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wave vectors about half way to the zone edge depart
seriously from Bloch waves and the Fermi surface
would appear to be a concept of limited utility in this
region. Besides, the experimental data used by Moss is
of uncertain accuracy near the region of interest. We find
the Ãi —Ei gap to be 2.2 eV, whereas the value due
to Amar, Johnson, and Wang for this gap is 1.5 eV. Thus,
our calculation gives a Fermi surface for which the de-

parture from sphericity is greater than that given by the
virtual-crystal approximation. In order to carry this
comparison further we have calculated the E1 —N1 gap
following the method presented in this paper but using
atomic potentials for copper and zinc. These were the
potentials used by Amar, Johnson, and Wang' in their
VCA calculation. Our calculation gives a value 2.4 eV
for the Ã& —1V& gap. Thus the energy gap for the dis-

ordered alloy also is sensitive to the choice of potential,

but it is clear that striking diRerence in the values of
X& —Ã& gap given by the present method and by the
VCA approach originates from the differences in the
formalisms. The virtual-crystal approximation is an
over simplification of the alloy problem and the present
approach may be regarded as in improvement in the
sense that it recognizes the distinction between the
constituents, takes account of the short-range order, and
incorporates the lifetime effects for the electronic states.
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There are two widely used theories of ultrasonic attenuation in the Akhieser (QT«1) regime. Woodruff
and Ehrenreich used the Boltzmann equation and found that the attenuation was a function of the specific
heat of the thermal phonons. Mason and Bateman obtained the fundamentally different result that the
attenuation also involved the thermal energy. It is shown here that the Mason-Bateman theory contains
both mathematical and conceptual errors and that its apparent agreement with experimental data on
Si and Ge is fortuitous.

I. INTRODUCTION

t I.TRASONIC attenuation in dielectric single

crystals is usually dominated by interaction of the
ultrasonic wave with thermal phonons. If Qr(1 (where
0 is the radian frequency of the ultrasonic wave and 7 is
a typical thermal-phonon relaxation time), the attenua-
tion occurs via a mechanism first described by Akhieser. '

Because of the anharmonicity of the medium, the strain
produced by the sound wave modulates the frequencies
of the thermal-phonon modes. The equilibrium popula-
tions of these modes are therefore modulated also.
However, the aetna/ populations, since they require a
time g to readjust to the new equilibrium conditions,
lag in phase behind the driving sound wave. The
reestablishment of equilibrium is an entropy-producing
process with a consequent absorption of energy from
the sound wave.

There have been a number of theoretical treatments
of Akhieser damping. ' ' The most thorough is the work

' A. Akhieser, J.Phys. (U.S.S.R.) 1, 277 (1939).
'T. O. Woodruff and H. Ehrenreich, Phys. Rev. 123, 1533

(1961).
3 H. E. Bommel and K. Dransfeld, Phys. Rev. 11/, 1245 (1960).

of Woodruff and Ehrenreich' who obtain an expression
for the attenuation A (on a Debye model with Qr((1)
in the form

& = PCr Ty, '0'r/3pv' (nepers/unit length), (1)

where C~ is the specific heat per unit volume, T is the
absolute temperature, 7, is some average Gruneisen
constant, p is the mass density, ~ is the ultrasonic
velocity, and P is a numerical factor of order unity
which depends on the form assumed for the local
equilibrium distribution of thermal phonons. ' The
precise value of P is usually not important since y, is
usually treated as an adjustable parameter.

A di6erent result was obtained by Mason and
Bateman, ' who made the important contribution of
considering the anisotropy of the Gruneisen tensor as

4 P. G. Klemens, in Physical Acoustics, edited by W. P. Mason
(Academic Press Inc. , New York, 1965), Vol. III B, pp. 228—232.

~ $. Simons, Proc. Phys. Soc. (London) 83, 749 (1964).'E. Prohofsky, IEEE Trans. Sonics Ultrasonics SU—14, 109
(1967).

