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Asymptotic Lattice Displacements about Point Defects in Cubic Metals*
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We have calculated the asymptotic displacements (a) about a single vacancy in Al, Na, K, and Li, (b)
about a single interstitial Cu atom in a Cu host lattice, and (c) about a unit single double force along a (100)
direction in Al and Cu. These calculations were made using the asymptotic equations of the method of lattice
statics which, in its full form, is based on the Fourier transformation of the direct-space force equations
between the detect and the host atoms in a large "supercell" of the lattice. Results were also obtained for
each of the defect types in Al and Cu by means of an alternative approach proposed by Lie and Koehler. Thee

asymptotic displacements around the spherical defects in Al, Cu, Na, and K were compared with correspond-
ing results obtained using the exact method of lattice statics. From this comparison it appears that elas-
ticity theory cannot be justifiably applied closer than the (4,4,4) neighbor to the defect in Al, the (5,4,4)
neighbor in Cu, and the 26th or the 27th neighbors in Na and K. We also find large displacements along
(110)in Al and along (111)in Cu, Na, and K. The displacements obtained using a Green s-function technique
developed by I ie and Koehler agree well with our results for the spherical detect in Al and for the unit single
double-force defects in AI and Cu. There are significant differences in the (100) directions between the two
sets of results for a spherical detect in Cu. In general, the asymptotic method of lattice statics appears to be
more exact and to involve fewer computational manipulations than the method of Lie and Koehler.

I. INTRODUCTION matrix inversion, and the Fourier amplitudes can be
obtained by back-transforming the Fourier series.

Not only is the method of lattice statics inherently
free from the shortcomings of the semidiscrete methods,
but in the long-wavelength limit, the lattice-statics
equations for the Fourier amplitudes of the displace-
ment field are exactly analogous to the corresponding
equations obtained from continuum elasticity. Since, as
we shall show, the lattice displacements at large dis-

tances from the defect are entirely determined by these
long-wave Fourier amplitudes, it is evident that in this
limit, lattice statics and continuum elasticity become
identical. Hence, in the method of lattice statics, elas-

ticity theory can be used in an independent calculation
to reveal the way in which the strain field displacements
approach the elastic limit with increasing distance from
the defect.

Our major concern in the present paper is with the
computation of the displacements in the elastic limit.
Within this limit, it is adequate to replace the exact
Fourier amplitudes of the displacement field by their
limiting expressions for small q. One can then convert
the Fourier series for the displacement field into a
Fourier integral and extend the limits of integration to
infinity. For an isotropic material, the Fourier integral
can be evaluated explicitly' ~ to yield the familiar result
that the displacement field is everywhere radial and falls
off as 1/r', where r is the distance from the defect. Al-

though, as will be shown, the displacement field for
anistropic materials still falls off as 1/r' along any given
crystallographic direction, one cannot evaluate the com-

ponents of the displacement field analytically for any
general direction. Thus, our concern in this paper is
with the application of the asymptotic theory to aniso-

tropic materials; in particular, those materials in which

the anisotropy is so large that one cannot hope to use
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atomic displacements in the vicinity of a defect,
the crystal is generally divided into two regions. In re-
gion I, near the defect, the host atoms are treated on a
discrete basis, while in region II, the crystal is assumed
to be an elastic continuum. However, it has recently
been pointed out' ' that when such semidiscrete meth-
ods are applied, the boundary between the two regions
is generally assumed to be close to the defect. The re-
sultant displacement field computed in this way is a
very poor representation of the lattice distortion fieM
far from the defect.

In 1957, Kanzaki4 presented a strictly atomistic
method for calculating the displacements due to a de-
fect. This method, which we refer to as the "method of
lattice statics, " is based on Fourier transforming the
direct-space equilibrium equations. This transformation
to reciprocal space decouples the 3S)&3N equilibrium
equations to E3)(3 equations which may be solved ex-
plicitly for the reciprocal-space Fourier amplitudes. To
define the wave vectors in the Fourier series one imposes
periodic boundary conditions across the faces of a super-
cell having the same symmetry as the primitive lattice
cell. This is equivalent to solving the problem of a lattice
with one defect per supercell. This constraint leads in
turn to the existence of only S independent wave vec-
tors, q, contained within the first Brillouin zone. Each
of the 3&3 equations then can be solved by specific
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a perturbation approach (see Seeger et al.s). Therefore,
we have developed the equations for the components of
the asymptotic displacernents in such a way that the
integrals for any desired direction can be evaluated
numerically on a computer. In this way we have calcu-
lated the asymptotic displacements about an interstitial
Cu atom in a Cu lattice and about isolated vacancies in

