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Nearly-Free-Electron Susceptibility of Liquid Metals
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The magnetic susceptibility of a liquid metal is calculated to second order in the electron-ion potential.
The result is evaluated for a number of metals, and shows, generally, a small deviation from the free-electron
susceptibility which can be positive or negative. When electron correlations are also taken into account,
the theory yields liquid-metal susceptibilities and changes in susceptibility on melting roughly comparable
to experiment.

I. INTRODUCTION

~CONSIDERABLE effort has been devoted to the~ calculation of the transport properties of liquid
metals, particularly the resistivity, in terms of the
liquid-structure factor and the electron-ion pseudo-
potential. ' ' This paper presents a calculation of the
magnetic susceptibility using the same nearly-free-elec-
tron picture.

The approach here is parallel to the work of Glasser'
and Samoilovich and Rabinovich, ' who consider the
nearly-free-electron susceptibility of solid metals. Their
calculations for crystals are easily extended to liquids
because they make no particular use of the lattice
periodicity. This is in contrast to the more usual treat-
ments of solids (e.g. , Ref. 5) which exploit the lattice
symmetry.

II. PHYSICAL PICTURE

The electron-ion potential has the form

V(r) = P v(r —R,), (2)

where

V(q) = d'r e '&'V(r) =5(q)s(q)n,

1 N

Q(q) — P e tp Rs—

is the liquid-structure factor, and

where E is the number of ions in the volume 0 and R;
is the position of the ith ion. It is convenient to work
with the Fourier transform

s(q) = (1V/0) d'r e '&'I (r)
The motion of the conduction electrons in a liquid

metal is described by a one-electron Hamiltonian
is the pseudopotential form factor. ' The results will be

1. e applicable to a liquid, crystal, or an amorphous con-
3C=5Co+V(r) = p A

~
+tsH&p+V(r) (1) ductor. All the information on the ion distribution is

2rrs c i
contained in the structure factor S(q).

V(r) is the electron-ion potential, H =Hs is the mag-
netic fteld, A= ( Hy, 0, 0) is the vec—tor potential, and
ts=

~
e~ sts/2ntc is the Bohr magneton. The tsHo, term in

the Hamiltonian leads to the Pauli spin susceptibility
&I . The —(e/c)A term gives the Landau orbital sus-
ceptibility X&. In the next section we shall keep both
of these terms and calculate the effect of the ion po-
tential V on the total electronic susceptibility X. The
results for X~ and Xz, separately will also be presented.
This separation must be made because the correlation
corrections for X~ and Xl, are different, as will be seen
in Sec. VI.

III. CALCULATION

We begin by calculating the partition function, using
the full Hamiltonian LEq. (1)):

Z(P)=Tr{e P+}=Tr(e P' '+ l), P=1/kT. (4)

The essential nearly-free-electron assumption is that V
is small. The trace may then be expanded to second
order in V using the Schwinger formula'

Z(P)—Tr{e P«) —P Tr(V(r)e PscP)

*Supported by the Advanced Research Projects Agency
through the Center for Materials Research at Stanford University,
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1

+ap' Tr dst V(r)e—pscp(1— ) V(r)e—pxp (5)

The traces are now evaluated using the eigenfunctions
of 3CO.' The procedure for doing the trace integrals is

' W. A. Harrison, PsessdoPotentiats in the Theory of Metals (W.
A. Benjamin, Inc. , New York, 1966).

~ L. D. Landau and K. M. Lifshitz, Qumstlm Mechanics
(Addison-Wesley Publishing Co., Reading, Mass. , 1965).
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lace transform".lated by an inverse Pf. 3. The resulting second-ooutlined in Re . . e
function is

20//, H f m

QP (2n.k'
where

QO gf
ds s(s)—,

8$

(t)

t2

Z
dt e"

c+ioa

z(s) =
C—ioo

d'ql s(a) (a)l'

' Ac
I eI HA q, '—u(1 u)—PI/'/2m]Xexp[ —(q.'+q„')Ac/ e H —q, u

=1 (:~' r)+1). Forermi function fo
——(,

e the zero-tempera ur
his

= 2 which we shalliver ent result at q= q&, w
return to ater.l Using the 8- unc ion

where

A =coth(p)((Hu)+coth(AH(1 —u)) .