7 W. P. Mason and T. B.Bateman, J. Acoust. Soc. Am. 36, 644
(1964). See also W. P. Mason in Ref. 4, Vol. III B, pp. 256-267.' H. J. Maris, Phys. Rev. 1'75, 1077 (1968).
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determined from third-order elastic constant measure-
ments. They found the attenuation of a longitudinal
strain wave S& to be given by

1 Qr
(3 2 &(~)Lvi(~)7' —vi'Cv&) (2)

2p'v3 1+0'r-'

where the thermal phonons have been divided into
angular sectors and polarization branches, collectively
denoted by the index i. E(i) is the energy per unit
volume of the ith group of thermal phonons and yi(i) is
their Gruneisen constant. yt is the average Griineisen
constant determined from the thermal expansion.
Equation (2) is fundamentally different from Eq. (1)
since it involves the thermal energies E(i) rather than
C(i)T t where C(i) is the specific heat of the ith group7
and therefore gives a different temperature dependence
for the attenuation. Equation (2) gave a good lit to
Mason and Bateman's data on silicon and germanium,
although they found it necessary to adjust r somewhat.
It is the purpose of this paper to suggest that this agree-
ment was fortuitous and that Mason and Bateman's
derivation is incorrect.

A brief summary of Woodruff and Ehrenreich's
derivation, incorporating the same simplifying assump-
tions as used by Mason and Bateman, is presented in
the next section. One important result derived there is
that the attenua, tion should be zero for the (clearly un-

physical) case where all phonon modes have the same
Gruneisen constant, i.e. , yi(i) = y for all i, provided the
thermal-phonon distribution is spatially homogeneous
so tha, t there is no thermoelastic loss. Equation (2)
obviously does not satisfy this condition.

Section III reviews the Mason-Bateman work and
points out some errors both in the algebraic manipula-
tions involved and in the conceptual basis of their
derivation. Section IV discusses the application of both
of these theories to experimental data.

II. WOODRUFF-EHRENREICH THEORY

The Woodruff-Ehrenreich theory is a very general
treatment of Akhieser damping based on the Boltzmann
equation. In fact, the results are too complete to be
applied directly to experimental data and simpli6ca-
tions are inevitably required. In this sec tion, the
Woodruff-Ehrenreich derivation is repeated, employing
the simplifying assumptions at the outset rather than
specializing a general result at the end. In this manner
the basic elements of the theory can be seen more
clearly, and comparison with Mason and Bateman is
facilitated.

Consider a strain wave S propagating along the x
axlsq

S~ &z(Kz—Qt)
7

where E is the magnitude of the wave vector, 0 is the
(radian) frequency, and the real part of all complex

quantities is implied. This strain wave 1T1odulates the
frequency v(kIi) of the thermal-phonon mode of wave
vector k and branch index p according to the relation

where
n(kIi) = Xp(ppp(kIi))+ An(kp),

Qp(pp)
—(phd/kBT 1)

—i

k~ being Boltzmann's constant.
The populations n(kIi) are determined, in general, by

solving the linearized Boltzmann equation. However, a
great simplification results by neglecting the spatial
terms in the Boltzmann equation or, equivalently,
assuming the x component of the thermal-phonon group
velocity to be zero. Then the Boltzmann equation
becomes simply

Bn(kp) Bhn(kp, )

co ll

This assumption was, in effect, also employed by Mason
and Bateman. Although at first it appears rather drastic,
Woodruff and Ehrenreich have shown that it does not
have much effect on their results if Qr((1. It does,
however, become very important if Or) 1.

The physics in the problem lies in the construction of
an approximation to the collision term in Eq. (7).
Woodruff and Ehrenreich discussed a form of the relaxa-
tion time approximation, based on the Callaway theory
of thermal conductivity, which distinguished between
normal and umklapp phonon collision processes. Maris'
generalized this approach further by including a relaxa-
tion term describing elastic collisions of phonons with
impurities. However, the available experimental data,
and its analysis, is never suSciently detailed to permit
an accurate determination of. separate normal, umklapp,
and impurity relaxation times and their dependence
on k, p, , and temperature. Again

simplification

is
necessary.

The basic features of Akhieser damping may be ob-
tained by assuming that n(kp) decays towards a Bose-
Einstein distribution characterized by the instantaneous
local frequency pp(kp) and a modulated local tempera-
ture T'(r, t) which is to be determined self-consistently.

9 M. G. Holland, Phys. Rev. 132, 2461 (1963).

~(kI ) =~p(kI )LI —v(kP)~+ 7
—=cup(kp)+ dpi(kp)+

where p(kp) is a generalized Gruneisen constant which
depends on the propagation direction and polarization
of S.The subscript zero denotes the value of a quantity
in the absence of strain. For small strains, the higher-
order terms in Eq. (4) will not contribute to the
attenuation.