Al, Na, K, and Li.
The resultant displacements along certain symmetry

directions can be compared with those in previous
papers. ' 3 ~ To make this comparison for the two alkali
metals we have found it necessary to compute the exact
displacements for neighbors more distant than those
considered in our previous work~; while for the vacancy
in Al, we are able to make direct comparison with the
results obtained in a previous paper. '

It is possible to compare directly the present asymp-
totic results with those of an alternative method by
Lie and Koehler, although it should be stressed that
our results are exact, whereas theirs are approximate.
One of the purposes of this comparison is to assess the
reliability of their approximation for defects in Cu and
Al. As might be expected in view of its low anisotropy,
the comparison in the case of Al is good, but the agree-
ment between the two sets of results for Cu is con-
siderably worse.

In Sec. II we give a more detailed development of the
asymptotic lattice-statics formalism. In Sec. III we dis-
cuss the application of this method to point defects in
the materials mentioned above and give the appropriate
results. In Sec. IV we discuss the comparison of the
asymptotic results with those obtained by lattice-statics
theory and with the results of Lie and Koehler. Section
V will be devoted to a final summary of our calculations
and results.

II. METHOD OF LATTICE STATICS IN
ASYMPTOTIC LIMIT

The derivation of the equations of lattice statics has
been presented in detail elsewhere, '4 and we will sum-
marize the important results at this point. We consider
a point defect to be introduced at the center of a "super-
cell" containing N host atoms and take as our reference

system a set of Cartesian coordinates along the (100)
directions of the crystal with the defect situated at the
origin. If the defect exerts a force, F', on its /th neighbor-
ing atom, we define the reciprocal-space generalized
force array F 'i as

Then the displacement $' of the 3th atom can be shown
to be given by

z
g'= —P Qs sin(q r'), (3)

where the Fourier amplitudes Q& are given by the
matrix equation

Qs= (p—
s)

—&Fs

As r' becomes large, the sine term in Eq. (3) oscillates
rapidly so that the dominant contribution to the sum
arises from the region of q space about the origin. There-
for we can replace Q& by its limiting value for small q
and when we convert the sum in Eq. (3) to an integral,
we have

Q» 'sin(q r')d'q,
(2~)'

FBZ

where e is the volume of the unit cell in direct space.
(For a fcc cell of side 2a, @=2as, and for a bcc lattice,
w= 4as.)

For any cubic monatomic crystal, the generalized
force array, expanded to first order in q, can be put into
the form

F &= (—iG/u)k,

where k= qa. 6 is a constant which depends on the de-
tailed structure of the defect. It can be evaluated ac-
cording to the prescription given by Hardy'

(7)

where F ' is the o.th component of the direct-space force
exerted by the defect on the 1th atom. These forces are
obtained as results of exact lattice-statics calculations.
Although 6 p is, in general, a tensor, it is diagonal for a
defect of cubic symmetry and the diagonal elements are
all equal.

When the V& matrix is expanded as a power series in
q, the lowest nonvanishing terms are of second order in
q. When these limiting forms of V'i and F'i are substi-
tuted into Eq. (4), the nth component of the direct-
space displacement for the /th atom can be written as

Similarly, if V p" is the direct-space force-constant
matrix, the Fourier-transformed force-constant matrix
V p

'i is defined by

V s «=P V ss' exP(iq r').
l

where r' is the position vector of the /th atom, q is a
wave vector in the first Brillouin zone (FBZ), and n re-
fers to one of the coordinate axes and ranges from 1-3.

6 A. Seeger, E. Mann, and R. von Jan, J. Phys. Chem. Solids
23, 639 (1962).

7 J. W. Flocken and J.R. Hardy, Phys. Rev. 1'77, 1054 (1969).' K. N. C. Lie and J. S. Koehler, Advan. Phys. 1'7, 421 (1968l.

