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Symmetry Considerations and the Vanadium Dioxide Phase Transition
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Some consequences of the symmetry change associated with the vanadium dioxide metal-semiconductor
transition are derived. A free-energy expansion in the ionic displacements has been used. The effect of a
(101) zone-edge phonon instability and strain effects have been included. The symmetry arguments have
been carried out using multiplier representations of the symmetric phase space group D4&'. lt is found
that a 6rst-order transition from the symmetric phase to the monoclinic phase, C2~', is compatible with
such a free-energy expansion. Domain structure is predicted, which agrees with observations available.
The dependence upon the spontaneous distortion of the dielectric tensor is derived. While the results are
compatible with only one (101)zone-edge phonon becoming unstable, the possibility of more than one such
phonon participating in the transition cannot be ruled out.

I. INTRODUCTION

A %UMBER of microscopic models for the nonmag-
netic vanadium dioxide metal-semiconductor first-

order phase transition have been proposed. ' 3 These
models have focused attention upon the striking con-
ductivity change at the transition temperature and have
treated the accompanying symmetry change4' from
space group D4g" to C2A' as a secondary eAect. It is the
purpose of this paper to consider the possible conse-
quences of this symmetry change, particularly as it
affects domain structure and coupling of the transition
mechanism to an external electric field.

The previously proposed microscopic Inodels of the
transition' ' are inadequate for this purpose. First, these
models are microscopic and so aim at an understanding
more ambitious than required for the symmetry con-
siderations we have in mind. Quantitative versions of
these models which could predict crystal symmetry
would be extremely complicated mathematically. Sec-
ondly, there is growing evidence' that a basic assump-
tion of these models, namely, that of a very narrow
conduction band width, does not apply to vanadium
dioxide. Some other difFiculties with these models are
discussed in Ref. 6.

An alternative to the microscopic model approach is
the free-energy expansion model so successfully em-

ployed for ferroelectrics. ~ Such an approach emphasizes
the lattice dynamical aspect of the transition, that is,
the change in space group at the transition. Being more
phenomenological than the microscopic models, this
approach requires less detailed assumptions about the
microscopic mechanisms driving the transition. Of
course, before the transition can be considered as under-

D. Adler, in Solid State Physics, edited by F. Seitz et al.
(Academic Press Inc. , New York, 1968), Vol. 21, p. 1.' N. F. Mott, Phil. Mag. 20, 1 (1969).' H. Frohlich, in Quantum Theory of Atoms, 3IIolecules, and the
SoLid State, edited P. Lowdin (Academic Press Inc. , New York,
1966},p. 465.

4 S. Westman, Acta Chem. Scand. IS, 217 (1961}.
5 G. Andersson, Acta Chem. Scand. 10, 623 (1956).' C. N. Berglund and H. J. Guggenheim, Phys. Rev. 185,

1022 (1969).' A. F. Devonshire, Phil. Mag. ~0, 1040 (1949).' P. C. Kwok and P. B, Miller, Phys. Rev. 151, 387 (1966).

stood a microscopic derivation of the free energy ex-
pansion is mandatory. However, at an intermediary
level of understanding such as now exists, the phe-
nomenological expansion can serve as a convenient
starting point for a symmetry analysis.

The question of validity of a free-energy expansion
for a first-order transition is somewhat unclear. The
microscopic models have seldom been carried through to
a free-energy expression. An exception is the one-
dimensional Adler-Brooks crystal distortion model'
which predicts a free-energy nonanalytic in the crystal
distortion. This nonanalyticity disappears' for the wider
bands that accumulating evidence suggests for vanadium
dioxide. ' Other attempts to justify free-energy ex-
pansions for lattice instabilities are based upon a
modified perturbation theory treatment of anharmonic
effects. ' ' These treatments assume that perturbation
theory will work and, to be practical, they must also
assume that only a few terms are needed (i.e. , small
displacements of the ions from their symmetric phase

equilibrium positions). More general theoretical argu-
ments for second-order phase transitions suggest that
validity of a free-energy expansion is not dependent on
the detailed nature of the interaction causing the transi-
tion but only upon the range of this interaction. ""
Furthermore, systems exhibiting first-order phase tran-
sitions well described by free energy expansions do
exist. ~ Therefore, we take the view that it is reasonable
to adopt a free-energy expansion, since theoretical
results suggest its validity for a wide variety of systems,
and since physical systems do exist where such expan-
sions work.

If one were to attempt to construct a microscopic
lattice dynamical model of the transition, the number of
rutile phase phonons participating in the transition
would be of interest. The bearing of sylnmetry argu-
ments upon this point is also considered in this paper.
However, for the phenomenological determination of
the free-energy expansion the number of unstable

A. A. Maradudin, in Symposium on Ferroelectricity, edited by
E. F. Weller (Elsevier Publishing Co., New York, 1967), p. 72.I L. P. Kadanoff et al. , Rev. Mod. Phys. 39, 395 (1967)."D.J. Thouless, Phys. Rev. 181, 954 (1969).
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phonons is not of interest, but rather the number of
different symmetries of unstable phonons (see Sec. VI).

II. MATHEMATICAL STATEMENT OF PROBLEM

The background to free-energy expansions has been
previously discussed by Landau and Lifshitz, " by
Lyubarski, " and by Birman. ' However, an approach
which is very suited to a discussion of domain types and
which provides a clearer understanding of what have
been called "virtually possible" changes in crystal
symmetry" (see Sec. IV) is based upon the variety of
degenerate ground states available to the crystal in its
distorted phase. Domain structure in a macroscopic
sample results when diferent regions of the crystal adopt
different choices for ground state.

Such a multiplicity of ground states can be shown to
exist if, as is the case for vanadium dioxide (see Ap-
pendix), the distorted phase differs from the symmetric
phase only by a loss of some symmetry operations. "
The full symmetry of the symmetric phase rejects
itself in these degenerate ground states. Every sym-
metry operation which is lost in a particular distorted
state generates from this particular distorted state
another one. What is more, the symmetry operations
preserved in any particular distorted state must form a
subgroup of the symmetric phase symmetry group. The
free energy itself remains invariant in both phases to
symmetry operations of the symmetric phase-space
group as follows from the definition

F= —kT In Tre ~~'~

where H is the crystal Hamiltonian which includes the
interactions which ultimately cause the transition to the
distorted phase, but not any minor perturbations which
mould cause one distorted ground state to be preferred
over another.

