 1
p,.„(x)= ——2 Q Q P,'(r R; ~„)e'"'d—'r-

a3 gV

cosx ~ rP, '(r) sinilr dr
EQ 0

(3.5b)

We write the Fourier transform of (3.5a) as follows:
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and

Ueore "'(tt) =Strpoore(tt)/»

512m' 00—costt e rP, '(r) sinter dr .(3.6)
83A:3 0

lj'r, is taken directly from the Herman-Skillrnan' calcu-
lation of the carbon atome An improvement in this cal-
culation would be to calcula, te P, (r) self-consistently by
solving the Schrodinger equation in the crystal poten-
tial; this is not done in the present calculation.

, The third contribution to the direct Coulomb poten-
tial is from the valence electrons. In this calculation the
valence charge density is evaluated self-consistently.
The starting potential is actually taken from the result
of many iterations of an earlier version of the present
calculation.

We write a valence-electron wave function as

4(r)=4(r)-(4A")P. (r), (3 &)

where P, is the Bloch function made from the atomic
P, Lsee (4.2)]. The average charge density due to such
an electron is

p(r) =Pe(r)$(r) —2 ReL(P, P,)P*(r)P,(r)j
+ I(4A") I

V'*(r)li (r) (3 g)

The procedure for calculating the valence charge den-
sity has been treated in detail in GKI. Each of the three
contributions to the valence charge density, plane-
wave —plane-wave (A), plane-wave —core (B), and core-
core (C), is treated somewhat differently. A is never
evaluated in real space, whereas 8 and C are evaluated
in both real and reciprocal space:

U-'""( )=g L~(~)+&( )+c( )j/" (39)

The exchange potential is handled in the Slater free-
electron approximation. ' This assumes that the effect
of exchange on an electron is to exclude a spherical
charge equal to that of the electron and centered at the
electron from the charge density due to all the other
electrons; that is, the electron "digs a hole" in the elec-
tron charge density, such that the "hole" contains one
positive charge. The Slater approximation gives an
exchange potential

U-"(~)= —3@P(~)/~j' '. (3.10)

There has been a recent spate of research on. the
question of an exchange potential appropriate to both
band-structure and cohesive-energy calculations. Her-
man et al." have argued from a variational principle
that the best one-electron wave functions are obtained

from the Gaspar-Kohn-Sham"" potential (-,' of the
Slater exchange potential), but that the one-electron
binding energies should be calculated by taking expec-
tation values of the Slater potential between the Gaspar-
Kohn-Sham eigenfunctions. Our use of the Slater ex-
change (made before Herman's proposal) was based on
the work of Phillips and Kleinman" who calculated the
off-diagonal matrix elements of a screened Hartree-Fock
exchange Hamiltonian in Si and found them to be
almost identical with matrix elements calculated from
the Slater exchange.

These considerations, combined with the fact that
the most suitable core functions available, those of
Herman and Skillman, were derived using the Slater
exchange, led us to use this approximation. However,
although this choice simplifies the calculation in many
respects, it gives rise to a problem peculiar to this type
of study. In determining the valence contribution to the
crystal potential it is necessary to subtract half the
valence-valence interactions from the one-electron en-
ergies. Since the Slater exchange potential is propor-
tional to the total (i.e., core plus valence) electron charge
density to the one-third power, and since the core and
valence charge densities overlap slightly, it is not pos-
sible to divide Ueae"(r) into U te*oa(r) and U, '"'"(r)
without approximation. A first approximation one might
try would be to assume that

ptotal (r) —=Lpeore(r)+ pval(r) j = poore (r)+pval (r).

This approximation would be true if there were no core-
valence overlap. Unfortunately there is a small though
finite tail of the core charge density which persists to
the edge of the next atomic cell and which, when taken
to the one-third power, gives a disproportionately large
contribution to the core-valence exchange. We estimate
that this approximation gives more than twice the core-
valence exchange that it should.