(6)
C+ioo

4 ——
C—too

Z(~)
dt e|'

2H220/' m

p' 0+—
2 (2n.)'

)

dg (
—8@(qn) (&—~2)/4

I
d'q

I s((l)()((l) I

' dx (:

p"'/J, 'H' D

96 (2~)'
d'qls(q) (q) I'E(q. '+q„')

where

1
—sE(a') ()—~')/4(l ~ )22 7dxe

0

E(q') = )))'q'/2m.

nction we can now calculate theW t t e partition fui
thermodynamic poten ia p

e to theested in the linear response
d happlied efi ld. Therefore we can expan

function o st econd order in H.

E . (7)] can be inverted termThe partition function q.
by term using the theorem4

y—1'+'" e*' x
0dk =——8(x),

r(v)C—ioo

C—ioo

C+'boo

dt

t
—1/2

exp(/[l —E(1—x') /4])
dx

8l 2''1 p—g~

an now be done with Eq. (10), then the
x integration

ermodynamic potentiaformed. The result for the t ermo y

( ) the gamma function
'

nandwhere F y is e

t/(~)=0, x&0

1, x)0.
9 terms

' '
n function is inserted in q.
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with respect to f unt) p

p(&[l —E(1—*')/45
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where a 4f/E(q')=
t' 1 t/' shifts the chemi-

h hf

'
n of the potentia

a from the Fermi energy
d

'
V, i h 1-may be calculated to second or er in

,
= —n n being the number densi y't of/ '

(11)rentiating expressionelectrons. D)fferen
' '

g

d A. H. Wilson, Proc. Roy. Soc. on oK. H. Sondheimer an
A210) 1 /t'3 (1951)
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the field dependence of f', we get

p(0)(=( (1+
fp

1 0

41. P/3 (2~)P

crate calculation of the diamagnetic susceptibility of a

Finally, keeping only the spin interaction in e
Hamiltonian, we get the spin susceptibility

I5'((I)p((I) I' 1+v'ap )d'q —ln l, 12
QZ 1 —ga, )

—( /H)(3C/BII. Dif-The susceptibility is equal to-
ferentiating expression (11)wi pith res ect to H, and using

Eq j ~ or, w. (12) f f we find the electronic susceptibihty

where
Xp= —pPxP(1+Ap)

k+2
Gp(k) =2k ln

k 2 k2 —4

b, p ————— dk I(k)e'(k)Gp(k),
32 f'pP p

(16)

tl'n( 1 0
x=

8f,' (2~)'

where

A l~(p)~(z)I'&(())), ()~)

I'(a) =
a"' 1+gap

ln
2 1 —gap

Qp

Gp —1

p+q p

q2

~p3/21n—
8(a()—1)' 16 1 —gap

th Landau-Pauli free-electronHere p'n/f p X is e-—
susceptibility.

a nitudethat i)(q) depends only on the magni uAssuming a v

done. The structureof q, the angular integral can be ~one. e
1 d b the interference function I q

~ ~
~j' and the integration variable is change o

the dimensionless parameter k=q, qp, qp
b The final result for the total elec-Fermi wavenum er. e n

tronic susceptibility is

This is t e ana og on 1 f Abe's expression for the paramag-
e andnetic suscepti i i y ot'b'1't f a solid neglecting exchange an

correlation. '
The analysis would now be comp ete, excep or

fact that the integrands diverge at =2. g= 2. The logarithm
d the pole in G~ are integrable as principalterms an e p

values. e qua r. Th adratic divergences in G an I. q
'