Suppose that from these various ground states a
linearly independent set is chosen g p) and that all the
ground states {RP) are expressed in terms of the

{Pp) (R=a symmetry operator of H). Where a crystal
distortion is involved and no magnetic ordering occurs
each Pp can be characterized by its ionic configuration,
e.g. , by specifying the ionic displacements, up(n; ki),
from the symmetric phase equilibrium positions. Here,
up(n; ki) is the displacement in the nth cell of the kth
ion along the ith coordinate axis for Pth distorted ground
state. Because the {up} transform into linear combi-
nations of themselves under the symmetry operations of
the symmetric phase-space group, they form a basis for

"L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Co. , Inc. , Reading, Mass. , 1958), p. 430."G. Ya. Lyubarski, The Applications of Group Theory in
Physics (Pergamon Press, Ltd. , Oxford, 1961), p, 121, et seq."J. L. Birman, in Symposium on Ferroelectri city, edited by E. F.
Weller (Elsevier Publishing Co., New York, 1967), p. 20.

"Reference 12, p. 452.' R. D. Mattuck and B. Johansson, Advan. Phys. 1'7, 509
(1968).

a representation of this space group. If this representa-
tion is reduced to its irreducible components, then each
up becomes a linear combination of the basis vectors

{f„),say, of the irreducible representations {q),

up=+ cp;&zfq&. (2)

If the distorted state symmetry is known, Eq. (2)
restricts the irreducible representations q which may
occur in the expansion of Np since Ip is invariant under
those symmetry operations E which are also symmetry
operations of the distorted-phase space group.

The free energy F is an invariant of the symmetric
phase space group. To make use of the invariance con-
dition, F is expanded in powers of the {cp.,„}:
F=FO+Q F&(P; gj)cp, „

+Q P F2(PP'; D,ci'2')cp„„cp ... , .etc. (3)

The mathematical problem then divides into two
parts. The first part is the determination of which
irreducible representations q are allowed in the ex-
pansion of Eq. (2). The second part is the determination
of the linear, quadratic, etc., invariants involving

{cp,„), {cp,„cp,, ; ), etc. , which can be formed from
these allowed representations and the reexpression of
Eq. (3) in terms of these invariants.

Even granting the validity of such an expansion, Eq.
(3) is equivalent to the free energy of Eq. (1) only with
the understanding that the {cp,„) are not arbitrary
parameters but are fixed by the requirement that at any
given temperature they take on the values which
minimize the F of Eq. (3). These minimization condi-
tions result in equations giving the T dependence of the
{cp,„).For example, in the Kwok-Miller analysis of
displacive ferroelectrics' the {cp,„}are the thermal ex-
pectation values of the normal-mode amplitudes.

III. TRANSLATION GROUP RESTRICTIONS ON
ALLOWED REPRESENTATIONS

The simplest restrictions on the irreducible repre-
sentations entering Eq. (2) stem from the requirement
that Np be invariant under translations of the distorted
phase. Such translation restrictions have been discussed
in general by Haas" and by Miller and Kwok. "These
authors restrict themselves to the case when the dis-
torted phase unit cell is an integer multiple of the
symmetric phase unit cell. This restriction is the same
as the assumption that the translation group of the
distorted phase is a subgroup of the translation group of
the symmetric phase, an assumption also made in Sec. II
of the present paper. It is then found that the only
irreducible representations tha, t are allowed in Eq. (2)
are those characterized by wave vectors which are in the
symmetric phase Brillouin zone and also are distorted
phase reciprocal-lattice vectors. Here these restrictions

"C. Haas, Phys. Rev. 140, A863 (1965).
'8 P. B. Miller and P. C. Kwok, Solid State Commun. 5, 57

(1967).
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will be related to the various degenerate ground states
labeled by P.

It follows from the assumption that the distorted-
state symmetry operators form a subgroup of the
symmetric phase-space group that each N~ is associated
with some particular way of choosing the subset of
monoclinic-space-lattice vectors from the set of rutile-
space-lattice vectors. For example, it is shown in the
Appendix that one choice for the general transjation of
the monoclinic phase x(m) is

x(m) =msai(r)+msas(r)+ (2mi —ms)as(r), (4)

where the {m,} are integers and the {a,(r)} are basis
vectors for the rutile lattice. Any other ways of im-

bedding the monoclinic structure in the rutile structure
must be obtained from Eq. (4) by some rutile symmetry
operation, since all the distorted degenerate ground
states are interrelated by such operations. Hence the
reciprocal lattices for the various ground states are also
related by symmetry operations. This leads to the con-
clusion that if one of the wave vectors for a given star of
wave vectors appears in the expansions of Eqs. (2) and

(3), so must they all.
The Kwok-Miller theorem on allowed wave vectors

when applied to the distorted state of Eq. (4) produces

and
q= a-,'(biabs), (6)

where {b,}are the rutile reciprocal lattice vectors. The
wave vectors appearing in Eqs. (5) and (6) represent
only two stars. The q=0 wave vector forms its own star
since, of course, it is not related to the (101) wave
vectors by any symmetry operation. The wave vector
—', (bi+bs) is related to all the other wave vectors of
Kq. (6) by the symmetry operations (o s/001), (o„,/111),
and (Cs„/110) (see Table I for notation). Hence all the
wave vectors of Eq. (6) belong to the same star. How-
ever, the symmetry operation (C4/001), a fourfold
screw axis parallel to the rutile c axis, carries the wave
vectors of Eq. (6) into

q= +-,'(bs+bs). (7)

Hence these also must be allowed for some other mem-
bers of the set {ue} of monoclinic distorted ground
states. Another unit cell, related to the first by (C4/001),
also describes a crystal structure with space group C»'.
H this unit cell is used the roles of ai(r) and a, (r) are
interchanged in Eq. (4) and Eq. (7) results directly
from Eq. (4) thus modified. The wave vectors of Kq. (6)
and Eq. (7) exhaust the q=(101) star.