This and other considerations led us to another ap-
proximate separation .'

pt.t.i"'(r) = (Lpv. t(r)+pe-e(r))'" —p, t'"(r) )
+p .t"'(r) . (3.11)

Herman" and Heine'4 have suggested that this is the
separation most in the spirit of Slater's original proposal.
The core-valence exchange is taken to be proportional
to the term in the curly brackets in Eq. (3.11) while the
valence-valence exchange is proportional to the cube
root of the valence charge density:

'""'(r)= —3(3/~) "'{Lp-t(r)+p-,.(r)j"'
—p t'"(r)) (3 12)

Writing this expression for the core-valence exchange
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'e F. Herman, I. B. Ortenburger, and J. P. Pan Dyke, Int.
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"R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954)."W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
'3 J. C. Phillips and L. Kleinman, Phys. Rev. 129, 2098 (1962).' F. Quelle, Lincoln La&oratory Technical Report No. 295,

$963 (unpublished),
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does not quite end the problem. p,.„(r) is easily ob-
tained from (3.5a). It is just the sum of spherical charge
densities, approximately nonoverlapping, centered on
each atomic site. This is certainly not true for the va-
lence charge density for a number of reasons. First, if
the valence charge density were spherical, all Fourier
transforms of the charge density, having a x for which
cosx ~ is zero, would vanish. This is not the case;
p„,)L(20r/a)(2, 2,2)j is quite large. Second, the valence
charge is 6nite over an atomic cell which is definitely
nonspherical in shape. The distance from an atomic site
to the atomic cell wall varies with direction by a factor
of 2. These objections, however, are not severe when we
wish to use p, )(r) in Eq. (3.12); that is, a spherical
average of the valence charge density does not materi-
ally affect the results of (3.12). There are three reasons
for this. First, the valence charge density is approxi-
mately spherical in the neighborhood of the nucleus.
Second, small mistakes in calculating p, )(r) do not
much affect the quantity in brackets; the cube root is
a great leveler. Third, since the quantity in the curly
brackets is near zero at even the closest atomic cell wall,
the nonsphericity of the atomic cell has negligible effect.

The valence-valence exchange potential as a function
of position is

V exch (r) — 3L3p (r)/~

jr�/3

(3.13)

This seemingly simple expression provides some of the
most difficult work in this calculation. We have written
the valence charge density as a sum of three terms,
namely, A(r), B(r), and C(r). A(r), the result of plane-
wave —plane-wave interference, is a relatively smooth
and spread out function of r. B(r) and C(r) are relatively
spherical and localized functions of r, i.e., they may be
treated in the same manner as p,„„(r).Therefore, we
have made another separation to more readily facilitate
taking the cube root, our final goal being the Fourier
transform of this cube root. This separation is
p-')'"(r)

= {LA(r)+B(r)+C(r)3'"—A"'(r))+A'"(r). (3.«)
The term in curly brackets is treated in the same way
as the curly-bracketed term in (3.11), i.e., the smooth
part of the valence charge is approximated by its
spherical average. The charge density of B(r)+C(r) we
call the valence "wiggle. " The exchange potential due
to this wiggle is

V I .
1 exch(r) — 3(3/~) I/3

X (LA (r)+B(r)+C(r)j"'—A'I'(r) ) . (3.13')

The Fourier transform of this spherical potential is
readily taken.

The remaining part of the valence exchange potential
is treated quite differently. The Fourier transform of
A '('(r) is calculated. Two different methods have been
used to calculate this quantity. Kleinman and Phillips"
used the erst two tt;rms of a Taylor series expansion of

the cube root of the charge density as follows.

A'('(r) =I A(x=0)+P A()()e*'"'1"'
«&0

A ((()
=A'&'(, =0)~ 1+-', X e").xx0 A():=0)

Quelle, 'A who also used this procedure in his Si calcula-
tion, questioned its validity. Herman has claimed that
the power series Inethod, as used by Kleinman and
Phillips and by Quelle, is inadequate. Herman instead
evaluated the valence charge density at a large number
of points in the unit cell and used a least-squares fit to
determine the exchange potential. Herman's procedure
is rather time consuming. We decided to improve the
power-series-expansion method by taking one Inore
term in the expansion. Our expansion is

V..) ...'x'"(X) = —3L3/A'(0)0rf'(' —A ()()—
3 9A()0=0)

XA(~')A(~;) Q i)(&,+&,—&) ~. (3.13")
Kj, Kj+0

We now write in reciprocal space the one-electron
potential "seen" be a valence electron

V= (3.4)+(3.6)+(3.9)+(3.12")+(3.13") (3.16)

where the numbers in parentheses refer to the right-hand
sides of the corresponding equations.

