
P HYSI CAL REVIEW B VOLUME 1, NUMBER 6 15 MARCH 1970

Cyclotron Resonance and the Cohen Nonellipsoidal Nonparabolic
Model for Bismuth*
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An equation for the cyclotron effective mass in the Cohen nonellipsoidal nonparabolic (NENP) model
for Bi is derived for an arbitrary direction of the magnetic 6eld. This equation is compared with the pre-
viously published cyclotron-resonance data of Kao and of Edel'man and Khaikin (EK). In both cases very
good agreement between experiment and the NENP model is found for the binary-plane data, and the fit
is clearly superior to that of the ellipsoidal nonparabolic (ENP) model; in the remaining orientations the
experimental points suffer more scatter, but seem to 6t the NENP model better than the ENP model. The
quantity p, as de6ned by Bhargava, is recalculated using the m* values of EK rather than those of Kao.
The value g = 1.13+0.05 is found, con6rming the NENP model.

I. INTRODUCTION
' 'T is well established experimentally' that the
~ ~ electron Fermi surface of Bi consists of three
equivalent highly elongated quasiellipsoids having
one principal axis parallel to the binary axis and the
other two principal axes tilted approximately 6 degrees
from the bisectrix and trigonal axes. The shape of
each of these quasiellipsoids has been the object of
many experimental' and several theoretical2 ' researches.
The k p calculation of Cohen' predicts that the electron
dispersion relation is

P2 p2 p2 ( g p2 2

,', '", ' = ~"-)-(')-
where 1, 2, 3 refer to the principal-axis system of the
quasiellipsoid, the m; are effective masses at the bottom
of the conduction band, and E, is the band gap. 4 ' The
quartic term in ps gives rise to a Fermi surface (obtained
by setting E=Et ), which is distorted at large values of
p& from an ellipsoid. Equation (1) represents a band
having nonparabolic dispersion in the pr and ps direc-
tions and parabolic dispersion in the ps direction.
Cohen's model thus predicts a nonellipsoidal Fermi
surface and a nonparabolic energy band and is known
as the NEAP model. Another model frequently used is
due to Lax and has a dispersion relation identical with
Eq. (1), except that the quartic term is absent. This
model then has an ellipsoidal Fermi surface but non-

* Work supported by a grant from the National Science
Foundation.' For a complete list of references see W. S. Boyle and G. E.
Smith, in Progress in Semiconductors (John Wiley 8z Sons, inc. ,
New York, 1963), Vol. 7.

2 M. H. Cohen, Phys. Rev. 121, 387 (1961).' A. A. Abrikosov and L. A. Fal'kovskii, Zh. Eksperim. i Teor.
Fiz. 43, 1089 (1962) /English transL: Soviet Phys. —JETP 16,
769 (1963)].

4 Cohen's original equation contains another parameter, m2',
the eGective mass component at the top of the electron valence
band. Recent experimental evidence seems to indicate that
ns2=m2', and hence we have set m2 ——m2'. See Ref. 5 for a discus-
sion of this point.' G. A. Antcliffe and R. T. Bate, Phys. Rev. 160, 531 (1967).' B. Lax, Rev. Mod. Phys. 30, 122 (1958); B. Lax, Bull. Am.
Phys. Soc. 5, 167 (1960).
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parabolic bands and is known as the ENP model. The
nonparabolicity of the electron energy bands as pre-
dicted by the NEXP and EXP models has been well
verified experimentally. "The nonellipsoidality is still
open to question. Many experiments' ' "seem to agree
well with an ellipsoidal Fermi surface; however, the
experimental error in Refs. 14—18 would prevent an
unambiguous detection of any nonellipsoidal effects
predicted by the XEQP model. The experimental errors
in the de Haas —van Alphen experiment of Bhargava'
are small enough so that nonellipsoidal effects should
appear if they exist; Bhargava concludes that the
Fermi surface is very nearly ellipsoidal. It appears,
however, that this conclusion is not justified on the basis
of his data, which actually seem to support the NENP
model. We discuss this point in detail in Sec. IV.