From the above discussion it should be clear that
none of the other distorted ground states can lead to any
other star than the two just found. Only the q=0 and
the q =(101)stars occur in the expansions of Eq. (2) and
Kq (3)

IV. RESTRICTIONS IMPOSED ON REPRE-
SENTATIONS BY OTHER SYMMETRY

ELEMENTS

There are a number of space groups compatible with
any given translation group, so that specifying the stars
of the wave vectors of the irreducible representations
allowed in Eq. (2) is not suflicient to insure that the
corresponding free-energy expansion will describe only
the monoclinic phases with space group C~~,'. One can
treat al/ the allowed space groups compatible with the
translations of Eq. (4) (and the symmetry related
translations) and also compatible with the particular
ionic configuration found in rutile by considering all
ionic displacements compatible with the translations of
Eq. (4) (and the symmetry related translations) and the
ionic configuration of rutile. This is the approach taken
by I yubarski. '3 The resulting occurrence of space
groups other than the actually realized space group
(Css' in the present case) has been referred to as the
occurrence of "virtually possible" symmetry changes. "
The particular representations allowed in Eq. (2) by the
space group C»' then can be obtained easily by further
restriction to the subset of the general displacements
which is invariant under Css, viz. , the {ue(r4; ki) }.

To carry out this approach a method similar to that
used in analyzing molecular vibrations, but generalized
to allow wave vector dependence, will be adopted. First,
a complete set of ionic displacements compatible with a
given wave vector is defined, and the transformation
matrices of this set are constructed. These form a
reducible representation of the group of the given wave
vector. These matrices are then related by a phase
factor to another set of matrices which form a reducible,
unitary, multiplier representation of the poir4t group of
the given wave vector. This multiplier representation is
then reduced and the corresponding basis vectors for
each contributing irreducible representation are found
as linear combinations of the original complete set of
ionic displacements.

Although this machinery is elaborate for the problem
at hand, it possesses some advantages:

(1) Uery little actual calculation is involved if the
representations of Kovalev" are employed.

(2) The role of time reversal is easily included,
although in the present case this has trivial consequences.

(3) The coupling terms to strain and other macro-
scopic disturbances are easily derived.

(4) The approach is systematic, as opposed to a more
intuitive method based on symmetries of polynomials.

(5) The calculation illustrates a method with wide
application, easily adapted to other examples.

The use of multiplier representations has been dis-
cussed by Kovalev, "Lyubarski, " and by Maradudin

'~ 0. V. Kovalev, Irreducible Representations of the Space Groups
(Gordon and Breach, Science Publishers, Inc. , New York, 1964).
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and Vosko." This latter treatment will be followed
closely here. They have been applied to rutile by
Gubanov and Shur. "An alternative to the multiplier
representation approach is the factor group method,
applied to rutile by Gay et al.2

U. COMPLETE SET OF IONIC
DISPLACEM EATS

In the case of molecular vibrations, a complete set of
displacements for a molecular structure of r ions can be
constructed in a 3r-dimensional space by taking as basis
a set of 3r vectors each of which describes a unit
displacement of one of the r ions along one of the three
coordinate axes. For a crystal with r ions/unit cell the
same set of 3r vectors can be defined for one unit cell. A
set of displacements compatible with a given wave
vector q is then defined for the whole crystal by, for
example, propagating the jth of these 3r displacements
to (say) the mth cell by a translation x(n) and multi-
plication by the phase factor e'&'&"&. Denote the re-
sulting displacement of the kth ion (k =1, 2, . . . , r) in
the eth cell by

Any arbitrary displacement field in the rutile structure
which transforms with wave vector q under translations
of the rutile lattice can be expressed as a superposition
of the {e„.}.

Paralleling the approach of Maradudin and Vosko, "
define the general rutile space group operation {R/v(R)
+x(m)} by

{R/v(R)+x(e) } x(m, k) =Rx(m, k)+v(R)+x(m)
9—=x(M,E),

where R denotes rotation and reflection, v(R) is the
associated nonprimitive translation, and x(m) is the
general lattice translation of the rutile lattice. These
various operations are considered to be referred to a
common origin. This choice of origin aBects the choice
of v(R).

Define the 3r-dimensional vector Eq, by

E, , ;(s) =e„(k;i), (i = 1, 2, 3; k = 1, 2, . . . , r;
s = (k; i) = 1, 2, . . . , 3rf

where expression (8) defines the e's. It will be noted that
although j and s both run through the same 3r values,
they are not the same index, since j labels the 3r
independent vectors and s labels components of these
vectors. The E's transform according to the rule

E„.'—={R/v(R)+x(n) }E„
=I Lq, {R/v(R)+x(n)}/E„.,

(1o)

'0 A. A. Maradudin and S. H. Vosko, Rev, Mod. Phys. 40, 1
(1968).

"A. I. Gubanov and M. S. Shur, Fiz. Tverd, Tela 7, 2626
(1965) /English trans. :Soviet Phys. —Solid State 7, 2124 (1966)|."J.G. Gay eI, al. , J. Phys. Chem. Solids 29, 1449 (1968).

where the 3r&3r components of the matrix F are given
by

I'„.Lq; {R/v(R)+x(e)}j
R,g(k P(kl R))cia [fa/v(z)yx(n) } x(i)—x(s')]

(s=1, 2, . . . , 3r;i=1, 2, 3;k=1, . . ., r)

with F (k,R) defined through Eq. (9) by

K=8(k,R).
For g=o, the matrices I' are the direct product of the

3)&3 fixed-point operation matrices R;,' and the r)&r
permutation matrices B(k,F (k',R)) just as would be the
case in a vibration analysis of a single unit cell treated
as if it were a molecule.

The matrices F commute with the qth component of
the Fourier-transformed dynamical matrix whose eigen-
vectors are the phonon eigenvectors for wavevector q.
The only symmetry operation of the Fourier trans-
formed dynamical matrix which is not in the set of I
matrices is the time reversal operation. (see Maradudin
and Vosko"). This point is very important because it
identifies the symmetry analysis made here with the
symmetry analysis of the crystal phonon spectrum,
except for the effects of time-reversal symmetry. In the
present case, it will be found that time-reversal sym-
metry has the eBect only of allowing rea/ phonon
eigenvectors to be chosen at the (101) zone edge Lsee
Eq. (15), et seg. j.

