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Localized One-Electron States in Perfect Crystals as a Consequence
of the Thermal Single-Deteiniinant Approximation*
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A new extension of Hartree-Fock (HF) theory to nonzero temperature T, namely, the thermal single-
determinant approximation (TSDA)—based on the variational principle of statistical mechanics —is applied
to a model of a crystal of widely separated atoms. It is shown that, in this TSDA, one type of solution to
the equations of stationarity of the free energy (TSD equations) consists of one-electron functions that
are extended throughout the crystal (like Bloch functions), and another type of solution consists of localized
one-electron states (particular Wannier functions), whereas it appears that in the usual, or standard,
thermal HF approximation (THFA), only extended solutions are possible at finite atomic separation.
(A previous argument that led to results contradictory to the latter statement is shown to be invalid. )
Further, in the TSDA at T&0, the localized solutions give a louver free energy than that corresponding to
the extended solutions, as well as a lower free energy than that obtained in the THFA. As far as we know,
this is the first calculation in which a strictly variational requirement has rejected this class of spatially
extended one-electron functions in favor of localized functions in a perfect crystal (i.e., in a system with
translational symmetry).

L INTRODUCTION

'HK basis of the one-electron theory of solids is the
Hartree-Fock approximation. For the ground

state of the system of interacting electrons this approxi-
mation gives the "best" wave function of the form of a
single Slater determinant of one-electron wave func-
tions, on the basis of the well-known minimum principle
for the ground-state energy. Such an application of the
ground-state variation principle, however, clearly does
not lead to a prescription for the "best" excited states,
even if they are also restricted to be single Slater de-
terminants. Nevertheless, it has been customary to
choose excited states as follows.

Let the occupied one-electron functions in the
minimum energy determinant Dp= Dp(Or 'Oiv) be
Or, Os, . . ., Otr, which can be chosen orthonormal with
no loss of generality; one can then complete the set of
one-electron functions by adding O&~t, Otr+s, . . . , such
that one obtains orthonormality among all functions:
(O;,O;) = 8;;. By the occupation of this complete set of
one-electron functions in all possible ways, one then
obtains a complete orthonormal set of (determinantal)
wave functions, D„, for the many-electron system, the
additional D„being taken as approximate excited states.
An obvious source of ambiguity in this procedure lies
in the fact that there is an infinite number of essentially
different ways of choosing the "excited" one-electron
states Otal+i, Ores, . . . (if the whole space of one-
particle functions has more than N+1 dimensions)
such that they are orthogonal to the given set Oi

*%ork sponsored by the Department of the Air Force.
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A further source of ambiguity is the well-known in-
variance (to within a multiplicative constant) of Ds
under a unitary transformation of the occupied states:

Ds(4'1' ' 'ON) ~DO(Or ' ' '4 ) )
where

N
O"'= 2 I't4's

P 1
(1.2)

c is a constant of magnitude unity, and I;; is any
NXN unitary matrix. ' Even though Ds( O;. ) and
Ds( O .) are essentially (i.e., physically) the same,
as in Eq. (1.1), the determinants obtained by destroying
an electron in O; or in O,

' are essentially different; thus
the set of excited states can be chosen in an infinite
number of essentially different ways (for N) 1), even
for giMrt Oint, OrrJ s,

Note that an immediate consequence of the ambiguity
expressed by Eq. (1.1) is that minimizing the energy of
a single Slater determinant can never alone lead to the
conclusion that the best one-electron functions are
spatially localized. For, if O; were localized functions
(about sites i= 1, 2, . . .), then one can always choose
tt;; so that the O,

' are extended; that is, in the state O
there is equal probability' of finding an electron in Oi,
Os, . . . . In other words, for any set of localized functions

~ There seems to be a misconception among many workers that
the physical invariance (1.1) is limited somehow to systems with
"61led shells" or "filled bands. "In fact, there is no such limitation
(nor any other limitation).

There is a unity matrix for arbitrary N such that )u„~~ is
independent of n and nt; namely, N„=N "' exp j2srs(n nt)/N j, —
n, en =1, 2, ..., 1V.
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there is an equally "good" spatially extended set (in
the sense of the energy variational principle).

A common way of choosing a particular set of excited
states is to choose the lt, to be the eigenstates of the
Hartree-Fock operator (i.e., solutions to the Hartree-
Fock equations with the Lagrange multiplier' matrix
taken as diagonal). But without any further argument,
this is a completely arbitrary choice in the infinite
number of choices, all consistent with the ground-state
variational principle.

Another way, which is not so arbitrary (in fact, no
more arbitrary than the use of the ground-state varia-
tional principle), would be to use the variational prin-
ciple of statistical mechanics, namely, the minimum
principle for the free energy at temperature T (see
Sec. II below for details). Since the excited states do
contribute to the free energy when T&0, this variational
principle will at least be expected to make an un-

ambiguous decision as to their nature. Formally, these
"best" states are the eigenstates of the "best" statistical
density operator p of a specific form, chosen in accord-
ance with the free-energy variational principle. It will

be convenient to describe p in terms of an approximate
Hamiltonian H, which is to be distinguished from the
exact or model Hamiltonian II.

This approach has been used' to provide an extension
of the Hartree-Fock approximation to nonzero tem-
peratures, as follows. In what has been called the
thermal Hartree-Fock approximation (THFA), the
trial density operator p was taken to be one correspond-
ing to an approximate Hamiltonian which is a one-
electron operator; i.e., 8=+ e;X,, where Ã; are the
occupation-number operators for a complete ortho-
normal set of one-electron states f, and, the e; are real
c numbers, the f; and e, being chosen to minimize the
free energy. This conforms to the idea of a one-electron
approximation and leads to the standard thermal
Hartree-Fock approximation that has been used for
many decades. ' Interestingly, the zero-temperature
limit of this theory gives just the choice of excited states
described in the paragraph before the last one.

This THFA is known to give poor results in certain
cases. In particular, it fails qualitatively~ ' for a simple
(single-band) model of a collection of hydrogen atoms
in the limit of infinite interatomic separation. Further-
more, the choice of p leading to the THFA is too restric-
tive from the stand point of the original Hartree-Fock
idea of seeking the "best" wave function for the system
in the form of a single determinant, for, while all the
eigenstates of a one-electron operator may be chosen to

'See, e.g., J. C. Slater, Qguntum Theory of Atomic Structure
(McGraw-Hill Book Co., New York, 1960), Vol. II.' N. David Mermin, Phys. Rev. 137', A1441 (1965), Appendix.
See also John M. Blatt, Theory of SNpercondlctiuity (Academic
Press Inc, , New York, 1964), p. 396.' N. David Mermin, Ann. Phys. (N. Y.) 21, 99 (1953);see also
J. Blatt, ibid. , p. 403.

For example, E. P. Wohlfarth, Phil. Mag. 41, 534 (1950).
~ T. A. Kaplan, Bull. Am. Phys. Soc. 13, 386 (1968}.
'T. A. Kaplan (unpublished).

be single determinants, one elec-trorl, operators ore not

the only operators with this property. For example, an

operator of the form P e,S;+g egÃ, X; would also

have a complete set of single-determinantal eigenfunc-
tions. In fact, II would have a complete set of single-

determinantal eigenfunctions if it were an arbitrary
function E( S;. ) of the occupation-number
operators.

Thus we are led to a new extension to nonzero
temperature of the HF approximation —namely, the
one-electron stateside, and the function8=E( cV," )
are chosen to minimize the free energy. This extension
of the Hartree-Fock idea has recently been proposed'
and described brieRy'; it was shown to overcome corn-

pletely the failure of THFA for the hydrogen-atom
model in the limit of infinite separation. It has been
designated as the thermal single-determinant approxi-
mation (TSDA) to distinguish it from the earlier
THFA. '0

In Sec. II we review brieRy" the main results of
TSDA of a general nature and those of THFA that
are of immediate interest to us here.

In Sec. III we apply TSDA and THFA to a simple
and commonly used single-band. model of a system of
widely separated hydrogen atoms, the protons being
fixed in a periodic array. In Sec. III A, the limiting case
of large separation is treated, with the possible eQects
of the long-range nature of the Coulomb interaction on
the limiting process discussed. We show that one-

electron states that are locaHsed around one proton
satisfy the variational equations both in the TSDA and
the THFA; there are also spatially extended one-electron
functions (like running waves), which are solutions of
both the TSD and the THF equations. Comparison of
the free energies for the various solutions and approxi-
mations leads to the following conclusion: The spatially
extended solutions are re'ected, by the free-energy rnini-

mum principle, in favor of the localized solutions (for
T)0), the absolute minimum free energy (i.e., the exact
free energy) being attained only in the TSDA.

In Sec. III 3, we consider in a perturbative way the
case of large but not infinite separation, i.e., the case in
which the overlap of the atomic orbitals is small, but
nonzero. We find that in the THFA, the localized solu-

tions for zero overlap do not form a proper zero-order
set (due to removal of degeneracy) and so do not lead
perturbatively to localized solutions for small overlap,
whereas in TSDA, localized solutions are found to exist
for small overlap, so that the basic conclusion of Sec.
III A is not violated for large but finite separation.