Because of this modulation, the instantaneous
population of the mode n(kIi) differs from its thermal
equilibrium value Ep(ppp(ky)) by an amount An(kIi);
1.e.)
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In other words,

Be(kp) e(kt ) —~'p'(~(kt ))

r(kp)

Note that the unperturbed frequency ~p appears here.
A more rigorous derivation of Eq. (15) was given by
Akhieser. ' Substituting from Eqs. (10) and (14), we
obtain

where
+ &(~) (~pre/kgT' 1)

—1 (9)
CT AM AT hMpAn

T Mp T 7

Ace AT
hpppAn = —CT ———— (1—iQr) —'.

cop T

and therefore,

In practice r(kp) will frequently be taken to be the
same for all modes. Combining Eqs. (13) and (14) gives

The physical signi6cance of T' has been discussed
somewhat by Woodruff and Ehrenreich. It may be
regarded as a phenomenological expression of the fact
that mode (kp) is not only losing popula, tion by scatter-
ing into other modes, but is also gaining PoPulation Substituting Ae from Fq (17) into Fq (16) yields
because of the decay of other modes. The totally local
character of this approximation is consistent with our Ace AT
neglect of thermal-phonon group velocities. CT ——— — =0,

Since Ace(ky) is small for a small amplitude sound Q)p T 1 —107

wave, Ep' may be expanded in a Taylor series, and
Eq. (8) becomes

(17)

Bn 1 B1Vp'((u) t'B1Vp'(u)
App+~ AT —Ae, (10)

Bt coll r — B~ p BT p

where
AT = T'(r, t) —T.

The (kp) indices have been dropped, and the subscript
zero on the derivatives means that they are to be
evaluated at AT=0 and Ace=0.

Equation (7) may now be solved formally by assum-

ing plane-wave solutions,

AQ An=P 'rMp Im—
&

2pV P kp 5
(20)

AT—=P CT (1—iQr) r Q CT(1—iQr) ~. (19)
T Mp

Here C, AM/cdp r, and An can, in general, all depend
on k and p.

In principle, AT may be eliminated from Eq. (17) in
order to obtain An for every mode, and the attenuation
is then given bys

AT, A~, Ae expiLEx —Qtj.
The result is

BiV '

An=a)p — —— 1—iver . (13)

where V is the crystal volume.
Now, if App/cup is independent of k and p, that is, all

modes have the same Gruneisen constant, it is easy to
show that the attenuation is zero (provided spatial
terms in the Boltzmann equation are neglected). From
Eq. (19), if Ace/ppp may be removed from the sum.

In deriving this result, we have made use of the fact
that cVp' is a, function only of co/T', so that

AT/T= Acd/Mp
& (21)

BÃp'- B.Vp'

COp
= —T

BG0 p —~T p ACOp

and it follows from Eqs. (17) and (20) that An=0
and A=O.

Woodruff and Ehrenre&ch obtained the result, for a
simple Debye model with all A&a/a& (their a) equal, that

t'Be(kp)
Q h(op(kp)~ =0.
kp Bt oou

(15)

where C(kp) is the contribution of mode (kp) to the
specific heat at constant volume if we ignore the tem-
perature dependence of cup(kp).

The temperature shift AT may be determined by the
condition that all collision processes conserve energy
to first order in the strain Irreversibility occu. rs only in
second order, since the irreversible energy loss must be
proportional to the energy in the strain wave, which of
course is quadratic in strain. Therefore,

AT/T= (A~/~) Jpp/Spa, (22)

where Jpp and Jp& are angular integrals. This led to a
nonvanishing An and, in fact, simply introduced a
factor of Pp in the attenuation (for Qr«1) when com-
pared to the case of ignoring AT altogether. However,
the difference between lpp and Ip~ may be traced to
spatial derivatives in the Boltzmann equation. If the
group velocity c, is set equal to zero in Woodruff and
Ehrenreich's Eq. (2.24), then the AT/T term and the
A&a/u& terms both involve Ipp and Eq. (21) is again
obtained for all A~/~ equal.
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The physical interpretation of Eq. (22) is that the
system is not quite adiabatic even if Qr(&1. There is
still some heat flow which tends to reduce DT/T. For
this simple model in the Qr«1 limit, Eq. (22) can be
shown to reduce to

in Eq. (28) is independent of strain. They therefore
obtain

1V' BCO /BS g' (d dM
o„=c'5—9A Q—

exp(A&o/ko T) —1

AT/T = (1—-', iQr) A(u/co. (23)

However, one can "turn off" this effect, which is just
the classical thermoelastic loss, ' by setting the group
velocity, and hence the thermal conductivity, to zero.
Then truly adiabatic conditions prevail, and the
damping must vanish if all modes have the same
Gruneisen constant.