Besides the work of Bhargava, " there are two other
experiments' "that have been done with the necessary
precision to show up nonellipsoidal effects; both are
cyclotron resonance. Qualitatively, the angular vari-
ation of the cyclotron effective masses seems to agree
with the NENP model, but, except in one case (in
Kao's paper), a quantitative comparison with Eq. (1)
has not been carried out. The basic reason has been the

7R. N. Brown, J. G. Mavroides, M. S. Dresselhaus, and B.
Lax, Phys. Rev. Letters 5, 243 (1960).

G. E. Smith, Phys. Rev. Letters 9, 487 (1962).
G. E. Smith, G. A. Bara6, and J. M. Rowell, Phys. Rev. 135,

A1118 (1964).' H. Kunze, Phys. Letters 20, 469 (1966)."R.T. Bate and N. G. Einspruch, Phys. Rev. 153, 796 (1967).
'2 W. E. Kngeler, Phys. Rev. 129, 1509 (1963)."R.N. Brown, J. G. Mavroides, and B.Lax, Phys. Rev. 129,

2055 (1963)."D. Weiner, Phys. Rev. 125, 1226 (1962)."Y. Eckstein and J. B. Ketterson, Phys. Rev. 13/, A1777
(1965)."D. IV. Reneker, Phys. Rev. 115, 303 (1959).' M. S. Khaikin and V. S. Edel'man, Zh. Kksperim. i Teor.
Fiz. 47, 878 (1964) (English transl. : Soviet Phys. —JETP 20,
587 (1965)j.

G. E. Smith, L. C. Hebel, and S. J. Buchsbaum, Phys. Rev.
129, 154 (1963).

'9 R. N. Bhargava, Phys. Rev. 156, 785 (1967).
2 Y. H. Kao, Phys. Rev. 129, 1122 (1963)."V. S. Edel'man and M. S. Khaikin, Zh. Eksperim. i Teor.

Fiz. 49, 107 (1965) LEnglish transl. : Soviet Phys. —JETP 22, 77
(1966)j,[hereafter EK.
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lack of an expression for the cyclotron effective mass for
an arbitrary direction of the applied magnetic field H
for the NENP model. Such a quantitative comparison
would be useful for several reasons: (i) It would help
verify or disprove the NENP model; (ii) it would pos-
sibly allow one to establish more clearly the value of

E/E, in pure Hi, which has ranged in the literature from
0.5 to 2.

In this paper, we derive an equation for m* from Eq.
(1) for an arbitrary direction of H and make a compari-
son with the previously published data of Kao" and
Edel'man and Khaikin. "We find that the reasonably
good agreement of their data with the NENP model,
coupled with a reinterpretation of Bhargava's" results,
establishes the validity of Cohen's NENP model for
Bi. We also discuss the possible application of the
NENP model towards explaining the anomalous elec-
tron spin splitting found in the high-field Shubnikov-de
Haas data.

m*= (1/27r) [BO', (E)/BE], (2)

where 0', is the extremal cross-sectional area of the
Fermi surface perpendicular to H. We note that since
Eq. (1) possesses inversion symmetry and gives a
surface that is nonreentrant, it makes no difference
whether we compute (BR, t/BE) or (BQ/BE),„t, ("ext,"
for "extremal, " has been supplied for clarity), because
both will give the same result. The latter quantity is
the customary definition of the cyclotron eft'ective mass,

II. THEORY

The ultimate goal is an equation for m, *(n,P), where

a and P are angles that define the field direction with
respect to the crystallographic axes (Fig. 1). The sub-

script on m, * refers to one of the three quasiellipsoids;
j=i refers to the quasiellipsoid whose p, and p3
principal axes differ only by the tilt angle 0& from the
bisectrix and trigonal axes, and j=II, III refer to the
quasiellipsoids obtained by rotations of the j= I
quasiellipsoid by +120 degrees and —120 degrees,
respectively, about the trigonal axis. First, however,
it is convenient to obtain m*(8,0), where 8 and 0 are
defined similarly to n and P, respectively, except that
8 and 0 are measured with respect to axes pi, p2, and

p3, the principal-axis system of the quasiellipsoid. We
then compute the transformations from the principal-
axis system of each quasiellipsoid to the crystal-
lographic-axis system. This procedure is the reverse of
the procedure suggested by Kao; his approach was to
transform Eq. (1) to the crystallographic-axis system
and then to attempt to compute m*. The equation thus
obtained, however, is highly unamenable to solution for
m*, since it contains a large number of quartic cross
terms in pi, p&, and pa. The procedure used here avoids
this problem.