'T. A. Kaplan, Solid-State Research Report Xo. DDC-AD
672961, Lincoln Laboratory, M.I.T. (1968:2),p. 53 (unpublished)."This TSDA includes the most general choice of II, such that its
eigenfunctions (the approximate energy eigenfunctions) are all
single determinants formed from a complete orthonormal set of
one-electron states. It does not include, however, the most general
8 with a complete set of determinantal eigenfunctions PT. A.
Kaplan and P. N. Argyres (unpublished)).

"For more details, see T. A. Kaplan and P, N. Argyres
(unpublished).
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Finally, in Sec. IV, it is shown further that for this
model in the TSDA, localized solutions exist for
arbitrary overlap.

In other words, the new approximation TSDA is the
result of a variational procedure that leads, in the
present case, to essentially different results from those
of the standard thermal Hartree-Pock approximation
(THFA). This is true despite the fact that both ap-
proximations are based on having approximate energy
eigenstates in the form of single Slater determinants.
Furthermore, the new approximation has, for the erst
time, given a variational procedure sufficient flexibility
to allow it to choose unambiguously localized one-
electron states in a situation where there is crystalline
symmetry.

Localized one-electron functions in crystals, or
molecules, where symmetry would appear to require
extended functions, have been considered by others. " "
However, these wave functions have not been derived
on the basis of a variational procedure.

II. THERMAL SINGLE-DETERMINANT
APPROXIMATION

where
F,=F[p,]=—P 'ln Tre ~(H "~),

p = el e(rr u~)\/Tre—} e(I—r v&')}— —

(2.2a)

(2.2b)

is the exact grand-canonical density matrix. For a
system of interacting fermions, we have

P kx~c ~) +s P P &c) ~'v~~t&) t~v~~'
q (2 3)

«X «') '

where l)(), l X), . . . is any complete and orthonormal
set of one-particle states, h„),——(rlhlX) is the matrix
element of the one-particle operator h, and

The idea of TSDA is as follows. ~ '"We consider the
minimum principle of quantum statistical mechanics
for a system with a Hamiltonian opera, tor H and num-
ber of particles operator Ã:

F}(p]=Tr(p/H p—lV+P ' ln—p]) ~) F, . (2.1)

Here p is an arbitrary Hermitian and non-negative
operator with unit trace, /=1/hT, 1r is the chemical
potential, and Ii, is the exact grand-canonical free
energy for the system, namely,

for a trial density matrix of the form

p= el el—rr v&—}}/Trel e[—H I &—}}

where
8=E( 7" )

(2.5a)

(2.5b)

is any real function of the occupation number operators
S; corresponding to a complete orthonormal set of one-
particle states P;. Requiring stationarity of F[p] under
arbitrary variations of E( iV," ) and of the states P;,
subject to the previously stated conditions, we 6nd~' "
that the approximate Hamiltonian E(. 1V,' ) is
given by

E( ~ ~ iV; )=g h;;lVr+-,'P t),;,;;X;A;, (2 6)

while the one-particle states f; are determined by the
system of equations (to be referred to as the TSD
equations)

(lV;—Ã, )h;,+Q 8;,; ((N, —1V;)Ã )=0
l

(2.'7)

plus the condition that they form a complete ortho-
normal set. Here h;; are the matrix elements of h in the
})t; representation, and t),},;} is the antisymmetrized
matrix element

r)a, ~'}=&r(,~ &
&—((,()'='(—s~ [f)

l j~), (2.8)

where the matrix elements of t) are defined as in Eq. (2.4)
but in the f, representation. In addition, the angular
brackets in Eq. (2.7) denote the average over the trial
density matrix, i.e.,

(0)=Tr(p0), (2.9)

Frsr)g= —P 'ln Trel e} ("' '"' "~}} (2.10)

with E( ~ ~ 1V," ) given by Eq. (2.6). Thus E( S," )
within the TSDA plays the role of an effective Hamil-
tonian for the thermodynamic properties of the system.

From the minimum principle (2.1) we have clearly

with p given by Eqs. (2.5) and (2.6). Actually, the
stationarity condition leaves E( S," . ) undeter-
mined to within an arbitrary c-number function of P
and 1r (which introduces no corresponding ambiguity
into the free energy or anything physical), just as in the
more general unrestricted case. It can be shown, "
however, that taking this function equal to zero, as we
have done in Eq. (2.6), we find for the free energy in the
TSDA

is the matrix element of the interparticle interaction
i). The TSDA consists of finding the minimum of F[p]

~TSDA~~~e (2.11)

12 W. H. Adams, J. Chem. Phys. 3'7, 2009 (1962)."C. Kdmiston and K. Ruedenberg, Rev. Mod. Phys. 35, 457
(1963)."P. W. Anderson, Phys. Rev. Letters 21, 13 (1968);Phys. Rev.
181,25 (1969)."For additional references, see X.H. March and J. C. Stoddart,
Rept. Progr. Phys. 31, 533 (1968), Part LI

for any possible set of solutions g;) of the TSD equa-
tions (2.7). We should point out that there are, in
general, many sets of solutions (P;) to these equations,
and that they give merely the stationary points of F[p],
i.e., local maxima, minima, and inflection or saddle
points. The solution that makes FTgDA. minimum is,
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of course, the "best" from the point of view of the
minimum principle of statistical mechanics. "

The THFA can be obtained similarly from Eq. (2.1)
by requiring p to be not only of the form (2.5) but, in
addition, by restricting E(. ~ 7; . .) to be a linear
function of the X;, i.e., a one-particle operator. Then,
the corresponding 8( .S; ) is found to be equal to
P; e;X;, with e;, the THF one-electron energies,
given by

(2.12)e;=h;;++ tz~t, ;;(Az;).

The average ( ) is now taken with respect to the THFA
density operator, and thus (lV;) = f(e;), where f(e) is the
Fermi-Dirac distribution function. Similarly, in the
THFA, ((1V;—1V;)Xz) becomes (X; iV;)(Xz),—and thus
Eqs. (2.7), which determined the one-particle states lt;,
become for i/ j, after the cancellation of the common
factor (1V,—iV, ), the off-diagonal elements of the
familiar THFA equations, namely

h;;++ v, z, ;z(tl z) =c;3;,. (2.13)

Again, we may note tha, t the minimum principle (2.1)
guarantees that for any possible set of solutions lt, of
the THF Eqs. (2.13),

~THFA~~ ~e ~ (2.14)

IIL APPLICATION TO MODEL
HYDROGEN CRYSTAL

In order to investigate some of the consequences of
this new TSDA approximation and to examine the
points where it differs from the older THFA, we apply
these approximation schemes to the following simple
single-band model of a crystal. ' Consider K electrons

"Conditions for the local stability of solutions to the TSD
equations will be discussed elsewhere (Ref. 11).

'~ The presence of the factor (1V;—lV;) when (2.7) is reduced in
a one-electron theory can lead to additional solutions besides those
of (2.13); it can be shown, however, that such solutions cannot
yield minimum free energy. The presence of this factor, which will
be discussed in more detail elsewhere (Ref. 11),can be understood
in terms of the fact that (2.7) comes from variations of the states
zt;, rather than variation directly of the density operator p [the
latter leading to (2.13)].' A brief summary of the results of this application has been
presented in T. A. Kaplan and P. N. Argyres, Int. J.Quant. Chem.
3, 851 {1969).This single-band model is fairly commonly used. It
was used, e.g. , by Mattheiss LPhys. Rev. 123, 1209; 123, 1219

In addition, we see that if both the THF and the TSD
equations for the one-particle states admit the same set
g;), then the corresponding free energies to be denoted,
respectively, by FrzzF~g'z) and Frsnzg;) satisfy the
relation

Frizzing'z} &&Frsnx{f'j &~F8. (2 15)

Finally, denoting by FTHM '" and FTzDz '" the
absolute minima in the THFA and TSDA, respectively,
it is clear that

(2.16)

on the average moving in the field of K protons, which
are taken to be at sites n, forming a 6xed Bravais
lattice. In addition, take the one-electron function
space to be defined by requiring any one-electron func-
tion to be a linear combination of the 2X functions

a„,=a—(r n—)oz.= zz„(r)zr. . (3.1)

Here e, are the usual orthogonal spin functions, and
zz(r —n) is an "atomic" function centered at site 11 and
is taken, for convenience, to be real. In numerical
considerations made below, zz(r) is taken to be the
hydrogen 1s function.

The Hamiltonian of this system is given by Eq. (2.3),
where h is the kinetic energy of an electron plus its
interaction with the protons, and v(1,2) is the electron-
electron interaction. We will also add a constant

e2
I

2
[n —mf

the proton-proton Coulomb energy.
We will be interested here only in the case of large

separation d of the atoms. That is, we consider the over-
lap between zz(r) and zz(r —n) to be small for n/0 and
the Coulomb interaction energy U„between electron
densities zz'(r) and zz'(r —n) to be small. However, be-
cause the latter is of long range, one has to treat it
differently from the overlap if one is interested in the
thermodynamic limit, X —+ ~, d fixed (there conceivably
could be a difference depending on the order in which
the limits K ~Do, d —&~ are taken).