From Eq. (4),
&(i)v(i)

o.„=c'5+3 P' 1 —v(i)5
and for small y(i) 5,

clpp /cls
=c'S—3 P E(i) (29)

(30)

III. MASON-BATEMAN THEORY

A. Review of Derivation

The Mason-Bateman theory is based on the equation

where
A = (Ac/2pe') Q'r/(I+ Q'v')

Ac= c~—cp )

(24)

(25)

and c„and cp are the appropriate dynamic elastic
moduli at infinite frequency and zero frequency,
respectively. A succinct derivation of Eq. (24) has been
given by Prohofsky. ' This derivation was for a spatially
homogeneous model. It therefore includes only Akhieser
damping and not thermoelastic losses.

Mason and Bateman calculate Ac from the thermal-
phonon contribution to the internal energy,

Ug, =g Lri(kii)+-,']h(u(kp). (26)

For a high-frequency (or suddenly applied) strain, the
stress 0 is given by"

+c'5=—c„S,
n (kp, )

(27)

where E; is the number of phonons in the ith group
and &o„ is the corresponding limiting frequency (the
Debye frequency). co„has a dependence on strain
analogous to that given by Eq. (4) for a, general cu(kp).
All modes in the ith group are assumed to have the
same Gruneisen constant y(i).

In carrying out the differentiation indicated in
Eq. (27), Mason and Bateman argue that the integral

"H. J. Maria, Phil. Mag. 16, 331 (1967).

where c'S is the strain derivative of the mechanical
potential energy.

Mason and Bateman use a Debye model to express
the sum in Eq. (26), excluding the zero-point energy, as
an integral involving a density-of-states function,

togs M dM
Ug, =3h P— (28)

' a&p,' p Lexp(h(v/k~T) —1]

-=c'5+3 2 ~(i)h(i)]'5+3 2 &(i)7(i) (31)

The coefficient of S in this equation is identified as c„.
It is then argued that cp is given by

cp=c +|~ pC„T~ (32)

and Eq. (2) follows by substituting Eq. (32) and c„
from Eq. (30) into Eq. (24).

B. Discussion of Mathematical Manipulations

A number of steps in the above derivation are contest-
able on purely analytical grounds. The first questionable
step is in the transition from Eq. (29) to Eq. (30). Note
that E(i) in Eq. (30) was treated as the thermal energy
in the absence of strain; the contribution to c„from the
strain dependence of E(i) was not considered. The
factor pp„. ' in Eq. (29), which carne from B(a&„')/85,
was arbitrarily split into co„'~„. '. The co„' part was
incorporated into E(i) and treated as strain-
independent. The ~„' part, however, was treated as
an explicit function of strain. Therefore the denominator
in the summand of Eq. (30) should properly be
L1—y(i)5] instead of [1—y(i)5] if E(i) in the nu-
merator is to be treated as strain-independent. Then,
since

LI-,(i)5]-4=1+4&(i)5, (33)

an additional factor of 4 should appear in the second
term on Eq. (31).

More important, the assertion that the integral in
Eq. (28) is independent of strain is valid only if
Aug, ,/k~T))1 in which case the upper limit may be re-
placed by infinity. This is just the circumstance under
which the specific heat varies as T'. Thus, the treatment
is not valid above the T region, a severe restriction.
Mason and Bateman argue that the integral is invariant
under strain because it is summing the same number of
frequencies at the same occupation numbers when co„ is
changed by the strain. This argument is incorrect, since
the total number of states depends both on the density
of states (~ pp'/co„') and on the cutoff frequency rp„ in
the upper limit of integration. Varying one quantity and
not the other does not leave the total number of states
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constant. If attention is restricted to the C„T' region,
then

C (i)T= 4E(i), (34)

where C(i) is the specific heat of the ith group. In other
words, the Mason-Bateman result in this regime does,
in fact, involve C(i)T rather than E(i), although the
distinction is only a numerical factor.