4(&k4+Fk 'k +Hkp'k„') sin(k L)dsk

P (k)
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(20)

T I Comparison of asymptotic displacements aboutABLE . 0
an interstitial Cu atom in Cu;, , p

Results

and the equation for (v is the same as Eq. ( ),. ~19~ with
the indices P and y interchanged, and P and y are per-
pendicular to the [100j axis.

The constants in the numerator of the integrand are
given by

These integrals are evaluated in the same way as in q.
(8). At present there are no existing calculations or
double-force defects in cubic materials. We choose to

stant; an we ave,d h therefore made our calculations)

assuming a uni ou e't double force. As the strength parameter
G' is simply a multiplicative factor in Eqs. (18) and
we can obtain the displacement field for any specific
defect of this class by appropriately scaling the displace-
ments produced by the unit double force.

TABLE II. Comparison of asymptotic displacements
about a vacancy in Al; (001) plane.

swept in
(011)
plane
(deg)

0.0
10.0
20.0
30.0
40.0
45.0

0.0
30.0
45.0
60.0
90.0

—0.353
1.658
4.741
5.486
3.698

Asymptotic lattice-
statics method

8
Displace- (deviation

ment from
(10 9 cm) radial)

—0.353 180'0'
—0.275 139'06'

0.474 45'57'
1.629 15'16'
3.342 3'52'
3.698 O'O'

(OI1) plane
180'0'
20'32'
4'49'

—1'3'
p opl

—0.685
2.251
4.635
5.023
2.800

18O O'
io'41'
3 35'

—1 7'
0'0'

I,ie-Koehler method
8

Displace- (deviation
ment from

(10 ' cm) radial)

—0.685 180'0'
—0.452 173'44'

0.482 29'26'
1.921 11'4'
3.121 3'13'
3.301 0'0'

t
swept in (001)

plane

p p'
10'0'
2O O'
30'0'
40 0'
45'0'

o'o'
30'0'
45'0'
60 0'
90'0'

Asymptotic
lattice
statics

Displacements
(10 9 cm)

—0.850—0.888—0.994—1.129—1.227—1.242

(011) plane
—0.850—1.149—1.345—1.376—1.242

Displacement
from

Lie-Koehler
method

(10 ' cm)

—0.836—0.886—1.013—1.156—1.249—1.262

—0.836—1.177—1.358—1.383—1.219
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20' 2Qo

10o 1po
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0
2.0 -0.8 -0.4 0.0 0.4 0.8

q(10 .~)
(b)

1.2
0

1.6 2.0

FIG. 2. (a) Displacement profile in the first quadrant of the (001) plane about a vacancy in Al;
(b) displacement profile in the first quadrant of the (051) plane about a vacancy in Al.

III. APPLICATIONS

We have calculated the asymptotic displacements due
to an interstitial Cu atom in Cu and due to isolated
vacancies in Al, Na, K, and Li. We have also computed
the displacements about a single double-force in Cu and
Al. For comparison, we have used the approximate pre-
scription given by Lie and Koehler' for the calculation
of elastic displacements due to unit triple double-forces
(spherical defects) and unit single double-forces in Cu
and Al.

Since the displacements in a given direction fall off
inversely as the square of the distance from the defect,
we have chosen to represent our results as displacements
of points originally on a sphere of radius "a" from the

defect. However, it is a simple matter to compute the
displacement field of the crystal on any sphere of arbi-
trary radius r, since one simply scales by (a/r)'.

The displacement profile has been computed at 2.5-
deg intervals in the (0,0,1) and (0,1,1) planes, and only
the first quadrant of each profile is shown, since the
entire profile can be generated by mirror reQection of
this quadrant in the x and y axes.