Thus we consider, in Sec. III A, two possible limiting
cases: the infinite-separation limit where the Coulomb
interactions U„Ldefined in Eq. (3.5)j for n/0, as well
as the overlaps of the atomic functions, are zero, and
the zero-overlap limit, where only the overlaps vanish
while U„/ 0. In either limit, we show that both spatially
localized and extended one-electron solutions lt; exist,
whether one works in the TSDA or in the THFA. We
also consider the free energies corresponding to the
various cases. This leads to the following conclusion,
drawn rigorously for the infinite-separation limit and
sufficiently low temperatures, and plausibly for both
limits and general temperatures: Namely, the extended
so/ntions are rejected, by the free-energy minimum
principle, in favor of the localized solutions (for T&0),
and the lowest free energy is attained only in the TSDA.

In Sec. III 3, we consider, in a perturbative way, the
eRect of small but nonzero overlap. The purpose is to
see if any of the solutions and, possibly, the above con-
clusion, are spoiled (e.g. , by effects due to removal of
degeneracies). We find, indeed, that in the THFA the
localized solutions for zero overlap do not lead to
localized solutions for nonzero overlap, whereas in the
TSDA, localized solutions are found to exist for nonzero

(1961l) in his treatment of a system of six hydrogen atoms
arranged in a regular hexagonal array, and also in Refs. 7 and 8.
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overlap. Also, extended solutions exist in both THFA
and TSDA. Thus, making the extremely plausible as-
sumption that the free energy for a given type of solu-
tion (if it exists for a range of overlap) is a continuous
function of overlap, the conclusion of Sec. III A is
established for small but nonzero overlap.

Our result, that localized solutions do not appear to
exist for small overlap in the THFA, is in essential
contradiction to statements existing in the literature.
The error made there is pointed out in Sec. III B.

The explicit quantities appearing in the theory, which
approach zero as the overlap approaches zero, are listed
in the following equations, along with the existence of
an upper bound expressed in the standard 0 notation":

(a„ia )=0(s), nWn'

(a.shia )=0(s), nWn'

(a a ~v~a. a )=0(s), nWn'

(a„a livia, a )=0(s'+"),
s )0, ng n', and mmmm'

(3.2)

where s is the largest overlap integral. (The latter occurs
for nearest-neighbor overlap. )

&vs»(ioc )=&. (3.9)

It immediately follows that the free energy in the TSDA
corresponding to the localized solutions (3.8), denoted
by F»»(loc. ), is the exact free energy

&Ts»(loc.)=F., (3.10)

and so, of course, all thermodynamic quantities cal-
culated in the TSDA are exact in both limits.

I.et us next consider the spatially extended functions

P exp(ik n)a(r —n)n. &"',
n

(3.11)

where o, ("& is the usual pair of spin functions, but which
is quantized along an axis that can vary (arbitrarily)
from site to site, and where k is an allowed wave vector
in the Brillouin zone. Straightforwardly, we find, in the
zero-overlap limit,

are solutions to the TSD Eqs. (2.7) in these limits,
since the matrix elements (3.3) and (3.4) are zero for
na&n'o'. Furthermore, the approximate Hamiltonian
(2.6) corresponding to these solutions, which we denote
by &Ts» (loc.), is easily seen to be identical to the exact
one:

A. Limiting Cases of Large Seyaration

In the zero-overlap limit, all the quantities (3.2) are
zero. Thus, denoting this limit by =', one easily Ands
that

(4~ t 4~ ")= &~s ~-,
(Ps~I hl P&'~') ~»'~«'h

~

and the antisymmetrized matrix element

(3.12)

(3.13)

(a„.~h~a„. )=B,.h, „(a„,~h~a„.) (~.~' " lvl~'"~' ")=(1/~)&- &-
XLU(O) —S..U(k —k")j, (3.14)

(anomaly
~

v
~

an'e'al'r') ~nn'5«'~u'~rr'Unl
q

where

(3 4) where

U(k —k')=P U „expLi(k —k') (m —n)j

U 1= drl drsv(r12)a (rl —11)a (r2 1) = U (3.5) =K(qk.gg .) v
I 4'&"A~) (3.15)

In the in6nite-separation limit all these relations ob-
viously hold and, in addition, we have

U =VS (3.7)

Because the states u„are orthonormal in this limit, we
can use them as a basis set for the exact model Hamil-
tonian (2.3), thus letting c„,t be the creation operator
for the state a„„and using Eqs. (3.3) and (3.4), we have
from Eq. (2.3) (adding C),

EX=AX+ ,' Q U„„(1 5„„8,-. )iV„,X—„.+C (3.6).

is K times the exchange integral between Pq and Qs
We see that the P~, are solutions to the TSD Eqs. (2.7)
in both limits under consideration, since each of the
matrix elements (3.12), (3.13), and (3.14) are zero for
ko W k'o'. The approximate Hamiltonian (2.6) cor-
responding to the extended solutions ps„denoted by
ETs»(ext. ), is found, with the help of Eqs. (3.13) and.

(3.14), to be

U(0)S
E'Ts»(ext. ) =' E h+—

2%

Ke immediately see that the localized functions (3.16)P U(k —k')ms. es .+C,
2Xf,~a, (3.8)

g9 N G Dellruiln gr~~pglic ~~goJr 0N gaal~r~r (North where n'&, is the occupation number for the state @&,. It
Holland Publishing Co., Amsterdam, 1958), Chap. 1. will prove convenient to note that Eq. (3.16) can be
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written
U(0) 1V

ETsDA(ext. ) = 1V k+—
2X

U
P tV..1V. .

2X

[U(0) —U]
2X

stronger version of the basic minimum principle (2.1),
namely, "

F[p]&F[p,]=F, for pA p, and T)0. (3.24)

Thus, Eq. (3.23), together with this principle, yields

FTSDA(ext. ))F.[='FTSDA(loc )], T)0
(inf. -sep. limit) . (3.25)

+ P' P U.;,V..1U;. G+C,—(3.17)
2+ nn' o'

where U, as defined by Eq. (3.7), is the Coulomb self-

energy of the charge distribution ea'(r), and

and P ' b means sum over m with mW a or b.
%e shall now argue that in these limits, and for

T&0, the free energy in the TSDA corresponding to the
extended solutions (3.11), denoted by FTs&A(ext. ), is
greater than F,[=' FTsnA(Ioc. )].

We first consider the infinite separati-on limit, where
U, =0 for num. In this case, Eq. (3.15) gives
U(k —Ir')= U; thus Eq. (3.17) becomes

U1V U
ETsnA(ext. ) =1V~ k+ — Q N, lV

2m. 2X

Noting that
(inf. -sep. limit) . (3.19)

tV.—=Q &V..=g n~. ,
n k

(3.20)

we see that Eq. (3.19) agrees with Eq. (3.16) (as it
must), and can be written

U
ETsnA(ext. ) =IV&+ 1V t (1V —IVt—)

K
(inf. -sep. limit) . (3.21)

Similarly, Eq. (3.6) becomes

H =1Vk+ U Q 1V„t1V„& (inf. -sep. limit) . (3.22)

From these equations, it is clear that in the infinite-
separation limit,

ETsnA(ext. )WH (inf. -sep. limit) . (3.23)

For example, consider the set of states for which g =X.
Since U) 0, the minimum eigenvalue of (3.21) and of
(3.22) is 1VA [attained in (3.22) for IV„t+IV „l,= 1, all n];
however, the degeneracy of this ground level is two
for Eq. (3.21) (the two states occurring for 1Vt = 0 and
1Vt =1V), whereas this degeneracy is 2~ for Eq. (3.22)
(since either 1V„t=1, 1V„i=p or 1V„t=p, IV„l,=1, for
each n, gives the minimum energy). Now there is a

O, n' —n

G= Q' Q Q U c .tc +,.c„.tc„., (3.18)
2 nn' o m

In general, however, one must be careful about con-
cluding that an inequality like (3.25) is significant when
one is interested in the thermodynamic limit ( K —+~ )."
It is possible that the difference

[FTsnA(ext. ) —FTsnA(loc. )]~ 0

as K ~~ [in which case the inequality (3.25) would be
felt to have lost any significance for deciding that the
extended solutions are "worse" than the localized solu-
tions], or even that [FTsnA(ext )—FTsoA(ioc. )]/& ~ 0
(in which case the inequality would also be felt, al-
though less strongly, to have lost its significance). This
could happen, in an obvious way, if the difference
between ETs&A(ext. ) and FI occurred only in highly ex-
cited states whose energies relative to the low-lying
levels~~ as X~~; it could also happen in more
subtle ways. On the other hand, in the present case, the
difference in the degeneracies of the important low-

lying levels of ETSoA(ext. ) and H apparent from (3.21)
and (3.22) (we gave the example of the ground level
for 1V= K) makes it extremely reasonable that