The Mason-Bateman prescription can also be carried
through at higher temperatures, where the distinction
between C(i)T and E(i) is more important. If the upper
limit of integration is differentiated properly, and all
linear strain dependences in O.„are retained, then again
C(i) appears consistently rather than E(i) Thes. e results
will not be presented here because we believe the entire
procedure to be conceptually unsound as discussed in
the next section.

by setting the group velocity equal to zero in the last
term of his Eq. (21). (The other terms in that equation
come from anharmonic effects which are not considered
here but which do not contribute to the attenuation,
since they appear in both eo and c„.)

(c) Although the results obtained above indicate that
there is no thermal-phonon contribution to c„ in a
spatially homogeneous system, the one remaining
assumption, e(kti) = tVo(o&(kti)), can be tried in order to
force a nonvanishing contribution. By expanding
tVo(oi(kti)) in a Taylor series as in Eq. (10), Eq. (35)
becomes

o „=c'S—Q /Vo(oi) oooo

8VO
=e'S—2 tVo(~o)~ox —P oooo

C. Conceptual Basis

The essential elements of the Mason-Bateman
derivation are more evident if the Debye model is dis-

pensed with. Using the more general expression for
U,h, Eq. (26), rather than the integral form, Eq. (28),
the expression for O.„becomes

~Un
0„=e'S+

n (kg)

otoi(kg, )=c'S+Q Le(kti)+-', ]/i

=c'S &Le (k—ti) +—]&&o(kti) 7 (ku) ~ (35)

At this point we can proceed on one of three assump-
tions: (a) e(kp) can be treated as the uestraieed equi-
librium value tVo(o&o(kti)); (b) e(kti) can be treated as
the actual instantaneous population as determined by
the Boltzmann equation; or (c) e(kti) can be treated as
the iestaetaeeous equilibrium value ~Vo(cd(kti)). It will

be shown that the first two assumptions are equivalent
in the present case and both lead to c„—=c'. The third
assumption, which was, in effect, the assumption used

by Mason and Bateman, leads to a negative attenuation.

(a) It is immediately evident that replacing e(kti)
by tVo(ohio(kti)) leads to c„—=e', since .Vo(ohio(kti)) is
independent of strain. The only remaining strain-
dependent term in a- is c'S. Strain-independent terms
in the stress may simply be lumped into the definition
of the stress-free state. In other words the thermal-

phonon part of c„makes no contribution to the
attenuation.

(b) This same result is obtained using e(ku) derived
from the Boltzmann equation (disregarding the spatial
terms). Remembering Eq. (15), the definition of c„,and

using Eq. (13), then as Qr +~, De —+ 0, and-

e(kti) —+tVo(bio(kp)). This result can also be obtained
from the more detailed analysis carried out by Maris"

KVO
=c'S—Q Ão(ooo)oig+Q bio y S, (36)

BM 0

where we have dropped the zero-point term and the
(ku) indices. The last term in this equation is now linear
in S and therefore contributes to c„. By utilizing
Eq. (14), we may write

(37)

Although this term has the correct form, involving
C(ktj)T, it has the incorrect sign. Therefore, the only
route which we can take from Eq. (35) and get a non-
zero effect leads to a negative attenuation Lsee Eqs. (24)
and (25)].This third assumption is actually correct for
calculating co rather than c„, although it is dificult to
justify rigorously. ' Then the sign is easy to understand,
since a negative contribution to co is a positive contri-
bution to the attenuation.

We are therefore led to the conclusion that the entire
thermal-phonon contribution to A must be contained
in co for a spatially homogeneous system. )See also the
last term of Eq. (28) in Ref. 10.] For a real spatially
inhomogeneous system, of course, this conclusion no
longer holds. The Landau-Rumer results, " or the
Woodruff and Ehrenreich result with spatial terms re-
tained, both give a finite dissipation in the limit Q7- ~~,
whereas Eq. (24) does not. It can also be shown'" that
with a correct calculation of Ac, Eq. (24) does, in fact,
give the Woodruff-Khrenreich results.

IV. COMPARISON WITH EXPERIMENT

Mason and Bateman's work also presents measure-
ments of the ultrasonic attenuation on samples of Ge
and Si. Both longitudinal and shear wave attenuation
was measured and the data were taken between room
temperature and liquid-He temperature at several fixed
frequencies between 286 and 495 MHz. The longitudinal

"L, Landau and G. Rumer, Physik Z. Sowjetunion 11, 18
(1937).
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wave results were compared both to their theory,
Eq. (2), and to a theory due to Bommel and Dransfeld. '
Bommel and Dransfeld's result is, basically, Eq. (1)
with 0'r replaced by 0'r/(I+0'r'). "

The simple kinetic theory expression for thermal
conductivity ~,

K= 3Cy'VD 7tI, , (38)

was used to obtain z&h. Here va is the Debye velocity.
The derived value of v~h was used in the Bommel-
Dransfeld equation and an average y was used to obtain
agreement at room temperature. The assumption that
v=2r~i, for longitudinal waves was used in the Mason-
Bateman theory, and the Gruneisen constants were
calculated from third-order elastic constant data.