The calculations were done on a CDC 3600. The nu-
merical integrations were evaluated using Simpson's
rule with 100 increments in qk

In Figs. 1(a) and 1(b) we show the appropriate dis-
placement profiles for an interstitial Cu atom in Cu. In
Table I we compare the displacements calculated from
the series of Lie and Koehler' with the asymptotic

90 80o 70' 6Q' 50' 4Q' 90' 80o 7QO 60' 50' 40'

30 30'

2PO 20o

1 po 10'

-6 -4 -2 0 2

P(10 ~~)

(&)

-6 -4 -2 0 2 4

q(10 c~)

(b)

0
8 10

Fro. 3. (a) Displacement profile in the first quadrant of the (001) plane about a vacancy in Na;
(b) displacement profile in the first quadrant of the (011) plane about a vacancy in Na.
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90' 80' 70' 6Q 500 40' 90o BO' 700 60' 50' 40'

300 30'

200 20o

10' 10'

-6 -4 -2 0 2

( (10 cm)

(a)

FIG. 4. (a) Displacement profile in
profile in the

0 0
6 8 10 -4 -2 0 2 4 6 8 10

p (10-9cm)

(b)

the first quadrant of the (001) plane about a vacancy in K; (b) displacement
first quadrant of the (011) plane about a vacancy in K.

lattice-statics values. Inward displacements are denoted
by minus signs; 0 is measured from the outward drawn
radial. A negative value of 0 indicates a clockwise devi-
ation from the radial, and a positive value of 0 indicates
a counterclockwise deviation. Displacements for which

~
0~ is greater than 90' are always inward.
In Figs. 2 (a) and 2 (b) we show the corresponding dis-

placement profiles for Al. In Table II, we give a compari-
son of our results to those obtained by Lie and Koehler.
In both cases the displacements are so nearly radial that
we make no comparison of the predicted orientations.
Figures 3 (a), 3 (b), 4(a), and 4(b) show the displacement
profiles for vacancies in Na and K. LThe strengths are
for the lattice models Na(1) and K(1) of Ref. 7.$

In Figs. 5(a) and 5(b) we show the displacement pro-
files for a vacancy in Li. In the case of this material,
we have no knowledge of the strength parameter and
we have therefore assumed a unit inward force on the
nearest neighbors of the vacancy. It is evidently a sim-
ple matter to scale these displacements to those appro-
priate to the true elastic strength of the Li vacancy
when this strength becomes known.

In Figs. 6(a), 6(b), 7(a), and 7 (b), we show the dis-
placement profiles for unit double forces along the $100)
direction in Cu and Al. In Tables III and IV we compare
our exactly computed displacements with those com-
puted by the Fourier-series approximation of Lie and
Koehler.

90' 80' 7PO 60o 400 90' BO' 700 6Q' 50' 40'

30' 30

20 20

1Q' lpo

-1 0 1 2
-5

p (10 cm) per unit force

(a)

-1 0 1 2 3
-5

g (10 cm) per unit force

(b)

FIG. 5. (a) Displacement profile in the first quadrant of the (001) plane about a vacancy in I i;
(b) displacement profile in the first quadrant of the (011) plane about a vacancy in Li.
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90' 80' 7QO 60o 50' 40' 90' 80' 70' 60' 50' Oo

30' 30'

20' 20o

10o 10

-'l 0 1

(1,0, 0)

-5
2 0 1 2

g (10 cm) per unit force IP (10 cm) per unit force

()( ) (b)

. (a) Displacement pro6le in the erst quadrant of the (001) plane about a uni
di l t ofil

'
th fi t d t of th (011) 1o e ) p ane about a unit single double-force along L100j in Cu.

IV. DISCUSSION

The strain field displacements calculated by exact
attice-statics may be compared to equivalent results

from the asymptotic theory to get an indication of the
distance from the defect at which elasticity theory may
be justifiably applied. Values of

~ ( ~

r' calculated by both
the exact and asymptotic methods for lattice points
about a vacancy in Al are given in Table V. A similar
comparison is made in Table VI for lattice points about
an interstitial Cu atom in Cu. There are not enough
points in most directions to demonstrate the approach
o the displacements obtained from the exact theory to
the elastic limit. Along (110) in Al we find that the
values of

~ $ ~

r' remain well above the asymptotic value

although along the (111)directions, there is much closer

agreement between the asymptotic values of
~ $ ~

rs and
those computed by lattice statics. However, in view of
subsequent calculations it is apparent to us that it would

e unwise to compare the asymptotic results to those
given earlier by Hardy and Bullough' since these are
restricted to neighbors which are probably too close to
the defect for the asymptotic theory to hold. Also, we
believe there are certain problems associated with the
use of a random sample of wave vectors for computing
the displacements of very distant neighbors.