For the surface of Eq. (1), the cyclotron effective
mass is related to the Fermi surface geometry by

B

TRIGONAL
il

BISECTRIX

but the former is easier to compute, and hence we use it
in Eq. (2). In order to obtain 6(E), we need to compute
the area enclosed by the trace of the surface of Eq. (1)
upon that plane perpendicular to H which passes
through the origin. To this end we compute the trans-
formation that aligns the pa axis along H. This trans-
formation requires (i) a rotation by 8 about the p2
axis and (ii) a rotation by 0 about the new pi axis.
Taking the inverse of this transformation gives the
equations

Pi=Pi' cos8+P2' sinQ sin8+P3' cosQ, (3a)

P, =P,' cosQ —P, ' sinQ, (3b)

p~ ———pi' sin8+p~' sinQ cos8+p3' cos8 cosQ, (3c)

where the primes refer to the coordinate system whose
p3' axis is aligned along H. Substituting (3) into (1)
and setting pa'=0 we obtain

A (p2') +B(p2') +C(pl ) +Dp2 pl F 0(4)—
where

A = (cos40)/4mPEg,

B= 2 [(cos'0)/m2+ (sin'0 sin'8)/mi+ (cos'8 sin'0)/ma],
C=-', [(cos'8)/mr+ (sin'8)/m3],

D=sinQ sin8cos8 (mi '—m3 '),
and

F=E(1+E/E,) .

The area enclosed by Eq. (4) then is the area required
for Eq. (2). Computing this area, we obtain

o'= g[(A/C) (G++G-)]'"
X[G K(k)+2(Gi —G )e(k)], (5)

where
(D' 4CBi-

G~=aI
SCA

and

1 D' 4CB)' 4E(1+E/E ) —'I'
+ — I+

2 4CA ) A

& = [G+/(G++G-)]'".

BINARY

Fro. 1. De6nition of magnetic-field direction. Plane ABCD is
the trigonal-bisectrix plane rotated counterclockwise by angle
~ as one looks along bisectrix axis in negative direction. Angle P
is an angle in this rotated plane.
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0.1 5 E/Eo appearing in the numerator in the factor
(1+ 2E/-E, ), go to zero. We give the resulting equation
for reference:

O. IO—
7%zPl 2m 3

mpNp (g,Q) =
ms sin'0+cos'0 (ms cos'g+mi sin'g)

—1/2

X(1+2E/E,). (8)
r
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III. COMPARISON WITH CYCLOTRON-
RESONANCE EXPERIMENTS

In this section we compare the cyclotron-resonance
dat. a of EK and Kao with Eq. (7). Figure 2 reproduces

O.l 5

Fza. 2. Angular variation of the electron cyclotron mass
mzz* (=mzz*) for H in 'the binary plane. The solid curve is com-
puted from the NENP model [Eq. (7)g and the dashed curve
from the ENP model [Eq. (8)]with E/L", = 5/3. The experimental
points and the m; used for the theoretical curves are from Ref.
21. n and p refer to Fig. 1.

O. I 0

K and e are complete elliptic integrals of the first and
second kind, respectively. The following relation" is
useful in reducing the integral obtained for the area to
elliptic integrals:

0.05

(f2+ss) (gs s2) j1/2dz —z (f2+g2)1/2

&&Cf'&(r)+2(g' —f') e(r)3 (6)

0
0 2

(x} P (DEGREESj

a = 90'

IO

where r=g(~'+g') '". Taking the derivative of Eq.
(5) with respect to E, redefining some of the constants,
and substituting into Eq. (2) yields, after lengthy
algebra,

2mzmsms '" (1+2E/E, )&(~)
m*(g, n)=I,(7)

(ms cos'g+mi sin'g are' cosa
where

and

b = (E/Eo) (1+E/Eo)+"

(ms tan'0/cos'g)+ (ms+mt tan'g)

2 (ms+mt tan'g)

*=(1+r) '"

r= (gb+r)/(Qb v). -
The transformations to the crystallographic-axis sys-
tem are derived in the Appendix, and are given by Kqs.
(A4) and (A5). To compute m, *(n,P), the values of 0
and 0 are obtained from these equations and substi-
tuted in Eq. (7).