The Fourier transform core and valence potential are
listed in Tables I and II, respectively.

The variation with the (1,1,1) component of the
crystal potential is listed in Table III.

IV. 18 ENERGY

The Schrodinger equation for the valence electron in
the OPW representation is

&L~-(~,~t.)tt,j=&3~—(~,a.)O.l, (4.1 )

» F, Herman (private communication).

A(x)
A"'(r) =A"'( =0)(1+-,' r —e"'

«A (((=0)

2
A(((;)A()(,)e'("'+" &' ~. (3.15)

9A'(((=0) x;,x;~0

Herman estimated that the two-term power-series ex-
pansion might be in error by as much as 20%."We
would expect that the three-term expansion we use is
considerably better than that with an error of about
4%. We write the Fourier transform of the exchange
potential due to the smooth charge density 2 in this ap-
proximation as
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TABLE I. The Fourier coefIIIcients of the ionic potential. For
g=gp ——6.7238 Bohr units. The structure factor is included.

TABLE III. The variation with lattice constant of the (1,1,1)
Fourier coeKcient of the crystal potential.

h= (g/2m. l~

(1 1 1)
(2,2,0)
(1,'1',3)
(2;2,2)
(0,0,4)
(3,3,1)
(2,2,4)
(3,3,3)
(1,1,5)
(4,4,0)
(5,3,1)
(4,4,2)
(6,2,0)
(3,3,5)
(2,2,6)
(4 4 4)
(5,'5', 1)
(1,1,7)
(6,4,2)
{5,5,3)

Nuclear
Coulomb

1.071
0.568
0.292
0.0
0.284—0.69—0.189—0.119—0.119—0.142—0.091
0.0—0.114
0.075
0.0
0.095
0,063—0.063
0.081
0.054

Core
Coulomb

0.343—0.170—0.084
0.0—0.077
0.044
0.046
0.028
0.028
0,032
0.020
0
0.023—0.015
0—0.018—0.012
0.012—0.014—0,009

Core Total ionic
exchange potential

0.027
0.033
0.022
0.0
0.027
0.018—0.022—0.014—0.014—0.018—0.012
0—0.015
0.010
0
0.012
0.008—0.008
0.010
0,006

0.755
0.431
0.230
0
0.234—0.142—0.165—0.105—0.105—0.128—0.083
0—0.105
0.070
0
0.089
0.059—0.059
0.077
0,051

TABLE II. The Fourier coefficients of the self-consistent valence
potential. For g = gp ——6.7238 Bohr units.

h =u/2m.

(1 1 1)
(2,2,0)
(1,'1,'3)
(2,'2,'2)

(0,0,4)
(3',3,'1)
(2,2,4)
(3,3,3)
(1,1,5)
(4,4,0)
(5,3,1)
(4,4,2)
(6,2,0)
(3,3,5)
(2,2,6)
(4,4,4)
(5,5,1)
(1,'1,'7)
(6,4,2)
{5,5,3)

Valence
exchange
potential

0.122
0.035
0.001—0.018—0.013
0.004
0.017
0.012
0.004
0.006
0.007—0.001
0.005
0.002
0.001—0.001
0.001
0.006
0.000
0.005

Valence
Coulomb
potential

—0,255—0.021
0.002
0.007
0.005—0,001—0.003—0.002—0.002—0.001—0.000—0.000—0.000—0.000
0.000—0.000'

—0.000
0.000—0.000—0.000

Total valence
potential

—0.134
0.014
0.003—0.011—0.008
0.003
0.014
0.010
0.002
0.005
0.006—0.001
0.005
0.002
0.001—0.002
0.000
0.007—0.000
0.005

where P, is the 1s eigenstate of the valence Hamiltonian
JI. This enables us to rewrite (4.1a) as follows:

(&—&) = (&.—~)(4,0.)k. , (4 1b)

where E, is the eigenvalue of H associated with f,.
Since (g,P,) is of the order of a few tenths, the impor-
tance of E, to the determination of the valence eigen-
values is self-evident.