[FTBDA(ext ) FTsDA(loc. )]&
remains positive as X —+~: For T&&U/k=10'"K [the
spacing between the two lowest levels for both Hamil-
tonians, F&» (Aext. ) and H, for the case of hydrogen 1s
orbitals], one strongly expects F, Z, (h —p) —OlkTln2
and FTsnA(ext. ) K(h —p) kT ln2 so tha—t the latter
lies above the former by essentially XkT ln2, a macro-
scopic and therefore significant quantity. Although we
expect that most readers will not be skeptical about this
reasoning —we were well convinced —we feel that we
must prove the inequality (3.25) rigorously, since it is
the central result of this paper. (From it follows that,

"Mermin (Ref. 4, Appendix) almost proves this. Unfortunately,
he omits the condition T&0, and it is possible to give a counter-
example when that condition is omitted. Namely, suppose H —IJN
has a degenerate ground level, degeneracy I'; then, as T —& 0, the
eigenvalues of p. approach j./I' for each of the ground states, and
zero for all other eigenstates of H —IjpN (p, —+ p, p as T ~ 0). Con-
sider a p=exp[ —ti(H —poN)]/Trexp[ —P(H —poN)], in which
II—IjpN has the same eigenstates as IJ—ppN; its ground level is
nondegenerate, and its ground state is one of the ground states of
H poN. Clearly, then, F[p] —F[p,]~ 0 as T ~ 0, but p —p, d—oes
not approach zero as T ~ 0. However, if the proviso, T)0, is
included in the statement of the principle [as in (3.24)], then
Mermin's proof appears to be valid."Care is needed even if one is interested in macroscopic systems
(X very large but finite). In such cases, it would seem reasonable
that a significant difference in free energies would be one that is
linear in X over the experimentally accessible range of X, to an
accuracy well within that which is experimentally achievable. See
Appendix A for further discussion along these lines.
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in the present limit, the localized solutions are pre-
ferred over the extended ones. ) Hence, in Appendix A,
it is shown rigorously that FTsn~(ext. ) —FTsnA(loc. )
is a positive macroscopic quantity for T&0.

We next consider the sero overl-aP limit (U, WO), in
which we must compare (3.6) with (3.16) or (3.17). For
finite X there is no problem in concluding the inequality
between the free energies for the two types of solutions,
Eq. (3.25), for the presence of G in (3.17) makes it clear
that (3.23) holds in this limit as well, since the two
Hamiltonians no longer even have the same set of
eigenstates. Again, however, when K —+~, one must be
careful. Following the previous argument for the
infinite-separation limit, the first problem we encounter
is that the nature of the ground state of H LEq. (3.6)]
for E= K is not known. The additional terms, involving
U for n/m, would appear to be minimized, for some
simple lattices (e.g. , sc, bcc), when A i+N„i = 2 or 0
such that the nearest neighbors to sites with two elec-
trons would have no electrons. Thus it is not ob-
vious that the states with one electron on each atom
(N„i+tV„&=1, all n) minimize (3.6); that they, in

fact, do give the minimum energy is proved" rigorously
in Appendix B. The second problem encountered is to
determine the ground state of Ersn~(ext. ), Eq. (3.16).
For this case, it is shown rigorously in Appendix B that
the minimum occurs when n~g = 1, n~g = 0 for all k in a
Brillouin zone, just as for infinite separation (Eq.
(3.21)]. Furthermore, this state ~iver/ 1 ski=0, all &

in BZ)—= ~0) is identical to the state
~

N„i = 1, N„g = 0,
all sites n), which is a ground state of H. Clearly, the
degeneracy of this ground level of (3.16) is at least 2;
the important question is whether it might approach
2+ as X~~. It is straightforward to see that if a
finite number, v. of electron-hole creation operators
bQ'4 bent is applied to

~
0), then, in the limit K ~~, the

energy is increased by vU (just as in the infinite-
separation limit). This suggests that the ground state is

again doubly degenerate [the second ground state comes
from applying Ol, operators b& iib&i to

~
0), which is the

same as flipping all the spins in
~
0)] and that the low-T

(«U/k) thermodynamics is the same as for the infinite-
separation limit; in particular, it suggests that (3.25)
again holds. However, this discussion leaves the pos-
sibility that, if v is a finite fraction of X, additional
levels might occur near the ground-state energy, ap-
proaching the latter as X ~~. This possibility is
ruled out in Appendix C, where it is shown that the
ground level is doubly degenerate for finite X, and that
there is a gap 6 to the first excited level such that
d &~ (U —Ui)(1 —1/X), where 1 is the nearest-neighbor
vector in the direct lattice.

Thus we have carried the argument in the case of the
zero-overlap limit to essentially the same point that we
had for the infinite-separation limit before we reached

"An interesting aspect of this appendix is that it is the positive
nature of the exchange integrals between extended solutions that
allows the proof of this localization.

the final rigorous argument of Appendix 1. Namely,
&ran~(loc. ) =H, so that the localized solutions in
TSDA give the exact free energy; the ground-state
energies of E'pan+(ext. ) and Evan+(loc. ) are the same;
the ground-state degeneracies are 2 and 2+, respec-
tively; and there is a finite gap 6 between the first two
levels of Ersn~(ext. ). Hence, it is extremely plausible
that for 0(T(h/k (=10"K), the free energy for the
extended solutions exceeds that for the localized solu-
tions by a macroscopic quantity, which is, for kT((6,
approximately XkT ln2. This is as far as we will carry
the argument concerning localized versus extended
solutions in the TSDA for the zero-overlap limit.

Ke now turn to the standard thermal Hartree-Fock
approximation, THFA. The first question we ask is
whether THFA can possibly give a lower free energy
(in the present limits) than the TSDA. The answer is
"no," as follows immediately from (3.10) and (2.1).

Next, one should ask if THFA can do as well as
TSDA. To discuss this, we first note that the solutions
of the TSD equations that we have considered Lnamely,
the set of localized functions a„,and the set of extended
functions pk, of (3.11)] are also solutions of the THF
Eqs. (2.13) in the limits under consideration. For (2.13)
with i4 j, the reasons are the same as in the TSDA;
Eqs. (2.13) for i=j are equations for determining the
one-electron energies e;, solutions of which necessarily
exist, since (a) these are the equations for stationarity
of the free energy in THFA with respect to variations
of the e, with P, fixed, and (b) the free energy is bounded
from below. For the extended solutions we have, be-
cause of (2.15),

FTEIFA(ext. ) + FTSDA(ext. ) (3.26)

In the infinite-separa, tion limit, the sum in (3.27)
vanishes so that it reads

li„+U(N. . .) =- e„, (inf. -sep. limit), (3.28)

where A„= —1Ry. It has been shown elsewhere' that
the minimum free energy obtainable from solutions of
(3.28) is identical to the minimum free energy arising

2'In fact, we expect that in the thermodynamic limit the
equality sign holds in (3.26). This is so partially because the
method of Bogoliubov, Zubarev, and Tserkovnikov, Soviet Phys.—Doklady 2, 535 (1957), when adapted to this problem, gives the
equality. However, since the conditions for applicability of the
:BZT method have not been determined, there could be some doubt
about this conclusion. In the special case of the infinite-separation
;limit, the conclusion can be established convincingly by replacing
the factorials in Eq. (A1.7), by their Stirling approximation, and
approximating the sum by the maximum term.

and therefore, using (3.25), we conclude that the free
energy in the THFA corresponding to the extended
solutions cannot do as well as the TSDA."

For the localized solutions, the THF Eqs. (2.13)
for i= j, with i ~ Do., become

k+U(N„.)+ Q g U. (N. .)='e„.. (3.27)
n'Qn g'
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(1i+ P U, )+U(N. . .) =e
n' Qn

(3.30)

which is of the same form as (3.28). In fact,

It+ Q U =1i„—Q
n' gn

a.(r)'

dr+ P U„„=' h„, (3.31)
[r—n'[

since, to zero order in the overlap,

from the extended solutions of the THF equations
(again in the infinite-separation limit). Thus, using
(3.26), we see that FTHF~(loc. ) &~Frsnp, (ext.), and
therefore (3.25) gives F'fHipl(loc. ))FTSDA(loc.). Sum-
marizing the results of this paragraph, we have

minFrirFa) minFTsna (inf. -sep. limit), (3.29)

where minF means the minimum of I' over all of the
solutions considered here. '4

For the zero-overlap limit, let us first assume in
(3.27) that P, (N„,) is independent of site n (which is
equivalent to assuming that the thermal average charge
density has the lattice periodicity). Then (3.27) becomes

minimum energy). Further, we see no tendency for
nonperiodic charge density solutions (if they exist in
the present zero-overlap limit) to give a zero-point
entropy in THFA (any more than nonperiodic spin
densities have such a tendency —they definitely do
not give a zero-point entropy in THFA~' when the
charge density is periodic). And of course the zero-point
entropy $0=—Xk ln2 is needed to achieve the lowering
—TSO in the free energy at low T. Although this dis-
cussion does not constitute a proof, we will not pursue
this question further here.