In the case of the interstitial Cu atom in Cu, which
we have treated earlier, ' we show in Table VI a com-
parison of the exact and asymptotic displacements. The
former were calculated using a sample of 64000 regu-

90' 80' 7QO 6Q' 50' 40' 90' 8Q' 700 60' 50' 40o

30' 30o

20 20'

10' 10'

0
5-2 -1 0 1 2 3 4

-5
P (10 cro/dyne)

(a)

b d
Fro. 7. a Displacement pro6le in the first quadrant f

{ ) isplacement profile in the erst quadrant of the
ran o

0
5-2 -1 0 1 2 3 4

-5( (10 cm) per unit force

(b)

the 001 plane about a unit single double-force alon [100 '
Al;

( ) p ane about a umt smgle double-force along L100j in Al.
~ ~

g ln
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TABLE III. Comparison of asymptotic displacements about
a unit single double-force along L100j in Cu; (001) plane.

swept in
(010)
plane
(deg)

0
10
20
30
40
50
60
70
80
90

0
10
20
30
40
50
60
70
80
90

Asymptotic
Displace-

ments
{10 ' cm)

1.176
1.260
1.511
1.817
1.614
0.676—0.635—0.696—0.652—0.623

1.176
1.343
1.786
2.000
1.128—0.293—1.030—1.288—1.340—1.343

Results
lattice statics Lie-Koehler method
8 (deviation Displace- if (deviation

from ments from
radial) (10 ' cm) radial)

0'0'
0'19'

—0'4'
—4'31'
13 37—53'30'

—126'37'
—144'0'
—158'35'
—180'0'
(011) plane)

0'0'
4'22'
5'41'
3'2'

—5'7'
—145'22'
—174'50'
—178'56'
—180'2'
—180'0'

1,127
1.264
1.580
1.776
1.497
0.788—0.648—0.858—0.652—0.463

1.127
1.347
1.870
1.931
1.056—0.264—0.987—1.335—1.360—1.335

0'0'
0'36'

—0'53'
—4'55'

—13 37—41'43'
—121'29'
—150'37'
—160'45'
—180 0'

0'0'
4051
5 33'
2'31'

—5 5'
—120'0'
—173 24'
—178 37'
—179'30'
—180'0'

TABLE IV. Comparison of asymptotic displacements about
a unit single double-force in Al along $100]; (001) plane.

larly spaced wave vectors within the FBZ. Again,
we feel that, except for some of the most distant neigh-

bors, the asymptotic regime has not been reached. This
in itself is a significant result, since it emphasizes once
again the lack of validity of the continuum solution at
what had previously been regarded as relatively large
distances from the defect. In the case of the alkali metals

TABLE V. Comparison of actual and asymptotic lattice-statics
results for a vacancy in Al.

Neighbor

110
200
211
220
222
310
330
400
411
420
422
433
440
444

Lattice statics
(exact)

(units of 2o')

—0.0215—0.0605—0.0150—0.0247—0.0097—0.0360—0.0270—0.0278—0.0275—0.0325—0.0243—0.0309—0.0252—0.0323

Asymptotic method

(units of 2u')

—0.0307—0.0210—0.0304—0.0307—0.0343—0.0241—0.0307—0.0210—0.0253—0.0268—0.0304—0.0339—0.0307—0.0343

where the interatomic forces we have used' are of sig-
nificantly long range, one would intuitively expect that
the necessity to proceed to very large distances from the
defect before one obtains a match between the lattice
statics and continuum displacement fields will be even
greater. To examine whether or not this is the case,
we have carried out a full lattice-statics calculation for
K out to the 40th neighbors along the three symmetry
directions (100), (110), and (111).