The 1s energy is important in another way. The elec-
trostatic terms contributing to TCE, as well as those of
TCE, which are due to 8 and C of the valence charge
density, are very similar to those entering into the cal-
culation of the 1s energy. One must remember that the
electron entering most of these calculations is not the
actual 1s core electron, but, rather, the corelike part of

C/Qp

Nuclear Coulomb
Core Coulomb
Core exchange
Total core and

nuclear
Valence Coulomb
Valence exchange
Total valence
Total crystal

0.98

1.093—0.349
0.028
0.772

—0.254
0.120—0.133
0.639

1.00

1.071—0.343
0.027
0.755

—0.255
0.122—0.134
0.622

1.02

1.050—0.336
0.025
0.739

—0.257
0.123—0.134
0.605

1.04

1.030—0.330
0.023
0.723

—0.261
0.126—0.135
0.588

the OPW valence wave function. In practice the wave
function of the 1s core electron and the wave function of
the valence Hamiltonian are numerically almost
identical. "

The problem which has caused the most confusion in
the calculation of this energy is the determination of the
Coulomb potential as a function of position. For the
smooth part (i.e., the plane-wave part) of the valence-
electrons wave function it is suScient to determine the
Fourier transforms of the Coulomb potential, since the
high Fourier transforms (i.e. , those for large g) con-
tribute only slightly to the valence-electrons's energy.
However, the high Fourier transforms of the potential
contribute heavily to the energy of the more localized
core functions as well as the corelike part of the valence
wave function. The number of Fourier transforms of the
core and nuclear potential required to make the core
energy coverage is prohibitively large.

Since the core electrons on neighboring sites have
practically no overlap, we assume that the Bloch core
state of wave vector k may be written in the tight-
binding approximation as

(r) — Q Q P(r R ~)pic ~ (R+ri (42)
(2&V) 1/2 n=l v=1

where g, is an atomic-type wave function. In the pre-
ceding section we divide the Coulomb potential into
three parts, V '" V ' and V,i ' . This ls the
most useful division for evaluating Vo'"'(k). In order to
obtain V ' '(r) it is necessary to divide the potential
differently. It is very difficult to obtain V,io"'(r); and
since the Fourier series representing the valence poten-
tial converges much more quickly than that of the core
and nuclear potentials, we evaluate the Coulomb con-
tribution of the smooth part of the valence charge den-
sity to the core energy as

4 I V-i.-""'ll|.)=Z p.(~) V..i.-""'(~), (43)

where pi, (x) is as defined in (3.5b) and the sum in (4.3)
is over the nonzero reciprocal-lattice vectors. Since the
core electrons do not overlap, the energy of the Bloch
state P, (r) in the crystal is the same as that of the
atomic-type wave function P, (r —R;—~„) in the i, v

"F. Herman (private communication).
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atomic cell. It is, therefore, necessary to distinguish the
core plus nuclear potential caused by charge within the
i,v atomic cell from that created by charge lying outside
the i,v atomic cell.

The potential due to the external core plus nuclear
charge together with the ~= 0 component of the valence
charge (including the internal valence charge) we call
the Madelung potential M(r) T.he external core plus
nuclear potential is the same as that due to 4+ ions at
each atomic site in a diamond lattice with a uniform
compensating background of negative charge. E, the
energy per unit charge of 4+ ions in a diamond lattice,
has been calculated by Kleinman" using the formula
given by Fuchs" derived by the Ewald sum technique.
We have recalculated this energy to higher accuracy:

E = —21.5472/a. (4 4)

The Madelung potential at the i,v atomic site is just
twice E, and the potential seen by an electron at the
lattice site is