B. Case of Small Overlay

In this section we examine the possibility of 6nding
localized solutions to the TSD and THF equations in
the case of large but Gnite separation between the
atoms, so that there is a small overlap between the
atomic electron wave functions a„,.

Specifically, we treat the largest overlap integral s
[see Eq. (3.2)] as a small quantity and seek solutions of
the TSD Eqs. (2.7) and THF Eqs. (2.13) of the form

nn=an~+ Q tin~, n'~'an'~'
n'0'

e2 g2
= 2 (1+v)-,".a-",

n'a'
(3.34)

a '(r) dr= —= U . (3.32)
)r —n'[ )n —n')

In other words, for localized solutions in which the
charge density has the lattice periodicity, the THF
equations in the zero-overlap limit are identical to those
in the infinite-separation limit. Similarly, it can be seen
straightforwardly that the free energy in the case de-
fined by (THFA, infinite-separation limit, localized
solutions, periodic total charge density) is identical to
that defined by (THFA, zero-overlap limit, localized
solutions, periodic total charge density). Thus, using
the arguments of the preceding paragraph concerning
the infinite-separation limit, we finally conclude that
for T/0,

minFTirFp, )minFrsna, (zero-overlap limit ) (3.33)

for all solutions considered here, with the proviso that
the one-electron energies in the localized solutions (for
THFA) correspon. d to charge densities that have the
lattice periodicity.

Concerning this proviso, we add the comment that we
feel intuitively that nonperiodic charge densities can-
not at T/0 give a free energy in the THFA that
equals FTsna(loc. )(=F,„«4). This feeling is based
partly on the fact that in any minimum-energy deter-
minant the charge density must be periodic (we showed
earlier in this section that N t+N„4= 1 all n is neces-
sary and sufhcient for a Slater determinant to have

where

(a-la" )=(1+~)-,""
(&nn +s ) (3.35)

Snn& = Snn& =Sn&n= 0
(a„I

a.') =O(s), n'Wn. (3.36)

In order that the f„as given by (3.34) be ortho-
normal, the matrices g and S must satisfy the relation

(1+v*)(1+~)(1+~) = 1, (3.37)

where q is the tragspose of q. To erst order in s this
gives, if we note that the matrix 5 is real,

41+4it = —S. (3.38)

Thus, the Hermitian part of g is determined by the
overlap matrix S. Denoting the anti-Hermitian part of

g by —I', i.e., setting

(3.39)
with

(3.40)

where the coefticients 4i„,„, are small (they turn out
to be of first order in the small parameter s).

Note that now that the separation between the nuclei
is large but finite, the atomic functions a„, in (3.34) are
not orthonormal. Instead, we have

'4 Equation (3.29) illustrates the failure of the THEA discussed
in Refs. 7 and 8.

we have
n= —l(~+&). (3.41)
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It is convenient to note that the functions

no = n&o'

—=E(&nn' 2~nn')~in'&s
n'

(3.42)

are orthonormal to first order, as is evident from (3..34)
and (3.38) In terms of these functions, we can write
(3.34) in the form

1
no = &no 2 ~ Pno', n'o'~n'o' ~

n'o'
(3.43)

We must now determine, up to order s, the matrix P
so that P„of (3.43) be solutions of the TSD Eqs. (2, 7),
and alternatively, of the THF Eqs. (2.13). It is useful
for this purpose to introduce an operator Pgi} such
that its matrix elements between any two one-electron
states P„, $&, is

where the matrix elements of v are defined by (2„8).
Note that this one-electron operator Pgi}, which de-
pends on a set of states Pi, is also an operator in the
Fock space of the system, as it involves the occupation-
number operators N~. In terms of this operator, the
TSD Eqs. (2.7) can be written as

&(~"—& )(0'I ~H ~}14 ))=o, (3.45)

where the angular brackets denote the average over the
TSDA density operator. Similarly, the THF Eqs.
(2.13) can be written as

(3.46)

where no w the angular brackets denote the average over
the THFA density operator.

For the wave functions P„,given by (3.43), we have
to first order in s, if we denote the quantum numbers
(no) collectively by i,

(O'.
I &(4~}14'")=(O'.

I &(f~}14")

zero-overlap limit, as given by (3.5); and Ã„denotes the
occupation-number operator for the state a„. Note
that e, in (3.48) is an operator in the Fock space of the
system such that its average value over the THFA
density operator in the zero-overlap limit is equal to
the THF energy eigenvalue e„given by (3.27). Also
from (3.43) and (2.8) we note that, up to order s, we
have

Z»(4.4.1v14 "6)=Z»(4.4'I ~
I 4"4 ~)

', (7V„——1V,) U—„P;., (3.49)

where we have made use of the anti-Hermitian character
of P given by (3.40). Thus we have, up to order s,

9"I ~H ~}10")= 4"I ~{4~}I P")
2(X„—'JV—„)U„—;P;.. (3.50)

Combining now (3.47), (3.48), and (3.50), we have, up
to order s,

(4.1 ~(A}14") = (4.1
5'(4'}

l 0" )
—-', Le„—e„.+(1V„—1V„)U„„jp„„. (3.51)

We finally note that (Q, I P(gi} lg„) is to be 1 ept up to
order s and that, according to (3.48), the part of order
s' vanishes for v'4v. Furthermore, this first term of
(3.51) is diagonal in the spin indices 0, ~, due to the
fact that the states g„=P„, are definite spin states,
according to (3.42).

We can now determine P„„so that the one-electron
states P, given by (3.43) are solutions to the TSD
Eqs. (3.45). Since the part of (3.51) of order so when
multiplied by (1V„—iV„) vanishes, the average & ) in

(3.45) should be taken over the TSDA density operator
for zero overlap; we shall denote this by & )o. We thus
obtain from (3.45) and (3.51) for v= no. &n'o '= v'

10
g.~ n'o', no

&(1V„. fV „.)(e„. e„.—+(1V„. N—„.) U ))o—
(3.52)

v"

where we have used (3.40). Now, however, it is easy to
see from (3.44) and (3.2) that

(a„15'(a),}I
a„')=e„5„„+o(s)

=—
I h+Q 1V,"U„

&& (1—8„, )]5„„+0(s), (3.48)

where h =h„„=h„ is the average value of the one-
electron operator h for an electron in the state a„=c„,
given by (3.3); U„„=U, „ is the Coulomb interaction
energy of two electrons in the states a and a ~ in the

The denominator of (3.52) can be sirnpliled consider-
ably for a Bravais lattice of the sites n. This is not, how-

ever, important for our argument here, except that it
allowed us to show that the denominator is different
from zero, so that P of (3.52) has a finite value. In fact,
again for a Hravais lattice, one can show that the
numerator of (3.52) vanishes. We shall not demon-
strate this, however, as the more general proof of the
next section will make this point evident. We thus 6nd
that, to order s, the wave functions P„., as given by
(3.42), constitute solutions to the TSD equations. It
can easily be seen that these solutions are to order s,
particular Wannier functions appropriate to the Bloch
states constructed from the atomic orbitals a„. In the
next section we show, in fact, that for Bravais lattices,
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these Wannier states are solutions to the TSD equations
for any amount of overlap of the atomic orbitals u .

Let us now determine P, „so that the one-electron
states f„, given by (3.43) be solutions to the THF
Eqs. (3.46). Again, since the part of (3.48) of order s'
vanishes for y'Wy, the average ( ) in (3.46) should
now be taken over the THFA density operator for
zero overlap; we shall denote this again by ( )p.
Recalling then that Lsee Eq. (3.27)j
P'-)o=f( -) (3.53)

e .=(e„.)o=h+U(Ã, .)o
+ Z U- ZP""), (354)

In order to determine P, we thus need the THF energy
eigenvalues c„,for the limit of zero overlap, which are
determined from Eqs. (3.53) and (3.54). We shall not
attempt to investigate all possible solutions to these
equations. Instead, we shall consider only solutions
that give rise to a (thermal) average charge density
that has the periodicity of the crystal. These are com-
monly used solutions of the HF equations. (If other
solutions exist, they should be checked to see whether
they give a free energy lower than the free energy of the
solutions we consider here. ) We shall show that for
such solutions of the THF equations the denominator of
(3.55) vanishes, while the numerator for states with the
same spin does not, and thus the desired matrix P„,„,
does noII exist. This will then show for the system under
consideration that, although in the limit of zero overlap
the THF equations do have localized solutions that
yield an average charge density with the periodicity of
the lattice, nevertheless for small overlap, one cannot
find solutions to the THF equations of the perturbation
type (3.34) that would also be localized.