VI. (101) BASIS VECTORS

One might hope to find exactly which phonons could
be involved in the transition if each (101) phonon had a
different symmetry, because presumably the observed
displacements are compatible only with some of the
symmetry types. Such an analysis has been performed
for perovskite materials by Cochran and Zia." Un-
fortunately, there are only two symmetry types at the
(101) zone edge. As a result, it is possible only to say
whether the phonons involved belong to one or both of
these symmetry types. Since each of these symmetries
appears more than once, even if only one type is
unstable it cannot be decided by symmetry alone how

many phonons of this type participate in the transition.
If several phonons of the same symmetry participate

in the transition each one will contribute an identical
series of terms to the free energy expansion. In addition
there will be anharmonic terms coupling these phonons
to each other. The number of coefficients available in
such circumstances becomes too large to be useful,
particularly since all the phonons will couple similarly
to an external probe. However, by applying the minimi-
zation conditions for the free-energy expansion with
respect to all the coefficients contributed by all but one
of these modes, a one-phonon expression results in which
the coefficients have a pressure and temperature de-

23 Ql. Cochran and A. Zia, Phys. Status Solidi 25, 273 (1968).
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Operation

(~/0)
(Cg /110)
(C2„/110)
(C2g/111)
(C2b/111)
(«'/0)
(C4/001)
{C4 '/001)
(I/001)
(0„,/111}
(o,y/111)
(o., /110)
(~vb/110)
(0-k/001)

(54/0}
{~4 '/o)

Transformed
position

(x,y,s)
(5+x, k —y, —~)

1

(—x, —y, s)

(—y, x, -', +s)
{y —x -'+~)

1 1r —~, 2
—

X, —2+~)

(k+y, 5+x, ~)

(x, y, -', —s)

(y, —x, —s)
(—y, x, —s)

Vanadium
mixing

(1)(2)
(1,2)
(1 2)
(1)(2)
(1) (2)
(1) (2)
(1,2)
(1,2)

(1)(2)
(1,2)
(1,2)
(1)(2)
(1)(2)
(1)(2)
(1,2)
{1,2)

Oxygen
mixing

(3) (4)(5)(6)
(3,6)(4,5)
(3,5) (4,6)
(3) (4) (5,6)
(3,4) (5) (6)
(3)4)(5,6}
(3,6,4,5)
(3,5,4,6)
(3,4)(5,6)

(3,5) (4,6)
(3,6) (4,5)
(3,4) (5) (6)
(3) (4) (5,6)
(3) (4) (5) (6)
(3,6,4,5)
(3,5,4,6)

= OXYGEN
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TABLE III. The two representations at the (101)zone edge of rutile. Also indicated are the characters of the matrices I'(ff) discussed in
the text, and some information used in determining the effect of time-reversal symmetry.

(' ')
XT(R}

Phase

Lv"' (ff) 7'

translation associated with the space-group operation
{R;/v(R;)}.These ray representation matrices are re-
lated to the matrices F of the true representation of
Eq. (11) by

T(tI. R) e's v(E)I'Ltl {Ryv(R)}j. (14)

The use of a ray representation enables one to restrict
attention to the fixed-point operations R; which are
finite in number. This is done at the expense of intro-
ducing the phases of Eq. (13).Kovalev" has found that
at the (101) zone edge for the rutile structure there are
only the two irreducible representations v '", ~ '" listed
in Table III. (The entries for x and y are interchanged
in Kovalev, who treats k= (011) rather than (101).$
The characters of the T matrices are also listed in
Table III. It can be seen that T (R) =6r'" (R)+3r "l (R),
in agreement with Gubanov and Shur. "

That part of the T matrices based upon vanadium
ions alone forms a representation by itself, since no
mixing of atoms of diferent chemical species occurs
under any symmetry operation. This vanadium ion
representation is found to reduce to 3r "&. Similarly, the
oxygen ions form a representation reducible to 3v"~

+3v'". The observed oxygen ion displacements of
Andersson5 are about one significant figure less accurate
than the vanadium ion displacements. As a result the
errors in the oxygen ion displacements are of the same
order as the displacements themselves and so it is
impossible to say whether or not there is a soft v-"& mode.

The vanadium ion displacements are more accurate but
because they form a representation reducible to 3m('}

arbitrary displacements of the two va ndium ions in the
rutile unit cell are compatible with symmetry

Time reversal symmetry decides whether additional
degeneracy of the phonon spectrum occurs. According
to Maradudin and Vosko26 no additional degeneracy
occurs and, moreover, real phonon eigenvectors of
symmetry ~('} can be chosen if

1
P e

—1(br+ha) v(E)gL&(1) (R)sj —1
h

where v(R) is the nonprirnitive translation of the space
group operation associated with the fixed point opera-
tion 8, h is the order of the point group of wave vector
(It=0.8 here), and X is the trace of r&'&(R) r&'1(R). The
phase factors and matrices fr'" (R)j' are listed in
Table III. Condition (15) can be seen to be satisfied.
Using projection operators for the representation
Prat'& (R)P,+ with

(chosen so that the representation matrices corre-
sponding to T-matrices which commute with the com-
plex conjugation operation are real and, so far as
possible, diagonal" ) the eigenvectors for the vanadium

TABLE IV. The true representation matrices for the (101)zone edge. The real matrices in the second row are related to those in the
erst row by the unitary transformation T(»I}('}(real) =pT(»I}&')p+ with

(&/0)

(1 0)

(C2 /1 10) (C4'/0) (I/001)

(' ')
(0-„ /1 11)

T(101}'"(«») (' ') (' ') (' ') (' ')

&~ Reference 20, comment preceding Eq (4.50a), p. 1. 8, and Zq. (5.63), p. 28.
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TABLE V. Full space group matrices generated by the basis ff&, f&,f4,f4) All. entries in these matrices are
either zero or +1.The unit entries are tabulated with their signs.

(Z/0)

22
33

(C4/001)

13
24—31
42

(C4 '/001)

13—24—31—42

(C4'/0)

11—22—33
44

(C2 /111)
—14

23—32
41

(C»/111)

14
23
32
41

(C2 /110)
—12

21—34—43

(C,y/110)

12
21
34—43

(I/001)

11
22—33—44

8
b

0
N(10k), 1

0
) N(101),2

ion representation are found to be

0
0

—b

0

(16)

stants of the crystal would allow an exact determination
of the rutile phonon eigenvectors and hence a more
definite decision as to the number of phonons partici-
pating in the transition, but for a phenomenological
free-energy expansion this point need not be decided.