M(R, +~„)= 2E„—
=- 43.0944/a . (4.5)

The Madelung potential seen by an electron has a maxi-
mum at the atomic site. Since the core function is not
completely concentrated at the atomic site, we must cal-
culate the variation in the Madelung potential in the
vicinity of the atomic site. Remembering that in the
units we have adopted Poisson's equation is V'V
=Sap, we may write the potential seen by an electron
due to the zeroth Fourier component of valence charge,
by definition the only charge in the vicinity of the atomic
site which contributes to the Madelung potential, as

The remaining Coulomb contribution is due to the
orthogonalization parts of the valence charge density.
The procedure used in calculating the Coulomb con-
tribution of the core energy of the smooth part of the
valence charge density is too slowly convergent for use
in calculating the corresponding contribution of the
orthogonalization terms B(r) and C(r). In order to ob-
tain satisfactory convergence we must consider orthog-
onalization terms as functions of r rather than as func-
tions of x. When we do this, we distinguish that part of
the potential due to orthogonalization charge external
to the i,v cell from that due to the internal orthogonali-
zation charge. Pick and Sarma" have shown that one
major effect of the orthogonalization terms is to extract
a quantity of valence charge e from the core region,
where e is just the zeroth Fourier transform of B(r)
+C(r), which has the same absolute value as the zeroth
Fourier Transform of C(r) alone. When we discuss A, B,
and C in this section, we implicitly assume that we have
summed the contributions from all the electrons in the
Brillouin Zone, four per ion (see GKI), in advance. The
potential due to the external orthogonalization charge
is just a Madelung-like term due to a positive charge e

situated on each atomic cell. The combined Madelung
and external orthogonalization contribution to the core
energy is just —,'(4+ e) times the Madelung energy alone.
The internal orthogonalization charge gives rise to the
Coulomb potential

r

Vort,i„""'(r)= (2/r) err p«iq, (r') dr'
0

where
AM(r) = —nr', (4.6)

+2 47rr'p„ti, „(r')dr'. (4.8)

8 128m.
n=ssp„i(a=0) =-;s X4&& —=—

8 3c

where r is again measured with respect to the i,v nucleus.
From potential theory we know that the spherical
average of the potential due to point ions outside the
sphere is equal to the potential at the center of the
sphere. Thus M(R;+~+r) = —2E -nr' is an exact
formula for the spherical average (which is all we need
for the expectation value of the Is energy) of the
Madelung potential about an atomic site.

The Coulomb potential due to the total ionic charge
within the i,i cell (nuclear plus core) is

12 2 r

V;,„'"i(r)= ——+ — 4mr'2p„„(r') dr'
r r

+2 47rr'p «,(r')dr', (4.7)

where p„„(r) is 2', '(r).
' I,. Kleinman, Phys. Rev. 130, 2283 (1963)."K.Fuchs, Proc. Roy. Soc. (London) 151,585 (1935).

A discussion of porch, I

=B(r)+C(r)j appears in GKI. In
practice (4.7) and (4.8) are evaluated together. In prin-
ciple the space-averaged value of V„th,o'"'(r) should be
subtracted from (4.8) (to give no &+0 Fourier trans-
form), but the difference is numerically insignificant.

We now write the total Coulomb contribution to the
1s energy as

E.""'=(I4. I (4 3+)L(4 5)+ (4 6)3(4+ )
+ (4 7)+ (4 8) I~t .), (4.9)

where the numbers in parentheses represent sym-
bolically the right-hand sides of the corresponding
equations.

The contribution of the exchange potential to E„
given the exchange potential used in the one-electron
valence Hamiltonian, presents no great problem. The
exchange contribution to E, due to the smooth part of
the valence charge density is calculated in the same

"R. Pick and G. Sarma, Phys. Rev. 135, A1363 (1964).
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TABLE IV. Contributions to the total crystal energy in Ry/atom. aa is taken to be 6.7238 Bohr units.