The agreement between theory and experiment is
very good for the Mason-Bateman theory but poor for
the Bommel-Dransfeld equation. The disagreement
with Bommel-Dransfeld is Tnost severe near 50'K for
Ge and 100'K for Si. The data on shear-wave attenua-
tion were compared only with the Mason-Bateman
theory, using T = Tgg and the agreement is within
about 50%%uz over the entire range. This section will try
to indicate the reasons for the poor agreement of the
Bommel-Dransfeld (or Woodruff-Ehrenreich) equation
in the region 50 to 100 K and also show where Mason
and Bateman's assumptions are invalid.

It is well known that Si and Ge each have a very
dispersive transverse acoustic (TA) phonon branch. ""
In Si, for example, the zone boundary intercept of this
TA branch in the $100] direction is at h&o/ks= 190'K,
whereas the extrapolated (dispersionless) intercept is
at 430'K. This strong dispersion makes it very difficult
to determine the individual E(i) in Eq. (2). Mason and
Bateman simply assume that all the E(i) are the same,
which is a particularly severe approximation at low
temperature, since there E(i) ca„' The TA mo. des
should therefore be weighted more heavily than the
longitudinal acoustic (LA) modes. At very high tem-
peratures, such that bar„«AT, E(i) —+3K,k~T, and
setting all E(i) equal is more reasonable. However, at
the temperatures which are most important in the
present comparison (50—100'K), dispersion is important
and L'(i)/Ee, where Ee is the total thermal energy, is a
complicated function of temperature. Therefore Mason
and Bateman's nonlinearity parameter D should be a
function of temperature.

A second problem is the neglect of the k dependence
of the Gruneisen constants and the relaxation time.

'2 Bommel and Dransfeld's result differs from Woodruff and
Ehrenreich's equation primarily in that 0'7/(1+0 r ) appears
rather than ~Q tan '2Qr. The first form can be obtained from the
Woodruff and Ehrenreich formalism by setting the group velocity
of all modes to zero. The second form results from setting the group
velocity of all modes equal to the velocity of the sound wave.
Neither is strictly correct for real solids, and the difference is
negligible only if (h-&1."B.N. Brockhouse, Phys. Rev. Letters 2, 256 (1959); B. N.
Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747 (1958)."H. Palevsky, D. J. Hughes, W. Kley, and E. Tunkels, Phys.
Rev. Letters 2, 258 (1959).

Bienenstock'" has calculated 7(kp) for germanium and
found that there is a strong dispersion, with y'(k, TA)
going to zero about half-way to the zone boundary and
then increasing again out to the boundary. The neglect
of the k dependence of r(kp) is also questionable, but
difficult to avoid.

The combined effect of these simplifications can
qualitatively account for the discrepancy between the
Bommel-Dransfeld formula and the experimental data
for Si and Ge. The specific heat, thermal conductivity,
and ultrasonic attenuation each involve a different type
of average over k and p, .

Cv ——P C(kp), (39)

P C(k,).(k,)([&(k„)]—~, ), (40)
k

'= s 2 C(k~)L"(k~)3'r(k~) (41)

"A. Bienenstock, Phil. Mag. 9, 755 (1964)."J. E. Parrot, Proc. Phys. Soc. (London) 81, 726 {1961);
R. A. H. Hamilton and J. E. Parrot, Phys. Rev. 1/8, 1284
(1969)."B.I.Miller, Phys. Rev. 132, 2477 (1963).

A is from Woodruff and Ehrenreich's formulation. The
terms, '- comes from AT/T and is small for a longitudinal
strain wave and absent for a transverse wave. v, (ky) is
the group velocity of mode (kp). The separate roles
played by normal, umklapp, and impurity scattering
in ~ are neglected, and each mode is characterized by a
single r(kp).