In order to prove these statements, we note first
that the electronic charge density operator at point r
is, in this limited configuration model, and for zero
overlap, e P, a '(r)P, X„,. Thus, in the limit of
zero overlap, the thermal average charge density has
the periodicity of the lattice if and only if

where f(e) is the Fermi-Dirac distribution function,
we have

&(~. l ~{~»l~-)).
(3.55)

&nr &n'r+ Unn' jf(&nr) f(&n'r) j

values c„are determined from the equations

e..= (7t+E)+ Uf(e.. .) . (3.57)

Considering the system of Eqs. (3.57) for the same n
and for the two values of the spin 0.= &1,we can easily
see graphically that there are at most three solutions:
c "& c,") and v. "'. Here c "'4c &" c (')=c,"'
and e,"&=e,"~. It can be shown' that solutions (1)
and (2) exist only for kT(U/4= kT*—, in which case
these solutions give the minimum free energy. Thus,
for T)T*, the denominator of (3.55) obviously van-
ishes. For T(T*, the denominator again vanishes for
any pair of sites n, n' such that e. ,=e„;since there are
only two possible solutions (corresponding to having the
average spin up or down), there necessarily will be some
such pairs for X)2.

Finally, it can be checked that the numerator of
(3.55) is in general, different from zero. This concludes
the argument and shows that in the THFA, as applied
to this single-band model, there are no localized pertur-
bative one-electron orbitals if there is arbitrarily small
overlap, at least for the case when the (thermal) average
charge density has the periodicity of the crystal.

This result seems to contradict a well-known state-
ment in the literature" concerning the solutions of the
HF equations for the case of the hydrogen molecule,
according to which both extended and localized solu-
tions are possible for finite interatomic separation. The
error in the argument cited in Ref. 25 is the neglect
of the possibility that the (small) exchange term that
exists for parallel spins might remove the degeneracy
of the postulated localized solution. For the case of
antiparallel spins, the exchange term vanishes, and
therefore localized solutions are possible, as Slater"
has noted. We note, however, that the two localized
solutions are degenerate, and therefore, extended
functions obtained by a unitary transformation will
also be solutions. We would, therefore, expect that
physical spin-dependent interactions will remove the
degeneracy, allowing only these extended solutions.

IV. CASE OF FINITE OVERLAP

In this section we shall prove that when the H atoms
form a simple Bravais lattice, then the TSD Eqs. (2.7),
in the single-band model, are satisfied by localized one-
electron orbitals, namely some Wannier functions con-
structed from the atomic orbitals (3.l.) La(r —n)].
Explicitly, these are

Q (1V,)s ——1, (3.56)

i.e., the average number of electrons on a site is the
same for all sites, and therefore equal to one for our
model. Now Eq. (3.56) and the fact that we have a
Bravais lattice show that the last term of (3.54) be-
comes a constant E, i.e., independent of nor. Thus, for
such solutions of the THF equations, the energy eigen-

to(r —n) = P g&(r —n) = P e '" "p&(r), (4.1)

where Pq(r) are the Bloch functions constructed from

"See, e.g. , F. Seitz, The Modera Theory of Solids (McGraw-
Hill Book Co., New York, 1940), p. 257.

s' J. C. Slater, Phys. Rev. 82, 558 (1951).
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the atomic orbitals a(r —n), i.e.,

4~(r) = Q e~& nii(r n)

with C~ a real normalization constant. It is well known
that w(r —n) is a localized function around n. It is
easy to verify that this choice of phases and the reality
of a(r —n) entail the following properties for the
Wannier functions:

hn'n' hnn y

rL

&n'm', n'm' &nm, nm q

(4.10)

(4.11)

as can easily be checked. Finally, since the set {n') is
identical to the set {n), the primes in the right-hand
side of (4.9) can be dropped everywhere. This proves
(4.8). From (4.8) it immediately follows that

same correspondence. Taking this correspondence to be
n'=n+R, where R is a fixed vector of the Bravais
lattice, we find

w(r) = re( —r) = 2e(r) *, (4 3) Lp,~j=0, (4.12)

which will prove useful later. We shall show that the
functions

P; —+ P,.= ie(r —n)n. =—ie, (r)n. (4.4)

are solutions of the TSD Eqs. (2.7), by showing that
each term of (2.7) is separately equal to zero.

For states i= (na)-and j= (n'0') corresponding to
different spin states, i.e., for 0-'/0. , the TSD equations
are satisfied, since it is seen immediately that

where p is the density operator (2.5). Equation (4.6) is
then easily proved, since

(N„)=Tr{plV„)= Tr{p'ttN„'tt ')
=Tr{apN„.+-') = Tr{plV„)
= (N„).

We next prove that, again for any pair of Wannier
functions w (r), 2v, (r), we have

h no, n'o' ~ ~no, l; n/o', l ~ ~pro/ ~ (4.5) P Vnm, n'm((Nn Nn')Nm) =0 ~ (4.13)

For 0'=o-, however, the argument is more involved.
We 6rst prove that for any pair of Wannier functions
w„(r), 2e, (r) we have, dropping the common spin index,

(N.)—(1V„)=0. (4.6)

LThis makes the first term of the TSD Eqs. (2.7)
vanish. ) In order to prove (4.6), we note that for any
correspondence between the states of two complete,
orthonormal sets of one-electron orbitals, there exists a
similarity transformation that relates the occupation
number operators for the corresponding states through
a unitary operator 'h. Thus, for the correspondence
m„+-+ zv„between the Wannier functions x„and zv„
there exists a unitary operator 'll such that (taking the
spin of the two Wannier functions to be the same, and
suppressing the common spin index),

&nm, n'm &nm', n'm'
~

(4.14)

if we use Eq. (4.3). It is then sufficient to show that

((1V N)(N +N ))=—0, (4.15)

To prove this, it is sufficient to show that for every
rn there is a corresponding m' such that the contribu-
tions of both m and m' to the left-hand side of (4.13)
add up to zero. We note that the correspondence
between the states mr„and m„can be taken to be an in-
version through the midpoint 0 of the lattice vector
joining n and n'. Such a point can easily be seen to be a
point of inversion symmetry for the Bravais lattice,
and thus we may choose m' to be the inversion m
through 0. It is then easy to show that

Now such a %. has the property

vE( N ' )w
—'=E( N )

(4.7)

(4.8)

where the correspondences n+-+ n' and m+-+m' are the
same, namely, an inversion through the point 0. The
operator 'll associated with the correspondence m „~ze„.
is then such that

N„=eiV„.& 'and N =WN —.W-i, (4.16)
providing the correspondence n&—&n' is a symmetry
operation of the crystal. To prove this, note that

wE( 1V.' )e-'=P h. .eN. e-'

+2 Z P r n' m', n' m'MN n'Nm' ll
n/ m/

—Q hn~n'Nn

+2 P Q iin'm', n'm'~ nNm q

n' m'

In addition, it is easy to see, again using (43), that for
this correspondence the matrix elements of h and n

satisfy Eqs. (4.10) and (4.11), and thus 'll commutes
with the density matrix operator p, i.e., (4.12) is again
satisfied. Now if we use (4.16) and (4.12), it is trivial to
show that

while
(N„N ) (N 1V )=0, — '

(4.18)

while, owing to the inversion character of the cor-
respondence n+-+ n',

(4.17)

~here ze„~ m „and zv ~ ~ w ~ are related through the (N, 1V )—(1V N )=0 (4.19)
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if, in addition, (4.17) is used. Adding (4.18) and (4.19),
we obtain the desired relation (4.15), which is sufficient,
in conjunction with (4.14), to prove (4.13).This makes
the second term of the TSD equations vanish.

Thus, Eqs. (4.13) and (4.6) show that the one-
electron states P„, (4.4), with the orbital part given by
the localized Wannier functions w(r —n), are solutions
of the TSD Eqs. (2.7), for this single-band model of a
system of H atoms arranged on a simple Bravias lattice
of arbitrary lattice parameters.

It is worthwhile to point out that the argument
presented above is primarily based on symmetry, and
thus it can easily be applied to more general models.

Note that the result of this section is in complete
agreement with that of the previous section, where the
case of small overlap between the atomic orbitals a„(r)
was considered. It is easy to show that, to first order in
the overlap parameter s, the Wannier functions w (r),
Eq. (4.1), are identical to the )/! „,Eq. (3.42), of the pre-
vious section, which were found to be, to order s,
solutions of the TSD equations.

Finally, we observe that the same argument does not
apply to the THF Eqs. (2.13).In fact, we have not been
able to show whether the localized one-electron states
f„„asgiven by (4.4), are solutions of the THF equa-
tions or not, although the perturbative results of the
previous section suggest that they are not solutions.