Q/Qp

Weighted one-electron energy
1 ~2~al-val
Point ion interaction
GB Bruckner correlation
XBP correlation
Total crystal energy (GMB)
Total crystal energy (NBP)

0.98

—0.2511
2.3672—13.0801—0.3211—0.4286—11.2851—11.3925

1.00

—0.4517
2.3015—12.8185—0.3161—0.4261—11.2848—11.3948

1.02

—0.6439
2.2410—12.5671—0.3112—0,4236—11.2812—11.3936

1.04

—0.8214
2.1808—12.3255—0.3063—0.4212—11.2725—11.3873

1.06

—0.9936
2.1255—12.0929—0.3015—0.4188—11.2626—11.3798

fashion as the valence Coulomb contribution in (4.3),

(p, i
v.„-- ~ lp, )=p p„(~)V..;-~(~), (4.10)

where the sum is over all ~ (including ir=0).
The core exchange potential is taken from (3.12), and

the exchange potential due to the orthogonalization
charge density is taken from (3.13").

The remaining contribution to E, is the kinetic en-

ergy. Since we are assuming rigid cores, the kinetic en-

ergy does not change from the atom. Herman and
Skillman list both the atomic core eigenvalue and the
self-consistent potential used in their calculation, and
the kinetic-energy contribution to E, is just

Q, I2'iy, ) ---z o"—(tl, l
v lP,). (4.11)

We now write all the contributions to E,.

valence-valence and core valence as well as the ~=0
neutral ion potential dehned in Sec. V C which follows.
About 133 OPWs are used. The matrices range in size
from SX8 (for I') to 40X40 (at Z).

B. Minus One-Half the Valence-Valence Contribution

The way in which the doubly counted valence-
valence interactions a,re calculated deserves some men-
tion here. The valence-valence interaction energy per
atom is

oval-val S& (pvaivvai) y (5.1a)

where (a'/8) is the volume of the atomic cell and p, i

is the charge density of all the valence electrons. The
potential includes both direct Coulomb and exchange.
In order to calculate (p .„iV,i) to sufficient accuracy it
is necessary to split the calculation into three parts

+ LB(r)+c(r)fv„,„;,„,.(r)d r

V. RESULTS AND CONCLUSIONS

E,= (4.9)+(4.10)+(4.11)
+Q, i

(3.12)+(3 13b) lf,), . (4.12) + i— i= + L~(~)v i(~)+(~(~)+c(~))v

where the numbers in parentheses refer symbolically to
the right-hand sides of the corresponding equations.

(5.1b)

We list the contributions to the total crystal energy in
terms of Ry/atom.

A. Weighted One-Electron Energy

This is the sum of the one-electron energies of four
electrons, weighted as described in G-KI. Included in
this energy are the ~=0 exchange potentials, both

2, 8, and C are in units of electrons per atom. V,l, is
due to 3, the smooth part of the valence charge den-
sity, and V i;«&, is due to 8+C. As in Sec. II, the
reason for rewriting (5.1a) into (5.1b) is to avoid the
slow convergence of the Fourier transform of squared
wiggle charge densities. V,l;~l,~'"' should be taken
with respect to its average value, but the difference is
numerically insignificant. And also as in Sec. IV, we

TABLE V. Lattice constant, bulk modulus, and binding energy of diamond with a parabolic energy approximation.

Points sampled

Equilibrium lattice GB
spacing (in units of u/ap) XBP

0.98, 1.00
1.02

0.988
1.003

1.00, 1.02
1.04

0,996
1.005

Expt

Bulk modulus lin
dyn/cml

GB
BP

3.04X10»
3.16y, 10»

4.69y10»
4.69' 10»

4.42' 10» b

Minimum total GB
crystal energy (in Ry} XBP

—11.288—11.395
—11.285—11.395

1.42 c

a J. Thewlis and A. R. Davey, Phil. Mag. 1, 409 (1956).The value of ao in this reference is for T =123 K. The value originally used in the calculation
(i.e., the reason why ao/ao experimentally is not =1) was taken from L. Kleinmann and J. C. Phillips, Phys. Rev. 116, 880 (1959).

b H. J. McSkimin and W. L. Bond, Phys. Rev. 105, 116 (1957).
e D. D. Wagman et al. , Selected Values of Chemical Thermodynamic ProPerties (National Bureau of Standards Tech. Note No. 270-3, U. S. Government

Printing Oftice, Washington, D. C., 1968).
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must include both the Coulomb potential due to the
wiggle in the i,s atomic cell and that due to the wiggles
outside the i,s cell. The potential due to the exterior
wiggles is just a Madelung-like term, whereas the poten-
tial due to the interior wiggle is just an atomiclike term.