All three sums, Cy, A, and e, are probably dominated
by the TA branch. For Cz, the TA contribution in the
low-temperature limit is about 16 times the LA contri-
bution. At higher temperatures, the difference is less,
but the strong TA dispersion accentuates that mode and
should make it dominate up to an appreciable fraction
of the Debye temperature.

Holland has shown, on the basis of a curve-fitting
procedure, that the TA modes carry the majority of the
heat in Si and Ge. A similar conclusion was reached by
Parrot et ul. " While this position is not definitely
established, it is a reasonable hypothesis. If r(k, TA) is
large enough to dominate x in spite of the small e,(k,TA)
at large k, then the TA modes must also dominate A,
since the Gruneisen constants are not that different for
the two modes.

With these assumptions, we can qualitatively explain
the fact that Bommel and Dransfeld's formula predicts
too rapid an increase in A with increasing T in the
25—75'K range. As T is increased, the total specific heat
of the TA branch increases rapidly as TA modes of
larger k become populated. However, these modes have
smaller values of y' than do the TA modes near k= 0,
and the average y' decreases with T. Therefore, the use
of experimental specific-heat data with a temperature-
independent Griineisen constant must predict'~ too
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rapid an increase of 3 with T. In other words, Mason
and Bateman's use of the more weakly temperature-
dependent function, Eo rather than CyT compensates
for their neglect of the temperature dependence of y'
and leads to a fortuitous agreement with experiment.

Of course, the above gives no consideration to the k
dependence of v. It might be argued that the use of 7gg

is not a bad approximation if TA modes dominate both
tc and A, since in both cases r(ir, TA) is weighted with a
decreasing function of 0, vis. , v, ' for ~ and y' for A. One
difficulty with this argument is that Ly(k, TA)]' is large
again near the zone boundary, whereas v, —+0 there.
Therefore some error would be expected at temperatures
high enough for the zone boundary modes to be
populated.

For completeness the problems involved in obtaining
st~, apart from those in interpreting rtb, should be
pointed out. The thermal conductivity data used by
Mason and Bateman was obtained on different samples
than those used in obtaining the ultrasonic attenuation
data. This practice can lead to errors, since small num-
bers of impurities and imperfections can alter the
thermal conductivity of semiconductors drastically. ""
In Ge, this effect is usually not important above 50'K
so that the relaxation times obtained from the thermal
conductivity data are indicative of the material and not
the particular sample in that temperature range. In Si,
however, the situation is quite different, and impurity
effects influence the thermal conductivity"" to tem-
peratures above 100'K so that the same samples should

be used in measuring ultrasonic attenuation and
thermal conductivity. Furthermore, the Si data used

by Mason and Bateman are more indicative of data
obtained on very impure material and at 100'I& is a

"J.H. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. J.
Ziman, Proc. Roy. Soc. (London) 238, 502 (1957).

'~ M. G. Holland and L. J. Neuringer, in Proceedings of the
International Conference onthe Physics of Se.rnicondnctors, Exeter,
1962 (The Institute of Physics and the Physical Society, London,
1962),p. 475.

20 C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134, A1058
(1964).

factor of 2 lower than the majority of published data on
the material. "The room-temperature values of thermal
conductivity are, however, correct, implying some in-
consistency in the temperature dependence of the
relaxation time or the remaining terms in the theory.

In summary, it has been shown that there are in-
consistencies in the development of the Mason-Bateman
theory and further difhculties in adapting the theory
to Si and Ge. Most of the more rigorous theories of
ultrasonic attenuation are too complex and contain too
many unknowns to make them useful in 6tting experi-
mental data, even when such well-characterized
Inaterials as Si and Ge are under study. The use of
simplifying assumptions is almost inevitable, and the
best approach at present seems to be to use the theories
to 6nd trends in attenuation from material to material, "
or to help explain the variation of attenuation with
impuritv or defect concentrations. ' " In addition, the
use of Gruneisen parameters derived from third-order
elastic constants, in a manner analogous to Mason and
Bateman's work, may prove fruitful in understanding
the dependence of ultrasonic attenuation or propagation
and polarization direction in a given material.

Arote added in manuscriPt. Following completion of
this manuscript, a recent paper by R. N. Thurston
[Sixth International Congress on Acoustics, Tokyo,
August, 1968 (unpublished) j came to the authors'
atteotion. In this paper it is also shown that the
attenuation involves the specific heat times the tem-
perature rather than thermal energy. The authors are
grateful to Dr. Mason for pointing out this work.
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