VII. REPRESENTATION OF FULL SPACE GROUP

where the label (101) refers to displacements compatible
with Eqs. (4) and (6). The first three entries are the x, y,
and s components of the displacement of the vanadium
ion with k=1; the second three entries are for k=2.
Here u, b, c are real, and it is clear that by suitable
choices of a, b, c three independent N(~0~) ~ can be con-
structed which, with their orthogonal partners N(~0~), ~,

span the vanadium ion six-space. The difference of the
two degenerate partners of Eq. (16), 44&tpt& i—44&ipi), s,
would describe the observed vana, dium ion displace-
ments if a=b= —0.025ai(r) and c= —0.041as(r). With
present knowledge of the phonon spectrum, it is
impossible to say whether this is a rutile phonon
eigenvector.

One might speculate that two modes are involved
here, a "ferroelectric" mode and a "pairing" mode with
eigenvectors,

—1

0
1

—i
0

0
0

0
0

respectively. The first describes a vanadium displa, ce-
ment inside its own oxygen cage similar to the titanium
displacement which occurs in the cubic-tetragonal
transition of SaTi03. The pairing mode involves only
d-d overlap and might be considered to be a low-

frequency mode on that account. Since even a small
shift in frequency of a low-frequency mode is enough to
drive it to zero frequency, a softening of the ferroelectric
mode plus interaction with the pairing mode might
drive the pairing mode to zero frequency. The hybrid-
ization of the two modes due to their interaction would
cause this zero-frequency mode to share both a ferro-
electric and a pairing character.

The conclusion of this first part of the symmetry
analysis is that the observed distorted phase is com-
ps, tible with one or more than one "frozen in" (101)
phonon of symmetry rt'. Evaluation of the force con-

It has been determined that if one or more (101)
phonons of symmetry v. ('~ go soft it may be possible to
expla. in the monoclinic distortion of VO~. The repre-
sentation &('~ is a ray representation of the group of the
wave vector —', (bi+b, ). The full space group contains
the symmetry operation (C4/001) which maps this wave
vector into s (bs+bs). As a result (see, e.g. , Lyubarski"
or Hamerinesh") functions transforming according to
this wave vector under the translation subgroup also
occur among the independent basis functions for the
irreducible representation of the full space group. Let
the partners for wave vector —', (bi+b, ) be {fi,f,).Then
the partners {fs,f4} for wave vector —,'(bs+bs) can be
defined by

(C4/001)f, =f,+, (f =1, 2) .

The representation matrices for the full space group
based upon all four {f,) are now fully determined.

First the rav representation z(" is converted to a true
representation of the group of the wave vector by multi-
plying byE~the phase factor exp{—i(bt+bs) v(R)/2}
Lcf. Eq. (14)$. As a result the matrices in Table IV
are obtained. Using the real representation matrices
r&xot& "(real) the basis vectors {f, ) can also be chosen
real. The full space group matrices generated by these
real vectors are listed in Table V.

VIII. INVARIANTS OF D4@'4

Using the matrices for the full group D4&" just found,
the representation generated by products such as {f4f;},
{f,f,fs), etc. are easily determined. These are then
reduced and the combinations transforming as scalars
under D4q'4 are picked out.

For example, consider the representation TgT gener-
ated by {f,f,). Under pure translations the combina-
tions {frf,,fif,,f,fs, fsf4,fs f4, f4f4) transform according
to q=0 (modulo a reciprocal-lattice vector) and there-
fore reduce to a sum of the irreducible representations
of the point group D4q. On the other hand, the combina-
tion {frfp,fpfp, fif4, fsf4) transform under pure transla, —

'7 Reference 13, p. 91,
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tions according to the representation q =-', (b4+b2) and
therefore reduce to a sum of irreducible ray representa-
tions of the group of this wave vector (i.e., ray repre-
sentations of D4q). There are no other possibilities.

A. Star q=O

This representation reduces into the representations
Aq, +A2, +Bq,+82,+E, of D42, . The basis vectors are

negative "and so a minimum in the free energy will be
obtained by maximizing the fourth-order term with
respect to the {w,}.Suppose

A1, 22&0,
A, &0.

(Other inequalities lead to space groups other than
C2$'.) Then F4 is maximized if

A i.= [f2+f22+ f22+f4'],
A, g

—[fP f,'+—f22 f4']-

&42 [fi'-+f2' fo' —f4']-,

a, =[fP f2' —fo'+—f4'],
E,= (fif2, f2f4) .

B. Star q=-2, (br+ b2)

'M 1=XV2 =0 )

fwo f
=1.

(17) One solution compatible with (21) is

2 2 —162

f2 f'2 —0

which leads to a displacement field

(21)

(22)

This representation is reducible to r4o+T4+To. The
corresponding basis functions are

T10 1 3y 2 4 )

T4= 2 3 Z 1 4)

T6 2 3 Z 1 4.

From the above it follows that only one second-order
invariant exists, that transforming as A4, in Eq. (17).
There is no third-order invariant, as can be seen from
translation symmetry operations alone. Attention is
therefore directed to fourth-order invariants.

&(lou =c[f4&f2].
Taking the positive sign and referring to the matrices of
Table IV, this ground state is invariant under the
space-group operations {E/0}, {C2„/110), {I/001},
{0„„/111)which are shown to be symmetry operations
of C2q' in the Appendix. It is also invariant under the
translations

x(m) =moa4 (r)+m2a2(r) + (2m( —mo) ao (r)

of the monoclinic phase of vanadium dioxide.
Another set of solutions compatible with (21) is

IX. FOURTH-ORDER FREE-ENERGY TERM
f4'=f2'=0

2 2 —162
(23)

To form the general fourth-order invariant, the shell
theorem is employed. This states that if {f;) and {g;}
both form a basis for the same representation of a
group, then P; f,*g, is an invariant. Imposing the
requirement P,=&4 f,'= 42 and letting

w, =1—2(f2/o)2 —2(f4/o)2,

w2
——1—2(f2/o)2 —2(fo/o)2,

wo ——1—2(fo/o)' —2 (f4/o)'

the result is

P4= & [Ao+A(wr +A2w2'+Aowo ]. (20)

The requirement that the (f,/o)2 be positive and have
unit sum restricts the {w,} to lie within a regular
tetrahedron in w space with corners at (111), (111),
(111),and (111)2'

If it is now assumed that the fourth-order term in the
free energy dominates higher-order terms, and if it is
noted that the second-order term does not depend upon
the {w,), then a minimum of the total free energy with
respect to the {w,} is obtained by extremizing the
fourth-order term in m space. Since a first-order transi-
tion is observed, the fourth-order term is expected to be

' The author is indebted to E. I, Blount for this observation.

leading to
N(ogg) C[fo&f4].