In the cases of the first two directions, wave-vector
samples corresponding to a supercell containing 64000
lattice cells was used and in Figs. 8 and 9, we show plots
of

~ g ~

r' versus r for these two directions. In neither case
does this quantity settle down to the asymptotic limit.
The reason for this is that the displacements we are
computing are obviously those appropriate to a super-
lattice of defects. Thus, when suSciently far from a
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Results
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8 (deviation Displace- g (deviation

from ment from
radial) (10 ' cm) radial)

Neighbor

100
111
210
221
300
311
320
331
333
410
430
441
443
520
522
533
540
544
630

Lattice statics
(exact)

(units of 2a')

0.0856—0.00591
0.09513
0.0507—0.00352
0.0722
0.0962
0.0784
0.1007
0.0133
0.0913
0.0907
0.1121
0.0277
0.0652
0.0992
0.0897
0.1204
0.0401

Asymptotic method

(units of 2c')

—0.00977
0.1581
0.0312
0.1250—0.00977
0.0268
0.0753
0.1126
0.1581
0.00714
0.0803
0.1080
0.1471
0.0172
0.0436
0.1033
0.0835
0.1464
0.0312

TABLE VI. Comparison of exact and asymptotic lattice-statics
results for an interstitial Cu atom in Cu.
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r' calculated from exact lattice statics, as a function
of distance r from the defect along (100) in K. A sample of
64 000 wave vectors was used. The dotted line shows the elastic
limit predicted by the asymptotic theory.

Fro 9. I.(ir' calculated from exact lattice statics, as a function
of distance r from the defect along (110) in K. A sample of 64 000
wave vectors was used. The dotted line shows the elastic limit pre-
dicted by the asymptotic theory.

given defect, the inhuence of the other defects in the
superlattice becomes important. In these instances, we
believe it is dominant beyond the 26th neighbors. How-
ever, our results do demonstrate that the displacement
field about one defect has certainly not reached the
asymptotic limit as far out as (22,0,0) along (100) and
(20,20,0) along (110).

For the displacements along the (111)directions we
have made calculations for a sample of wave vectors
corresponding to 512 000 lattice cells (see Fig. 10). By
judicious comparison of these results with those for a
supercell containing 64000 lattice cells, we are able to
estimate that the asymptotic regime is obtained at
about the 27th neighbor. The reason we are able to reach
such a definitive conclusion for this class of directions is
that the displacement field is particularly strong along
the (111) directions; thus the displacements produced
by a given vacancy are not masked by those produced
by the remaining defects in the superlattice before the
asymptotic region is attained. These results enable us
to assert categorically that, to obtain a proper repre-
sentation of the displacement fields about vacancies in
the alkali metals, it is necessary that any theoretical
calculation treat a very large number of atoms on a dis-
crete basis. It seems to us that lattice statics offers the
only acceptable way of doing this.

An alternative method of calculating asymptotic dis-
placements about a defect has recently been presented
by I.ie and Koehler. ' They start by using Fredholm's
solution for the equations of elasticity in the absence of
body forces. This reduces these sixth-order differential
equations for the displacement components to sixth-
degree polynomials. Using these polynomial solutions,
they arrive at a Green's-function matrix G. The ele-
ment G;, of this matrix determines the displacement of
a point in the x; direction due to a unit force at the
origin in the x; direction. The solution of the equilibrium
equations with a body force of density F(r') is then

given by

0.0
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FIo. 10.
I F.Ir' calculated from exact lattice statics as a func-

tion of distance r from the defect along (111) in K. A sample o
512 000 wave vectors was used. The dotted line shows the elastic
limit predicted by the asymptotic theory.

The elements of the Green's-function matrix G;; must
be evaluated for each material considered. This involves
determining the roots of the sixth-order polynomial
equations, the coefficients of which are functions of the
elastic constants and the polar and azimuthal angles
fr and g measured with respect to axes having the defect
as their origin. It can then be shown that

I
r

I
G,, is a func-

tion of 0 and P only. This function can be expressed as a
double Fourier series in rr and P, the form of the series
being determined by symmetry. Ualues of IrIG, , can
then be computed numerically for Al, Cu, and I,i over
a range of rr for several values of p. Using this approach,
these authors calculated stresses which they estimated
were accurate to about 15% for Cu and 8% for Al.
Stresses were not calculated for I,i which has so high an
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anisotropy that the Fourier series would have to con-
tain a large number of terms to adequately represent the
stresses. Fifteen terms were necessary in the stress series
for Cu and six terms for Al.