C. Point-Ion Interaction

This is the energy of a diamond lattice of 4+ point
ions in Ry/atom. This contribution is

16h'

0

8
12
16
20
48

192
416

0.98

0.1836
0.1807
0.1779
0.1752
0.1725
0.1699
0.1532
0.0975
0.0573

1.00

0.1781
0.1754
0.1728
0.1703
0.1677
0.1653
0.1496
0.0966
0.0576

1.02

0.1729
0.1704
0.1680
0.1656
0.1632
0.1609
0.1462
0.0957
0.0577

1.04

0.1679
0.1656
0.1633
0.1616
0.1589
0.1567
0.1433
0.0948
0.0579

TABLE VI. Selected orthogonalization coeflicients for n/a0= 0.98,
1.00, 1.02, 1.04 as a function of h'= (g/2w)'k'.

= —4&(21.5472/a. (5.2)

Although the ions are not point particles, their in-
teraction energy is the same as for point charges, since
the ions are nonoverlapping spheres. However, in calcu-
lating the Madelung energies (see Sec. IV) the result is
not finite unless one includes the effect of the constant
background of negative charge, i.e., the ~=0 Fourier
transform of the valence charge density.

The resulting valence-core interaction is different for
point ions than for the real 4+ C ions, and this interac-
tion has been discussed in Sec. IU in connection with
(4.6). This core valence energy per atomic site is
—2(g, ~nr'~P, ), where n is that which appears in (4.6).
In line with our discussion in GKI we have decided to
include this term with the other core valence terms, i.e.,—1/2Q, ~nr'~P, ) appears on the diagonal of the Hamil-
tonian matrix of each valence state, and, therefore, does
not appear as a separate contribution here.

D. Correlation Energy

The Gell-Mann —Brueckner (BG)'o formula for corre-
lation is supposed to apply for r, &1. The Nozieres-
Bohm-Pines (NBP)" formula is applicable for r, )2.
These are free-electron formulas, but at present there is
no other way to estimate the correlation energy. There
is no formula for 1&r,&2. r, for diamond is 1.3. There-
fore, we write both formulas in Ry/atom:

GB= 4&& (0.0622 lnr, —0.096), (5.3)

NBP = 4&((0.0311 lnr, —0.115). (5.4)

Table IV lists these contributions and their sums for
several values of the lattice constant a.

The equilibrium lattice constant, bulk modulus, and
minimum total crystal energy are determined from the
results listed in Table IV. We do this by fitting three

"M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1952)."P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958).

points to a parabola. We have used two sets of points;
0.98, 1.00, and 1.02 constitute one set, while 1.00, 1.02,
and 1.04 constitute the other. These results are listed in
Table V. Table VI shows some selected orthogonaliza-
tion coefficients.

The results should not be interpreted as favoring the
Nozieres-Bohm-Pines correlation. It is not clear what is
the convergence error in the electronic contribution due
to the finite basis set ( 133 POW's) in this calculation.
The disconcerting decrease in the bulk modulus as a
function of lattice constant may well be due to a lack of
convergence, as it is reasonable to expect that in the
denser crystal the electronic wave function will converge
more rapidly than in the expanded crystal. There is also
the possibility that the decrease in the bulk modulus is
due to a neglect of the overlap of 1s electrons on neigh-
boring atoms.

Future calculations should consider the recent alter-
native proposals to the Slater exchange, such as those
offered by Gaspar~i» Kohn and Sham ~2 and by H:er
man. "In addition many of the difhculties arising from
the OPW method might be better handled by going to
one of the generalizations of the method. "
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