Taking the negative signs the ground state is invariant
under the translations

x(m) =moar (r)+m2a2(r) + (2m' m2) ao(r—)

and also the operations {E/0},{C2,/110), {I/003},and
{o„/113} of the space group C22'. P2~/C. This is just a
—,x rotation of the first solution. Isomorphic possibilities
result from the other choices of sign.

X. q=0 STAR AND INCLUSION OF STRAIN

It was noted earlier that besides the (101) star there
was allowed the star q=0. The straightforward pro-
cedure would be to reduce the T-matrix representation
at q =0 and form the linear, quadratic, etc., invariants
as was just done for the zone edge. However, such a
procedure is inadequate to include the effect of strain on
the crystal, even though the strain is expressible in
terms of zone-center acoustic modes. This difhculty
arises because the strain is described only in terms of a
limit of the acoustic mode amplitudes as q tends to
zero, and this limit is not well-defined but depends upon
the direction along which q is allowed to tend to zero



I SYM METRY CONSIDERATIONS AND THE VANAD I UM D IOXI DE 2565

(see, e.g. , Born and Huang"). It is therefore necessary
to consider the acoustic modes for infinitesimal q to
properly include the strain effects. Rather than dealing
with these modes and then reinterpreting the results in
terms of strain (cf. Kwok and Miller') the procedure
followed here will be to treat the strain parameters, 5;;,
themselves from the outset. Strain parameters have
been used as order parameters previously by Anderson
and Blount30 and by Boccara„e'

The g=0 limit for modes other than the acoustic
modes is unphysical in two ways. 3' First, for extremely
small q the finite sample shape causes a departure from
the symmetry considerations of the infinite sample
considered here. Secondly, for somewhat larger q(=40/c)
polariton effects due to coupling of the lattice vibrations
with the transverse electromagnetic Geld become im-
portant. Since our symmetry arguments are based upon
an electrostatic model they do not necessarily apply in
the polariton regime. Rigor therefore demands that our
symmetry arguments be made for nonzero q. Such an
analysis would differ from the q =0 analysis primarily in
predicting a splitting of the LO and TO modes, as is
observed in all polar materials. A q=0 analysis is
therefore based on the premises that the most important
couplings will be those allowed even under conditions
of highest degeneracy, and also that this strong coupling
will extend over some range of q's, not merely exactly at
zone center. With these reservations we will make a
q=0 analysis. The reduction of the q=0 T-matrix
representation is

2 lg+A 20+2 2„+Bi8+2B,„+B20+Eg+3E„,
where the acoustic modes have been removed. Since the
q= 0 representation based upon (f;f;}products reduces
according to Eq. (17) into

~ i8+~20+Bi8+B20+&0

it is clear that the (101)modes can couple linearly with
all the q=0 Raman active modes and also with the
silent mode A~, . However, no coupling linear in the
amplitudes of the infrared active modes occurs, and
hence coupling to macroscopic polarization must be
quadratic or higher in the polarization (see Sec. XI).
For reasons of simplicity, only the strain and strain
coupling terms will be included from the q=0 analysis.

The free energy to fourth order is found to be

+0+42 (Sll+522) +P588+Cll (511 +522 ) +C12511522

+C18 (511+522)538+C83583 +C44(528 +S31)
+C6851.". +& ~2+& ((Bp+Blw8)511+(B0 Blw8)522

+B2588+B3512w2j+B4(531flf2+523f3f4)
+04LA 0+2 lw12+A2w22+A3w32j. (24)

' M. Born and K. Huang, Dynanzical Theory of Crystal Lattices
(Oxford University Press, New York, 1954), p. 230 A.

' P. W. Anderson and E. I. Blount, Phys. Rev. Letters 14, 217
(1965),

"N. Boccara, Ann. Phys. (X. Y.) 4'7, 40 (1968)."S. S. Mitra, in Optical Properties of Solids, edited by S.

(511—5„)= 2Blw30'/(2C11 —C12),

S28 = B4f,f—,/(2C44),

5» =B4fif2/(2C44),

5„=—B8w20'/(2C08) .

(25)

The coefFicients n and P are related to thermal ex-
pansion coeiFicients. The (C,,} are the rutile elastic
constants.

From Eq. (25) it follows that the strains are second
order in the distortion, apart from the first two strains,
511+S22 and 533, which represent volume changes with
no accompanying change of symmetry. Since the transi-
tion to a state of space group C2I,' has been found to
require wl ——w2 ——0 and I w8I =1 Lsee Eq. (21)j,5»—522
&0, 512——0 and one of (513,523) is zero.

In Sec. III and again following Eq. (23) it was
pointed out that two of the degenerate ground states
available in the low-temperature phase are related by a
fourfold screw axis parallel to the rutile c axis. If a
macroscopic sample of VO& forms domains simply by
one region choosing one of these ground states and
another region a screw-related ground state, the strain
5» —5» will be of one sign for the domains obeying
Eq. (22) and of the opposite sign for those obeying
Eq. (23). That is, in both domain types one a-axis
dimension of the rutile unit cell will be contracted rela-
tive to the other, but each domain makes a diGerent
choice of which a-axis dimension to shorten. Domains
related by a ninety degree rotation about the c axis have
been observed. "This may be the cause of VO& sample
cracking along the rutile c axis observed' when the
samples are cooled through the transition temperature.

If the various strains of Eq. (25) are now substituted
back into the free-energy expression of Eq. (24) and the
terms in (w,2} grouped together the result is again the
expression of Eq. (20) but with new coefFicients which
now involve the various coupling constants {B;}as
well as the original fA;}. Denoting these modified
coefficients by fA, '} the free-energy expansion is of the
form

p=Z, +,V,y. La, + P W w, jy, (26)
i=1

Xudelman and S, S. Mitra (Plenum Press, Inc. , New York, 1969),
p. 362.