APPENDIX A: PROOF THAT FYsop(ext. ))Ersn~(loc. ) IN INFINITE-
SEPARATION LIMIT

I.et us f)rst evaluate F'fsi)+(loc). =F, in the infinite-
separation limit. In this limit the Hamiltonian is given
by Eq. (3.22), and the partition function is easily found
to be

Ot X x
S =20(es(*" Q cosh—(tt ——',X)

e
(AS)

Considering X to be even for convenience, we can write

where
5= (2e*/') ~Sg,(x), (A9)

with

Ss((x) =— P a/,
Z=$X

(A10)

ci= cosh— =8 (A11)

To investigate the summand a~, consider

(t(+i cosh(x/K)(l+1) + (K/2) —I

cosh(xl/X) (X/2)+3+1

x)K xl x ~sr
cosh—

~

1+tanh —tanh —
~xi x xi
(X/2) —l

(A12)
(X/2)+I+1

exact value (A3) of the chemical potential is
/

y=Z~so~(ext ) —Tree(/(( i/&) ( /)/t+ /)/)) —(t/K) (/)/t&i))

K,~ X
e//(/[(il&) (~t+~i)—(i/x) (~t~k)1

~
(A7)

nt=o neo gati tt)

K~
where

~

=K!/tt!(K—tt)!. Doing one of the sums, we
tti

Z, = {1+2e //(& v)+e e[ (&——2v)+—&) )&— (A1) Consider 6rst g~ at the "end point" l= ~X—1,

&= (~')= (1/P)(~/~ ) l z.(P, )

which gives, in conjunction with (A1),

/i= h+-',U.

(A2)

(A3)

With this value of the chemical potential, the partition
function Z. becomes

where
Z =2~(1+e*P

The chemical potential p, is determined from the
condition g (/2) —1

XLcosh(x/K) )~L1—tanh-',x tanh(x/K)) ~
(A13)

and then at the "central point" l=0,

ay
eQ 1n cosh (x/Q) —ln [&+(2/37, )]

Go

The orders of magnitude that we are interested in are
U 10 eV and T(300'K, so that x)200. We also
want K, =1023—e". Then, clearly,

x= -', /3U,

and the corresponding free energy is

(AS)
Also,

tanh-', x i.
x/Z, &&1

(A15)

(A16)

F.=Ft sr)~{loc.) = —he ln2(1+e') . (A6)

For the case of the extended solutions in the TSDA,
the Hamiltonian in the infinite-separation limit is given
by Eq. (3.21), and thus the partition function for the U 10 eV, 10 "K&T&300'K. (A17)

for all except extremely small T; e.g., if T&0.01'K, then
x &10t and x/K& 10 ".For definiteness we shall assume
(unless stated otherwise)
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A rough idea as to Eq. (A13) is easily obtained for
these orders of magnitude by putting coshx/K 1
+x2/2K', tanh(x/2) 1, and tanhx/X~x/X. Then
(A13) gives

e
—K In[I+(x&/2K )]—K In[I—(z/K)J ex (A18)

K K

go~e(&/2&) (~~—4) g 1 (A20)
(with go—1).

These last two results suggest that a~ increases
monotonically with / for l&0. In the remainder of this
appendix, we shall assume this behavior, the rather
lengthy and detailed proof being made available else-
where. 2~ With this assumption, namely,

Hence, for K 10" and T~300'K, g(g/2) y) e'"
=10"&&1.Note, however, the enormous sensitivity. '

If T 600 Kp and K 10" then g(~/2) ~
e"~10

(instead of e"7). Also note that for T(300'K, g(K/2) —I
&1 for 10"&X&e"'. Summarizing, we have

g(K/2) I)1 for conditions (A17) and
10"(X(e"'. (A19)

Similarly, we 6nd

Lproof: g(n) —= tanhn —n+3n', so that g'(n) =n' —tanh'n
&&0; also, g(0)=0). Thus,

L1 -tanh(x/Z) tanh(x/2))K
& expL —K tanh(x/K) tanh(x/2))

~& expL —(x—x'/3X') tanh(x/2)). (A28)

Using the condition (A17), we see that x'/3X'(10 '~,

and x/2)100, so that to an extremely high accuracy,
the last upper bound is given by exp( —x). (In fact, it is
bounded by eI exp( —x) where cI exceeds 1 by much
less than 1%.) Further,

S (x/X) 2 1.001 f x
cosh—&~ 1+ &1+

2L1—(x/~) ')
so that

(
g )K

c()sh
~

(eK I [I+( oo / )(*/K ~)

m, i ( e(1 OOI/2) (~~/K) (e2 (A29)

where c2 exceeds 1 by ((1%.Thus, using (A29) and

(A28) in (A26), we finally have

c~+ c~+y for 3+ 0 (A21)
E~~ t~~ gCK e =C8) (A30)

putting

we have
S.=2(1y e*)K,

(/2) —1

5—5,= (2e'/2) K Q (II—=5,e.
E=—(K/2)+ j.

(A22)

(A23)

Thus, because of (A21),

5 —5~&&(2e*/ ) (X—1)a(K/g)
where

c& e—=
(Ot —1)a(»2) I

2(cosh-', x)K

(X—1)

2g(/2)
(A25)

the last equality following from (A11). From (A13) we
have

e & e=-', X(X—1)Lcosh(x/X))K
&($1—tanh(g /2) tanh(g/X))K. (A26)

But for 0&y(.1,

(1—y)K= «PL&( —
3
—l3' —ly' — ))& exp( —&3).

Also,
tanhn& n —(n'/3) for n& 0 (A27)

'~ T. A. Kaplan and P. ¹ Argyres, Lincoln Laboratory Tech-
nical Report, M.I.T. (unpublishe'd).

we shall obtain an expression for 5 of the form 5,(1+e),
where the approximate value 5 is explicit and e is
very small, being rigorously bounded from above.

From (A9),
(+/2) —1

5 = (2e /')K/2(coshx2x) K+ P n/);
&=—[(&/2)—&t

where c exceeds 1 by «1%.This is the upper bound we

have sought. Since x&200

"~&~2e—200 (A31)

where ~ is bounded from above by a very small number,
ee, for T(300'K and X(1041. Comparison of (A32)
with (A6) yields

FqsDg(ext. ) F,=KIT ln2 —kT—ln2(1+&), (A33)

a clearly macroscopic, positive quantity, since 0~& ~ &~ 1.
Finally, we remark on the rather unconventional but

physically correct considerations of this section. In the
usual approach, one considers only the limit X —+~,
with the expectation that there will be no observable
di6erence between thermodynamic quantities calculated
in this limit and those calculated with X 10".In fact,

and therefore 8(e 94 for K—10".
We also must know that e is so small as to be ex-

perimentally "unobservable" over the experimentally
accessible range of X. Clearly, X can increase enor-
mously and still have the right-hand side of (A31) be
very small (e.g. , the latter is e "when K 10").On
decreasing K from 10" we must check that x/K«1
and x2/K(&1 in order that c remain of order 1. But a
reduction in % by six orders of magnitude increases
x/K only to 10 ' so that for the conditions (A17),
x'/Dt(10 ', which is still comfortably small.

The free energy for the extended solutions in the
TSDA is

PrsD~(ext) = —kTln 5= —&Tin 4(1+a)
= —kT 1nL2(1+e*)K(1+a)), (A32)
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we believe this to be the case here as well. However,
at least in the intermediate theoretical stages, there is a
qualitative difference in the behavior of a&, as seen from
(A18), (A19) (in the limit the maximum occurs for /

different from the end points &K/2, in contrast to the
behavior for physical K and T).

APPENDIX B: GROUND STATES OF H AND
Erso~(ext. ) IN ZERO-OVERLAP LIMIT

(3.15) may also be written in the more familiar form

g2

U(k —k') =K drdr' d k*(r)

XQk *(r')d k (r) d k(r'), (812)

the exchange integral between the usual spatial Bloch
functions

pk(r) =X—'~' Q exp(ik n)a(r —n).In the limit of zero overlap, the exact model Hamil-
tonian II is given by (3.6). XVe are interested here in its
ground state for the total number of electrons fixed at Because of (812)
the number of sites

Q iV .=X.

Then we can write (3.6) a,s

U(k)) 0.

Hence, from (811) and (813),

IX&~ED,

(813)

(814)

+ =&Ii+U 2 (-l ~' /l ~)+s + U~~~ ~l~ ~+C~ (82) with the minimum value attained when
n nm

where o-k=0, all k. (815)
iV„=—X t+X i.

The constraints on the X„are given by

(83)
Thus the minimum of II occurs when S„=0, i.e., when

p Ã.=x X =1, all n. (»6)
and

With

(84) gives

and (85) becomes

Ã„=0, 1, or 2.

.V„=S„+1,

Q S„=O

S„=O, &1;

(85)

(86)

This is the desired result, namely that, neglecting the
overlap of atomic orbitals, the minimum energy of H
occurs for those states (2st of them) in which there is one
electron at each site, even when (long-range) Coulomb
interactions are included.