The expression for m*(g,Q) for the ENP model can
be obtained from Eq. (7) by letting all E/E„esecept the

"I.S. Gradshteyn and I. M. Ryzhik, Table of Integrats, Series,
and Products (Academic Press Inc. , New York, 1965), p. 249.

FzG. 3. Angular variation of the electron cyclotron mass mz*
for H in the trigonal plane. The solid curve is computed from the
NENP model [Eq. (7)g and the dashed curve from the ENP
model [Eq. (8)] with E/Eo=b/3. The experimental points and
the sn; used for the theoretical curves are from Ref. 21. a and P
refer to Fig. 1.

the data of EK for m»* (=mzzz*) for H in the binary
plane, along with predictions of the two models. The
agreement with the NENP model is very good. Since
E/E, is a parameter in Eq. (7), by finding the best fit
to the experimental points it was hoped that an accurate
value of E/E, could be obtained. Unfortunately, the
angular variation of m* is relatively insensitive to
changes in E'/E„and almost all one can state is that
the generally accepted value" for E/E, in pure Bi of
5/3 fits the data well. We note that the data which EK
present for mz* for H in the binary plane do not extend
more than &45' beyond the bisectrix axis, whereas
deviations from the ENP model occur only within 10'
of the trigonal axis. Hence, we can make no comparison
with Eq. (7) for mz*.

Figure 3 presents the data of EK for tni* for H in the
trigonal plane, along with the predictions of the two
models. Although the experimental points deviate from
the ellipsoidal model near the binary axis in a manner
suggested by the NENP model, the remaining points
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fit the ellipsoidal model, except near 5 degrees. The only
conclusion that can be made is that apparently the
scatter of the points is larger than the percentage dif-
ference between the two models. For mzz* and mzzz*

the experimental points are limited and do not extend
in those directions where deviations are expected;
hence, we can make no comparison with the NENP
model.

The third orientation used by EK placed the normal
to the sample parallel to the ps axis of the principal-
axis system of ellipsoid I, i.e., the surface plane of the
sample is the bisectrix plane rotated by 0& about the
binary axis. In this orientation Eq. (7) predicts an
elliptical angular variation of mz . Within the experi-
mental error EK's data in this orientation fit an ellipse
very well, as Fig. 5A in their paper indicates. The KNP
model also predicts an elliptical variation in this plane,
so that the good agreement with the NENP znodel does
not imply that we have distinguished the NKNP model
from the ENP model for this case. The good agreement
does imply that the NENP model is consistent with
experiment in this plane. We note that EK present no
experimental points for mzz* and mzzz* for this
orientation.

It is perhaps questionable whether a detailed com-
parison with the data of Kao should be attempted. EK

0,15—

0.10—

ated with the angular variation in some cases is much
lower than 10%%uz. At any rate, we attempt to draw con-
clusions only in those cases in which the scatter seems
to be within the error limits required to observe the
nonellipsoidal effects.

In the binary plane, Kao was able to compare his
data for mz* with the NENP model, and the agreement
was found to be fairly good. However, he used E/E,
=0.5, and we wish to point out that the more generally
accepted value of E/E, =s/3 gives better agreement.
Figure 4 is a reproduction of Kao's data for H in the
binary plane showing the better agreement. A higher
value of E/E, would give even slightly better agreement.
The experimental points for mzz* (=mzzr*) are in poor
agreement with both models, presumably due to the
difhculty mentioned by Kao in identifying the cyclo-
tron-resonance harmonics because of the additional
peaks in the power absorption curve.

Figure 5 presents Kao's data for H in the bisectrix
plane compared with the two models. The NENP model
its the experimental points for mz* better than the
ENP model, although the scatter is somewhat large.
For mzz* and mzzz* there is not much difference between
the NENP and ENP models, and both compare poorly
with the experimental points.