"A. S. Barker et al. , Phys. Rev. Letters 1/, 1286 (1966)

Under the conditions of zero external stress the de-
rivatives of the free energy with respect to the strains
must vanish. Imposing these conditions, the strains
naturally associated with zone edge distortion are found
to be

(5 +5-)=-L2C-L-+B."j-9+B.")C.j/~,
538— L(Cll+2C12) jp+B20 j—C13 (42+B04')j/~,

where
~=C83 (2C11+C12)—Ci8'
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with
A1,2'&0,

A, '&0,

and ~w;~ (1 inside the regular tetrahedron described
following Eq. (20).

On minimizing with respect to the {2tt;), Eq. (26) is
found to take the form

F=Fp+ 42F2+ 24 (A p'+A 2') . (27)

This also means that powers of e higher than the fourth
must be examined to determine the spontaneously
adopted value of e and hence the temperature depen-
dence of e below the transition temperature.

XI. COUPLING TO ELECTRIC FIELD

If an electric field E& is applied to the crystal a field

E=E~+E~

will appear in the crystal, where Ez is the depolarizing
field due to polarization of the sample. The crystal
energy will then be changed by additional terms in-
volving the dielectric constant of the crystal. If the field
is not so strong that morphic effects must be considered
(i.e., the lowering of crystal symmetry owing to dis-
tortion of the lattice in response to the field can be
ignored), then by analogy with the strain contributions
in Eq. (24) the presence of an electric field adds to the
free energy the terms Fz,

If the entire fourth-order contribution to the free
energy were that displayed above, including possible
coupling to other effects like q =0 phonons, the experi-
mental fact that the transition is first order would imply
that

A 0'( —A 3'.

XII. EXPERIMENTAL EVIDENCE

Evidence which could assist in an empirical determi-
nation of the coefficients in the free-energy expansion is
not plentiful. To compare the experiments with the
expansion of Eq. (24) we define two temperatures: Tt,
the first-order transition temperature, and T„ the
temperature at which a second-order transition (not to
C2«') would occur if F4 were positive.

Then, assuming that the second term can be rewritten
as

F222= (T T,)a—p2(T)

the measured volume change'4 and latent heat' "pro-
vide the estimate

1 d2
1+(T, T.) — ap2 (—T t)

dTt,
=I./T, 3 cal mole 'K. (31)

Measurements of the discontinuities in cell dimensions
made by Minomura and Nagasaki" (hu„= Ab„= ——hc,
= 0.03 A) indicate that at T,

Q2

~$0—2

2C11 C12
f2—

~
2cppap —spelt

~

&&10-',

[~2(cl1+2c12) & pelt jp /~ ——10

The notation is that of Eq. (25). Including thermal
strain present at Tf, in Iio and making a Taylor series
expansion of 42 and p about T= T, the linear coefficients
of expansion are found to be

n.=n, = —[Cppn'(T, )——2'City'(Tt) )/S,
t2t [(Cll+ 2C12)J3 (Tt) C13t2 (Tt)j/~ y

F~= «, (E '+E„')+K,E,'+ p2{ (Dp+Dlwp)E, 2

+ (Dp Dllttp)E„'+D2E, '+Dp—w2E.E2)

+Dt(fl f2E,E,+ft f4E„E,), (29)

where, e.g.,

~'(T ) =
dT T=T

where ~, ~, are the dielectric constants of the rutile
phase normal to the c axis and along the c axis, re-

spectively. The dielectric constant of the material for
the phase of Eq. (22) is then

Kll Ktt+ E(Dp+Dl') t

«22 ——«.+42(Dp —Dl),
K«2= K~+ 4 D2 t

K]3—6 D4= 2D

(30)

Measurement of {K;,) therefore provides a direct
monitoring of 22 as a function of (say) temperature and
volume. Unfortunately the high conductivity of even
the semiconducting state due to various sample defects'
makes such an experimept difficult,

It is then found that the changes in the coefficients of
expansion on passing through the transition are

BE.

Acx~——A(x~ ~1/ (2C11 C12) t
BTf,

B6
+12c [~2(C11+2C12) ~PC18)

v

The derivatives are evaluated at a temperature just
below Tf,. The change in the linear coefficient of ex-

'4 T. Kawakubo and T. Nakagawa, J. Phys. Soc. Japan 19, 517
(1964)."S.Minomura and H, Nagasaki„J. Phys. Sect Japan 19, 131
(1964),



I SYMMETRY CONSIDERATIONS AN D THE VANAD IUM D jtOX I DE 2567

pansion for a polycrystalline rod is then roughly

1 86
Xio

BTf,

Assuming the derivative to be negative since it is ex-
pected that e2 decreases with temperature near T& the
sign of the change agrees with Kawakubo et al.34 and the
estimate

1 (Be'
= —3X10 '/'K

e' taT, ,
is obtained. This means that the prefactor in Eq. (31)
is probably near unity.

Additional information has been obtained by Ladd
and Paul. "These authors have measured the change in
transition temperature under hydrostatic pressure and
under uniaxial stress along the c axis and the a axis.
They find (dT,/dS, ) = —1.2X10 "K/bar along the c
axis and (dT ~/dI') =6X 10 "K/bar for hydrostatic
pressure. The transition temperature was so broadened
for a-axis stress that no meaningful result could be
quoted. The broadening of the transition temperature
under a-axis or b-axis stress which they observe can be
attributed to domain structure of the kind proposed in
this paper to account for c-axis cracking. From the free
energy expansion it is found that the leading term in the
change of T& under pressure is due to the shift in T„
which is

(dT,/dS, )=Bp (Cii+ —,'Cip)/(Da),

(d T,/dS. )= (Bp+Biwp) 2Cpp/(Aa),

(dT /dSb) = (Bp Biwp)2Cpp/(Aa) .

That is, those domains for which zv3 ——1 have a larger
shift in transition temperature under a-axis stress than
those for which w, = —1 (assuming Bp and Bi have the
same sign; vice versa if the signs are opposite). As a
result a smearing out of the transition temperature will
occur for a multidomain sample.

XIII. SUMMARY AND REMARKS

In this paper the background of the symmetry analy-
sis of the free-energy expansion has been laid out in
some detai], particularly in its discussion of the role
played by the various degenerate low-temperature
ground states. The analysis also has been developed so
as to emphasize that at no point must one assume that
the observed distortion is expressible as one rutile-phase
zero-frequency phonon, although if in fact the dis-
tortion is produced by a "frozen-in" phonon the analysis
decides its symmetry. This caution has been taken
because the transition is first order and also because the
unstable phonon is zone edge, where many phonons of
the same symmetry exist. Both these facts lead one to

36 l.. A. I.add and W. Paul, Solid State Commun. 7, 425 (1969).

suspect that the instability may really involve a number
of phonons, and that the phonon spectrum in the
transition region of temperatures may depart con-
siderably from that of the parent rutile phase.