-func-more e ort. n par irz . I t'cular the zero-temperature - unc-
roximation has to be modified. The divergent

term is the last one in expression . en is e
in the partition function is inverte o g

~ ~ ~

to et the corre-
sponding term in e ep

' '
th thermodynamic potentia, we

g t p) = —(I)(f'). The use of the exact Fermicannot take 8 p s=-
atical diffi-f 1 ds to insurmountable mathematica iunctions ea s

mation of letting fp drop linearly from 1 to 0 as s ranges
——'X to 1+pi X. At the end of the calculation we let

m erature resultX —+ 0. This procedure gives the zero temp
as the limit of a finite temperature:

where

X=xP(1+5), (14)
oo gf

ds s(s)
f+) /2

f—X/2

ds z(s)

3 3

321 p'
dk I(k) i)'(k) G(k),

f+) (2

ds
X 2m'

Z(t)
dt e" (17)

8 12+7k' —3k'2 k+2
G(k) = —(k' —1) ln —+

k k —2 3 (k' —4)'

where
Xr, ————',X'(1+Ar,), (15)

3 s

32/'
dk I(k) i)'(k) Gi, (k),

k+2 8 24 —22k'+3k'
G = —(k'+2)1

k —2 3

I is the number of electrons pe r ion. This is theere, s is
1 for the totalliqui -me a1' 'd- t 1 analog of Glasser s resu. t or
1 3e ectronic s1

'
usceptibility of a solid meta .

alculated se a-The orbital susceptibility may be calcula e p-
rately in muc e sy

'
h th arne way. The spin term is omitted

from the Hamiitonian; e'1 '
the algebra is much the same:

%e now insert the last term in q.E . 7 for Z(t), do the
1 and then the transform. Keeping always thes integra, an en

the uadraticlowest order term in P, the new result for e q
term of G(k) is 8/3(12+7k' —3k')/[(k' —4)' —4X'/P],
which has a well-defined principal value integral at k = 2.
The result is independent of P as X ~ 0.

IV. EVALUATION OF A FOR LIQUID METALS

The expressions (14)—(16) for the correction to the
evalu-susceptl i lty ue 0'0 1' d t the ion potential have been eva u-

t d for a number of liquid metals.ae or
The interference function is measure y — yb x ra and

neutron scattering. These experiments can ecan be fit with
d 1 f the liquid. The interference

functions used here are calculated using the Percus-

' R. Abe, Progr. Theoret, Phys. (Kyoto 29 23 1963).
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TABLE I. Susceptibility corrections for iquid metals. V. EVALUATION OF dE FOR SOLIDS

Ll
Na
K
Rb
Cs
Zn
Cd
Hg
Al
In
Pb

0.32
0.037
0.011
0.007
0.014

—0.010
0.040
0.032

—0.019
0.029
0.045

—0.087
—0.024
—0.012
—0.008
—0.011

0.047
—0.019

0.040
—0.005

0.008
—0.094

0.18
0.017
0.003
0.002
0.006
0.009
0.020
0.035

—0.014
0.022

—0.002

Now that we have calculated the corrections to the
free-electron susceptibility of a liquid due to the po-
tential of the ions, we compute these corrections for
solids in the same approximation. Then the difference
between the susceptibility of the solid and liquid can be
determined and compared with experiment. Expressions
for 6, 61,, and 6& have been calculated for crystalline
metals by Glasser, ' Misra and Roth, ' and Abe, '
respectively '.