For H in the trigonal plane, deviations from the ENP
model are expected for angles between H and the
binary axis of 0 and 60 degrees (considering only the
first quadrant). Unfortunately, in these two regions
the data of Kao include too few points to draw any
positive conclusions. For what it is worth, we have, in
Fig. 6, reproduced his data points near the binary
axis for mz* along with the predictions of the two models.
The points seem to fit the NENP model better.
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FIG. 4. Angular variation of the electron cyclotron mass for H
in the binary plane. The solid curves and the points Q are for nzI*,
the dashed curves and the points O are for mII* (=mIII*). In each
case the lower curve is the ENP model I Eq. (8)j; the middle and
upper curves are the NENP model LEq. (7)g with E/E, = ,' and-
5/3, respectively. The experimental points and the m, ; used for the
theoretical curves are from Ref. 20. n and P refer to Fig. 1.

state that the deviations from an ellipsoidal shape ob-
served by Kao are within his limits of error; presumably,
EK take the error limits as &10%, which is what lz"-ao

states for the cyclotron effective mass values for H along
the three quasiellipsoid principal axes. However, we
believe, as Kao states, that the percentage error associ-

FIG. 5. Angular variation of the electron cyclotron mass for H
in the bisectrix plane. The solid curves and the points Q are for
zzzz*, the dashed curves and the[points 0 are for zzzzz* and mzzz*.
In each case the lower curve is the ENP model fEq. (8)j and the
upper curve is the NENP model I Eq. (7)g with E/E~= 5/3. The
experimental points and the m; used for the theoretical curves are
from Ref. 20. 0. and P refer to Fig. j..
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TABLE I. p LEq. (8)g, as calculated using the cyclotron effective masses due to Kao and to Edel'man and Khaikin.

Q�uasie-
llip�so

principal
axis

Measured'
area 8,

10» cm

18.0%1
1.1+0.01

13.7a0.5

ra*/rap due to:
Kaob EK'

0.14 %0.02 0.120 +0.003
0.009&0.0009 0.0081+0.0001
0.11 &0.01 0.088 &0.002

8,/2m. no*, 10 ' eV,
using ~z*//wo of:
Kao EK

15.6&2.4 18.2+1.1
14.9+1.5 16.5&0.2
15.iai.5 18.9+0.9

n, using m*/mp of:
Kao EK

1.02+0.17 1.13+0.05

& From Ref. 19. b From Ref. 20. e From Ref. 21.

IV. REINTERPRETATION OF DATA OF REF. 19

(pl (x p)
&2~m*i, , , &E, 2~m* s

where rl is obtained from Eqs. (5) and (7) and is given
by

where
r)=4V'r(V "r+ ) '(ll&) (10)

e(X)

Bhargava" differentiates between the NENP and
ENP models in the following manner. For the ENP
model the ratios ((f/2xnz*)r, s s, where 1, 2, 3 refer to H
along the p~, ps, ps axes, have the same value. For the
NENP model, however, one obtains that

The NENP model predicts a g between 1.12 and 1.23
for E/E, between 0.5 and 2.0.

The bad feature of this method is the need for effec-
tive mass values from other experiments. Bhargava
used Kao's values of m* and found that q = 1 within the
large experimental uncertainties (Table I), and hence
concluded that the Fermi surface is ellipsoidal. Kao's
m* values, however, have the rather large uncertainty
of 10%. The more precise m* values of EK appeared
subsequent to Bhargava's work, and it is of interest to
recompute g using their eRective masses.

The results are summarized in Table I. The value of
g= 1.13 obtained using EK's values for m* corresponds
to E/E, =0.5, which is somewhat lower than the ac-
cepted value of E/E, =5/3. We feel, however, that a
deviation of 13% in rl from unity along with the close
agreement of (R/2s m*) ~ and (0',/2am*)
supports the NENP model.

v= L(E/E. ) (1+E/E.)+l].
Hence, g = 1 implies the ENP model is valid and q& 1
can be interpreted on the basis of the NENP model.

O.I5
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FIG. 6, Angular variation of the cyclotron effective mass for H
in the trigonal plane. The solid curve is computed from the
NENP model (Eq. P)g for E/E, =S/3 and the dashed curve
from the ENP model LEq. (8)j.The experimental points and the
Nz; used for the theoretical curves are from Ref. 20. n and P refer
to Fig. 1.