We now wish to show that the minimum value of
ETsDA(ext. ), Eq. (3.16), for iV= K occurs for n» = 1,
nkvd=0, all k. Writing

further, (82) is, conveniently,

H= —,
' Q U„S„S +Ep, (89)

nk. = s(1+sk.),
we see that pk, nk, Xgives——

(817)

where Fo= —X Ry, the ground-state energy of X
isolated hydrogen atoms. "

Going to the Fourier representation

Pkrr skrr 0
&

and that nk, =0, 1 means

(818)

S =
1

g e(ik nl&

k

ska ~1 ~ (819)

(810) Putting (817) into (3.16) and using (818) plus the
remark in Ref. 28 gives, in the zero-overlap limit,

using U„=U„plus the periodic boundary condi-
tions, we can write (89) as ETsn~(ext. ) =Eo+4KU — p U(k —k')sk, sk,

kk'Q

Il =-,' Q U(k) I &k I +Eo, (811)
L'p+ 4r X,U sg. — -—-(820)

where U(k) is given by (3.15).In the zero-overlap limit, Thus our problem is to find the maximum of

'P Putting (86) into (82) and using (8'/) and (89) yields

Zp=Kh+C+-', St p' U, K.(a„)p'/2m =e'/)r nl la—)—
—St p' (a„(e'/]r —m( [a„)+(St/2)Q' U,

+ (K/2)P' e'/)n —mI .
In the zero-overlap limit, the last three terms cancel exactly.
and thus 80——Xh„.

1
Q = —p U(k —k') sk.sk .

Q kk'Q

subject to the constraints

SkQ = 1

(821)

(822)



LOCALIZED ONE —ELECTRON STATES I N ~ 2471

and
Sk, =0. (823)

In terms of the Fourier transform x„of sk,

Clearly,
1

Q~& —Q Max U(k —k')sg. sg .,+ kk g' skg, skag
(824) (821) becomes

Skg Pe—~k ng
n

(C1)

(L2)
where the maximum is taken subject to (822), but
ignoring (823). Thus, Note that g~ s~,'= Z, is equvalent to

1
Q& —Q U(k —k'),

kk'g
(825) (C3)

the last step following the fact that U(k) ~& 0. Further-
more, the upper bound (825) on Q is reoched by a set of
sk„which satisfy all the constraints, namely,

defining two "spheres, " S„one in the space of variables
xqq, xgt, . . . , the other in space xqg, xmq, . . . , such that
any point satisfying (822) must lie on the appropriate
one of these spheres. Putting

skt=1, sky= —1, all k. (826)

It now follows that the maximum of Q, Q,„,subject to
the constraints (822) and (823), is we see that

Q.„„.=2K ' Q U(k —k') =2XU, (827)

(U ~& Up „). Hence,
and this is reached when, corresponding to (826),

nkvd
= 1 and nkvd

=0.

Thus, putting (827) into (820), we see that the ground-
state energy of the approximate Hamiltonian in TSDA
for the extended solutions is

[ETsn~(ext )]min= Eo, (829)

Q U(k —k')ng. ng .&~Q max[U(k —k')ng, ng .]
=2 Q U(k —k');

but the last expression is reached only when nkt
= n~q = 1, all k, which violates the constraint g~, nj„——X
and thus does not allow one to draw the desired con-
clusion (827) plus the surrounding sentence.

APPENDIX C: EXISTENCE OF AN ENERGY GAP
FOR ETso~(ext. ) IN ZERO-OVERLAP LIMIT

We consider here the approximate Hamiltonian
ETsnz(ext. ), Eq. (3.16), in the basis of its eigenstates,
so that the nk are 0 or 1, this being equivalent to
(820), with the sq, being —1 or 1. We shall show that
there are exactly two eigenstates with the minimum

energy, and that there is a finite gap between this and
the next higher energy even in the limit %~~.

the same as the ground-state energy of H, and a ground
state is ~nqq=1, n~&=0, all k)=—~0). We note that it
+as necessary to transform the nk to the sk, in order to
have applied successfully the approach embodied in

(824). The same approach applied directly to the sum
in (3.16) would give

max Q, =XU=—Q p,
I'g~So

where the maximum is over all points I',= (xy„xs,—. . .)
lying on 8,. Thus the maximum of Q= Qt+Q& over all
pairs Pt, Pg such that PteSq and PgeSq is 2KU. Noting
that this value is attained by a set of x„,such that (822)
and (823) are satisfied (namely, xpt =QX = —

xone,

x„=O all nAO), we have an alternate to the proof
already given (Appendix 8) that this state gives the
minimum energy of E'fsn+(ext. ) [see Eq. (827)].Now,
however, we can go further and say something about the
next highest value of Erson, (ext.).

Consider the constraint C:

(C6)

with, of course, 0~&c~& X. Clearly, any point satisfying
(C6) will lie on the "sphere" S, [i.e., will satisfy (C3)].
Further, for any point satisfying (C6), we have

Q =(& c)U+2 I& I'Uo
n+0

~& KU —(U—Upg)c—=Q „(C7)
where 1 is a nearest-neighbor vector of the direct lattice
(we have used the fact that for zero overlap Up„
= e'/

~ ~, nwhich decreases with
~
n

~ ) . Hence, Q,
monoIIonica/ly decreases with increasing c. But

so that for points satisfying (822), i.e., s&,' ——1, the
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possible values of QXxo, are K, K—2, K—4, . . ., see that Q, r, the second largest value of Q, satisfying
—X, with corresponding values (822), must satisfy

(c=0,4i 1——,. . ., 4t 1——i, . . . . (CS)x ' ' xi'
Thus the maximum of Q, over all points satisfying
(822), namely, KU=Q. v Lsee Eq. (C5)j, is achieved
at two and only two such points, namely, xo, = &+X,
x,=0 for all n&0. Further, using (C7) and (CS), we

Q o—Q t& (U —Uor)4(1 —1/K). (C9)

It now follows readily that the difference, Es,o(~&0),
between the lowest and the next-lowest values of (820),
subject to the constraints (822) and (823), must satisfy

E„o~& (U —UP1) (1—1/Sl, ), (C10)

which is, of course, finite as X —+~.
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Calculations of the Intensity of X-Ray Diffuse Scattering Produced by
Point Defects in Cubic Metals*

JQHN W. FLQCKEN$ AND JQHN R. HARDY1

Laurence Radiation Laboratory, University of California, Livermore, California 94550
(Received 28 July 1969)

We have calculated isointensity pro61es for the disuse x-ray scattering associated with certain types of
defects in Cu, Al, Na, K, Li, and a theoretical model lattice. These profiles were computed for high-sym-
metry planes very close to reciprocal-lattice points of the (S, 0,0), (S,S,O), and (S,S,S) type. Both cubic
and double-force defects were treated. The calculations were done using a technique presented by Kanzaki
for the theoretical model lattice. Kanzaki's general conclusion that cubic defects produce lerniniscate profiles
and that double-force defects produce ellipsoidal profiles is con6rmed for all the material studied. Our pro6les
for the model lattice agree with those obtained by Kanzaki, except for the pro6les due to a double-force
defect near an (S,S,S) reciprocal-lattice point.

I. INTRODUCTION

~

~

~

~ ~

~ ~

~

HEN a defect is introduced into a crystal, it
causes the atoms of the host la.ttice to become

displaced from their perfect lattice sites to new equi-
librium positions. These strain-field effects produce an
associated change in the crystal volume, a change in its
macroscopic electrical resistivity, and a diffuse x-ray
scattering superimposed on the Bragg peaks of the
normal lattice. Of these three effects, the last contains
the most detailed information about the structure of the
defect and can be used to discriminate between point
defects and defect aggregates.

Kanzaki' presented a method for calculating the
isointensity contours of the x-ray diffuse scattering
associated with certain classes of defects. In particular,
he applied the method to defects in an fcc model lattice,
the elastic constants of which satisfied the constraint
that C11=2CI2 = 2C44. The technique used in per-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Summer employee, Lawrence Radiation Laboratory, Liver-
more, Calif. 94550. Permanent address: Physics Laboratory,
University of Nebraska at Omaha, Omaha, Neb. 68132.

f Summer visiting Professor of Physics, Lawrence Radiation
Laboratory, Livermore, Calif. 94550. Permanent address: Behlen
Laboratory of Physics, University of Nebraska, Lincoln, Neb.
68508.

' H. Kanzaki, J. Phys. Chem. Solids 2, 107 (1957).

forming these calcu1.ations is an application of the
method of lattice statics. ' 4 This method is based on
the Fourier transformation of the direct-space equi-
librium equations for a lattice containing Ã host atoms
and one defect, which is taken to be at the center of the
crystal. Periodic boundary conditions are imposed
across the fa,ce of the crystal, and this ca,n be shown to
be equivalent to solving the problem for a superlattice
of defects with one defect in each supercell. Ea,ch
supercell contains S atoms. The Fourier transformation
reduces the 3E&3K matrix of direct-space equilibrium
equations to X-independent 3&3 matrix equations,
each of which determines one of the Fourier amplitudes
of the displacement field. Each of these equations is
readily soluble and one then determines the direct-space
displacements by Fourier inversion. However, as we
show, this technique is particularly suited to the study
of diffuse x-ray scattering, since it is the Fourier ampli-
tudes themselves which enter directly into the relevant
equations. In the present paper, we are only concerned,
as was Kanzaki, with the diffuse scattering in the
immediate vicinity of the Bragg peaks, and this enables
us to use the lattice-statics equations appropriate to

' H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957).
3 J. R. Hardy, J. Phys. Chem. Solids 15, 39 (1960).' J. W. Flocken and J. R. Hardy, Phys. Rev. 1/5, 919 (1968).