1 t k.'+k„'
r'r '(h) ~p~— p,)—,

a

Vevick theory, according to the procedure outline in
Ashcroft and Lekner. ' The packing density is 0.45 and
the sphere radii are taken from the Table in Ref. 2.
The pseudopotential form factors used are those of
Animalu and Heine, tabled in Harrison. These inter-
ference functions and pseudopotentials give a satis-
factory account of the resistivity of most liquid
metals. '

The 6 integrals are evaluated by integrating numeri-

cally on either side of k=2, coming close enough that
the smooth part of the integrand (everything but the
divergent factor) does not vary appreciably across the

gap. The smooth part is then factored out, and the
principal value of the integrand near k= 2 is calculated
analytically. The G functions are of course the same for
all metals, but the results vary markedly in magnitude
and sign because the different interference functions
and pseudopotentials weight different regions of the
integrand. All the results come about as subtractions of
the contributions from the various regions (k(2, k=2,
k) 2), and so are rather sensitive to changes in I(q) and

n(q).
The results of this calculation for various metals are

given in Table I. We see that, in general, the deviation
from free-electron behavior is quite small Note that
all the deviations can take either sign. For a crystal 61.
cannot be positive unless by chance a reciprocal-lattice
vector is quite close to k = 2.' In contrast, all liquids see
the point k= 2, and if there is enough interference func-
tion and pseudopotential there, AL, can be positive.

The only other calculation of liquid-metal suscepti-

bility is due to Baltensperger. "His calculation of 41,
is a quadrature over the same types of terms as pre-

sented here, but is different. Baltensperger interprets
his result as always negative, whereas we believe 61.can

be positive for some materials. His evaluation of AL, for

Na is an order of magnitude larger than that given here.

We believe that pseudopotentials in current use cannot

yield such a large result. The value in Table I is more

in line with 61, in solids. '

'0 W. Baltensperger, Phys. Kondensierten Materie 5, 115
(1966).

k.'+k„'
Q' v'(k)~ P,+ — 2P,),

&p = — P' ~'(k) I'),

1 k+2 4
Fg= —ln

k k —2 k2 —4

3 k+2
ln +

2k' k —2

2 5k' —12

k' (k' —4)'

Here, k is a reciprocal-lattice vector expressed in units
of the Fermi wave number. We have evaluated these
expressions for some cubic crystals by summing over
the first six reciprocal-lattice vectors, using the same
Animalu and Heine pseudopotentials as for the liquids.
The results, given in Table II, are of the same order of
magnitude as found for liquids.

VI. CORRELATION

Before comparing calculated susceptibilities with
experiment, it is necessary to take into account the
effect of correlation of the electrons. The correlation
correction is larger than the ion-potential correction
calculated here. The spin and orbital susceptibilities
must be treated separately. This is whay we have
calculated A~ and 61. separately.

Spim susceptibility xz. Exchange and correlation are
very important in calculating the spin susceptibility. "

TABLE II. Susceptibility corrections for solid metals.

Li
Na
K
Rb
Cs
Al
Pb

0.52
0.057
0.022
0.011
0.018—0.001
0.084

—0.36—0.039—0.014—0.005—0.009—0.050—0.136

0.23
0.025
0.009
0.005
0.009—0.018
0.011

» C. Herring, in 3fugnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc., New York, 1966), Vol. IV.
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TABLE III. Correlation corrections for liquid metals.

Ll
Na
K
Rb
Cs
Z,I1
Cd
Hg
Al
In
Pb

3.32
4 05
5.02
5.37
5.78
2.33
2.66
2.70
2.16
2.44
2.36

~ex+co r

—0.23—0.24—0.24—0.24—0.23—0.20—0.21—0.21—0.19—0.20—0.20

An expression for XJ which is exact in the high-density
limit has been calculated by Brueckner and Sawada. "
A calculation for metallic densities is given by Silver-
stein. "For the densities of interest here (r, =4), these
two are essentially the same. "Including these exchange
and correlation effects the spin susceptibility becomes

Xp= gX (1 Ap+&ex+oor) (19)

8, +„,can be estimated from the graph in Ref. 13, or
computed using the Brueckner and Sawada result:
b, +„,= —0.166r,+0.204r, '(0.225 —0.0676 ln r,). We
have replaced rN/rrt* in Silverstein s expression with
1—h~, where A~ is the effect of the ion potential calcu-
lated above. Equation (19) is consistent with Abe's

treatment of correlation in Xp.' These corrections are
tabulated in Table III. The calculation of the spin
susceptibility including the full effect of the electron-
electron interaction is a dificult many-body problem,
the solution to which these corrections are only crude
estimates.