It has been found that the distorted monoclinic phase
can be described as a (101) zone-edge wave-vector
displacement field. There are only two symmetries for
displacements at this point on the zone edge, and there
are six distinct doubly degenerate displacement fields of
the correct symmetry, v-(", to describe the observed
displacements. Because there are six of them, their form
is not determined by symmetry alone. If one wished to
choose the displacement fields to correspond to rutile-
phase phonons, the dynamical matrix for the vanadium
dioxide phonons would have to be known. It is not.
Therefore it cannot be decided whether one or more
than one phonon is involved in the monoclinic trans-
formation. However, one could say that the experi-
mentally determined vanadium displacements' are com-
patible with only one phonon going unstable. Whether
or not this is the case, the free-energy expansion remains
valid.

It has also been found that more accurate oxygen
positions are needed for the monoclinic phase to rule out
an unstable v-"' mode additional to the definite in-

stability of one or more 7 &" modes.
Following the determination of the various symmetry

allowed eigenvectors at the (101) zone edge the free
energy has been expanded to fourth order in these
displacements. The strain terms also have been included
in this expansion. It has been shown that a transition
from D41,"to C»' can be described by such an expansion
and that the transition may be of first order.

Observations which bear upon the validity of the free-
energy expansion model are not plentiful. One such
observation is the cracking of VO2 samples along the
rutile c-axis upon the transition to the low temperature
phase. This cracking has been attributed in the present
paper to the formation of domains related by a 90'
screw axis parallel to the rutile c axis. Observations of
these domains are explained by the model. ""It has
also been shown that the smearing out of the transition
temperature under a-axis stress observed by Ladd and
PauP' might be explained by such a domain structure.

Work on the dependence of the transition tempera-
ture on electronic repopulation effects' indicates that
changes in the free energy due to the redistribution of
those electrons near in energy to the band gap of the
semiconducting phase are not major inQuences upon the
coefficients. The striking resistivity change accompa-
nying the transition which has stimulated the formation
of numerous narrow-band microscropic models' of the
transition can probably be explained' as the distortion-
induced separation of two bands which overlap for
T)T,. Such a removal of overlap could lead to a
semiconducting behavior for T&T,. If this is the case
the overlap change would be proportional to some
power of e.
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The present analysis does not lead to a macroscopic
interpretation for e. However, e does couple to a
homogeneous electric field, though not so directly as in
the case of ferroelectrics. ' The analysis of this paper also
shows a coupling to strain and to zone center Raman
active phonons. Any of these effects might conceivably
lead to a means of monitoring the distortion parameter
e as a function of temperature and pressure, the key
experiment for determining the coefficients of the free-
energy expansion derived in this paper.
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AppENDIX: CRYSTAL SYMMETRY) D4I' AND Cgg'"

The syrznnetry operations for the space group of
rutile (D4q4:I'4~/mern) and for the monoclinic phase
(C2q'..E2&/c) will be denoted by the symbol (R/a, b,c),
where R is a fixed point operation (e.g. , a reflection) and
—,'(a, b,c) are the components of a nonprimitive transla-
tion, viz. , the translation —,'aai+, ba2+-,'ca3 where the
vectors {a,} define the lattice. The factor 2 is just a
convenience.

coordinate systems for all the crystal structures have
been set up in the Intermati. ona/ Tables of X Ra-y Crystal
lography 37 .Referring to these standard coordinate sys-
tems Kovalevi9 adopts the origin —,'ai(r) —~a3(r) for the
rutile structure and 4a2(m)+4a3(m) for the monoclinic
structure. The rutile symmetry operations (apart from
translations) are then combinations of

(C„/110)= twofold rotation about x axis, followed by
a translation through —', (ai+a2),

(C»/110) = same, but about y axis,

(C4'/000) = twofold rotation about s axis,

(C2 /111) =twofold rotation about (110) followed by
-', (ai+a,+a,),

(C,i/111) = same but about (110),
(C4/000) = —,'7r rotation about s axis,

(C4 '/000) = 2ir rotation about z axis,

(I/001) =inversion followed by a translation of —,'a3.

For the monoclinic structure, C2&', symmetry opera-
tions (apa, rt from translations) are combinations of

(C4'/001) = twofold rotation about a3(E),
(I/101) = inversion +-,'Lai(E)+ aa (E)j,

(o.q/100) = reflection in plane perpendicular to ai(E)
followed by —,'ai(E).

A. Translations

ai(E) =ag(m),

a2(E) =ai(m),
a3(E) =a, (m) .The general translation in the rutile structure is then

x (r) = teiai+m~a2+m3a3 (mq, m~, m3 integral) . (A1) Expressing the monoclinic symmetry operations in
the rutile coordinate system and referring them to the
rutile origin

The basis vectors for the monoclinic phases are ex-
perimentally observed to satisfy'

(o o o)-= (—l l k).
ai(nz) = 2a3(r),

a2(m) = —a, (r),
a3(m) = ai(r) —a&(r),

these symmetry operations become

(Cg„/110), (I/001), (0.,/111),

Here {a,(E)} are the Kovalev basis vectors which are
The basis vectors for the rutile lattice are orthogonal defined by

and satisfy

where m denotes monoclinic and r denotes rutile. The
general translation in the monoclinic structure is then

x (m) =m3ai(r)+ m2a~ (r) + (2m' —m~) a3 (r)

(mq, m~, m3 integral) . (A3)

B. Other Operations

The remaining operations involving rotations, rejec-
tions, screws, and glides can all be referred to a common
origin by adjusting the associated translations. Standard

where the translations are also in the rutile basis.
It follows from Subsec. 1 of this appendix that the

monoclinic translation group is a subgroup of the rutile
translation group, and from Subsec. 2 that the other
space-group operations of C~~' are contained in D4I,".
This justi6es one basic assumption of this paper, viz. ,
that the VO2 phase transition is a case of lowered

symmetry, not merely one of charged symmetry.

"K.Lonsdale, International Tables for X-Ray Crystallography
(Kynoch Press, Birmingham, England, 1952), 3 Vols.