The displacements which we have computed using
the series of Lie and Koehler are compared with our own
results in Tables I—IV for various defect types. l As
can be seen from Table II the comparison between the
two sets of results is excellent —always well within the
8% accuracy quoted by Lie and Koehler. The results
for the double force in Al, shown in Table IV also agree
with each other but vary in some instances by as much
as 11%%uo.

In the case of the Cu interstitial in Cu, the difference
between the two sets of results varies from about 50%
in the $1007 direction to about 10% in the $1107 direc-
tion. The displacements along [100]are relatively small,
however, so that one would expect that more terms in
the series of Lie and Koehler would be necessary to ob-
tain accurate values along this direction. The single
double-force results for Cu, shown in Table III are quite
close to each other, both in magnitude and in angular
deviation from the radial. As might be expected, the
greatest differences in both magnitude and angle occur
where the distortion of the radius a sphere changes from
an outward to an inward direction.

It should be pointed out that for the spherical defect
problems, the Fourier series of Lie and Koehler do not
give the same values at (1,1,0) as at (0,1,1). (These
points are given, respectively, by ~=45' and by &=90'
in Tables I and II.) This discrepancy arises because
the Fourier series for these two points involve different
angles, and hence, different coefficients. Since the co-
efficients are obtained by curve htting along diAer-
ent crystal directions, it cannot be expected that
the same number of terms in the series for two equiv-
alent points will give identical results. A second dis-
advantage to the curve-fitting techniques used by Lie
and Koehler is that for complex defects, sharp details
of the distortions are likely to be lost.

The asymptotic displacement values obtained from
the method of lattice statics are exact in the elastic
limit. The calculations are general, in that the elastic
constants or force constants for a material can be in-

"Lie and Koehler represent their cubic defect as three mutually
perpendicular double forces at the origin having unit elastic
strength, i.e., G=1. Our cubic-defect models can also be repre-
sented as triple double-forces at the origin, but with forces ad-
justed to give the defect strengths shown in Pigs. 1 and 2, derived
for Cu and AI from exact lattice-statics calculations. Hence, in
order to compare our results with those of Lie and Koehler we have
multiplied their G=1 results by our own elastic strengths.

serted directly into the program without intermediate
curve htting which gives coeKcients for only one ma-
terial. In addition the method of lattice statics is inde-
pendent of the anisotropy of the material used and is a
natural extension of atomistic theory to continuum
elasticity —a transition which is not contained in the
method of Lie and Koehler.

The curves showing displacements per unit force
about spherical defects in Li are shown. in Figs. 5(a)
and 5(b). These results cannot be compared with nu-
merical values calculated using exact lattice statics or
with the alternative asymptotic method of Lie and
Koehler. It is apparent, however, that the distortion in
Li, follows much the same pattern as it does in the other
alkali metals.

V. SUMMARY

We have applied the method of lattice statics to the
calculation of asymptotic displacements at large dis-
tances about various classes of defects in Al, Cu, Na,
K, and Li. %e have also calculated the distortions due
to unit single double-forces along L1007 in Al and Cu.
It appears to us that the only consistent method for
calculating the direct-space forces due to the defect and
arriving at an accurate strength parameter G is to per-
form these calculations using lattice statics and the pre-
scription for G given by Hardy. Once this is done, the
asymptotic distortions can be found by the method pre-
sented in this paper.

The distortions can also be calculated using the
method due to Lie and Koehler if the crystal is rea-
sonably isotropic. However, for many materials of in-
terest, this method does not give accurate results unless
a large number of terms are included in their Green's-
function expansions. In addition, the curve-fitting tech-
niques used to arrive at the coeKcients of the Green's-
function expansions are likely to obscure 6ne details of
the distortion profiles.

The most important result of the present work is that,
in each case where the exact results could be compared
with the results of the asymptotic theory, the former did
not settle down to the elastic limit until one was con-
sidering atoms that were many interatomic spacings
from the defect.

It thus seems that the approach we have described in
this paper, which is a logical extension of the method of
lattice statics for the computation of displacements in
the vicinity of the defect to the computation of long-
range displacements, overs the most precise and Qexible
way of solving this problem.