V. POSSIBLE APPLICATION OF NENP MODEL
TO SPIN SPLITTING

The fairly good agreement between the NENP model
and the cyclotron-resonance data, , along with the sup-
port given the model by Bhargava's data, leads one to
consider more closely the theoreticap''4 and experi-
rnental' results on the g factor and spin splitting in Bi.
For a magnetic fteld along, say, the ps principal axis,
the energy levels are given in the ENP model by

E(1+E/Ep) = (e+ ,')Atp, +ps-s/2msa ',gppP, -(11)

where
&o,=eB/(mtnzs)'"c, (for this case)

pp = ek/2tBpc

and g is the effective g factor. The calculation of Cohen
and Blount" using the ENP model gives the result that
for most orientations of H, g=2mp/m, *. By Eq. (11)
this value for g gives a spin splitting that is equal to the
Landau level spacing (orbital splitting). However, the
Shubnikov —de Haas results of Smith, Baraff, and
Rowells (SBR) indicate that the spin splitting is about
one-third of the orbital splitting in the heaviest mass
direction and about 10% larger than the orbital split-
ting in the light-mass direction. In a subsequent paper
Baraff24 was able to explain the difference between the

'3 M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960).
G. A. Baraff, Phys. Rev. 13'7, A842 (1965).
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spin and orbital splittings theoretically by including
the effects of bands other than the two considered in
the two-band model. His final equations contain several
new parameters and are fairly complicated, and no
detailed comparison with the SBR data is attempted;
but it is apparent that his calculation explains the
experimental results. The main conclusion to be drawn
from Baraff's paper is the clear importance of the
additional bands.

The relationship and relevance of the SBR measure-
ments and Baraff's model to the present work are as
follows. The existence of the p2' in Eq. (1), which is
responsible for the fairly good agreement between theory
and experiment, is tantamount to including the effects
of higher-order bands in the p, direction. Given the
need for such bands to explain the spin-splitting results,
it would be of interest to extend the NENP model to
high fields and to determine if it offers a simpler explan-
ation of the spin and orbital splittings than Baraff's
model —simpler in the sense that no new parameters
would be introduced. Such a procedure may also suggest
changes in the NENP model, which would give even
better agreement with the cyclotron-resonance data.
We are presently undertaking the investigation just
outlined.

VI. CONCLUSIONS

We have derived an equation for the cyclotron effec-
tive mass as a function of the magnetic-field direction
for the Cohen NENP model and have made a compari-
son with the previously published results of EK and
Kao. The excellent agreement of experiment with the
NENP model for the binary-plane data of EK argues
very convincingly for the validity of the NENP model.
The binary-plane data of Kao for m&* also fit the NENP
model well. The near-bisectrix-plane data of EK, while
precise, do not allow a distinction to be made between
the two models. The remaining data of both EK and
Kao seem subject to more error than the cases already
mentioned, but do appear to give a superior fit to the
NENP model. In general, a value of E/E, = 5/3 gives
a consistent fit to the experimental points. The re-
computation of p in Sec. IV not only supports the

NKNP model, but also negates the one case in the
literature in which the NENP model is unambiguously
shown not to fit experiment. The success of the NENP
model in explaining the cyclotron-resonance data
suggests that the model may also explain the electron
spin splitting at high magnetic fields.

APPENDIX

Let the primed coordinates denote the crystallo-
graphic-axis system, and the unprimed coordinates the
principal-axis system. It is easily shown that

p~ ——cosQ p,
' —sing p, ',

p~
——sing cos0, p~'+cosp cos0, p2' —sin0, pa', (A1)

p3= sing sin0& p&'+cosQ sin0g p2+cos0g p3

where 8, is the tilt angle and /=0, 120, —120 degrees
for quasiellipsoids I, II, III, respectively. In the un-
prirned system, a point a distance r from the origin
has the coordinates

P~ rcosQ sin0-—,

p~
———r sinQ,

p3= r cosQ cos0,

while in the primed system,

p~' ——r cosp sinn,

p2' ———r sinp,

p~'=r cosp cosn.

(A2)

(A3)

Substituting Eqs. (A2) and (A3) into (A1) and solving
for sinQ and tan8 gives

sinQ = —sing cos0, cosP sinn+ cosP cos0, sinP

+sin0, cosP cosn (A4)
and

tan8=
cosP sinn+sing tanP

sing sin0~ sinn —cosg sin0~ tanP+cos0~ cosn
(A5)
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