Orbital suscePtibiHty Xr, . The effect of exchange and
correlation on the diamagnetic part is less well under-

stood. An estimate by Kanazawa and. Matsudaira"
valid at high density is

VII. COMPARISON WITH EXPERIMENT

The experimental electronic susceptibility listed in
Table IV is computed by subtracting the ionic suscepti-
bility" from the total measured susceptibility of the
metal. The experimental susceptibilities for the alkalies
are taken from Collings, '~ the others from the tables of
Busch and Vuan. "The uncertainty in the experimental
susceptibilities is rather large. Measurements of the
total susceptibility vary as much as 10%, and the error
in the ionic diamagnetism could be 10% or more. The
estimates in Table IV are computed assuming both
errors are 10%.

Using the relation X„~,=-', Xo(1—A~+b, +„,) '
——,'X'(1+61,) with the values obtained in the preceding
sections we obtain the electronic susceptibilities listed
in Table IV. The free-electron susceptibilities are corn-
puted using the density at T= 293'K for the solid and
and at the melting point for the liquid.

For the alkalis and the trivalent metals, the calcu-
lated susceptibilities are roughly comparable to the
experiments. The calculated values fall generally be-
tween the free-electron values and the experimental
values. Except for I.i, the correlation correction is more
important than the ion-potential correction in achieving
a substantial shift from the free-electron susceptibility.

For the divalent metals and Pb the experimental
susceptibility is much smaller than the calculation,
smaller even than the free-electron susceptibility. These
cannot be understood with the physics considered
here.

In principle, the change in the susceptibility at the

melting point is a better experimental test of the theory
than its magnitude. Experimentally, it should be easier
to measure the relative shift in the susceptibility than
the absolute value, and the uncertainty in the ionic
diamagnetism plays no role in deducing the electronic
part. On the theoretical side, the effect of correlation is

Xz, ————,'X'$1+0.028r, (lnr, +1.51)j. TABLE IV. Electronic susceptibilities of solid and liquid
metals, cgs units &&10'.

In the limit in which this result is strictly valid (r,«1),
this correction is small and negative (for r, =0.1 the
correction is —0.002). It is possible that the true cor-
rection remains small at metallic densities, even though
the Kanazawa and Matsudaira expression becomes
large and positive for r)1 (the correction is 0.12 for
r, = 2) . For this reason no correlation correction has been
made to XL, in the final results which will be compared
with experiment in the next section. However, if the
Kanazawa and Matsudaira expression should be ap-
proximately correct for Inetallic densities, the resulting
correction to Xl. would be appreciable, generally larger
than the ionic correction AL, .

Li
Na
K
Rb
Cs
Zn
Cd
Hg
Al
In
Pb

LIquId I
x0 calc expt

0.52 1.1 1.9 ~0.2
0.43 0.65 0,81~0.08
0.34 0.51 0.69+0.07
0.32 0.47 0.65+0.07
0.30 0.44 0.82&0.08
0.74 1.0 0.37&0.2
0.65 0.95 0.40~0.3
0.64 0.94 0.18&0.3
0.80 1.1 1.2 +0.2
0.71 1.0 0.70~0.1
0.73 1.0 0.54~0.2

Solid x
calc expt

1.3 2.0 ~0.2
0.67 0.82~0.08
0.52 0.70~0.07
0.48 0.68~0.07
0.45 0.87~0.09

~liq
calc

—0.2
—0.02
—0.01
—0.01
—0.01

Xspi

expt

—0.1
—0.01
—0.01
—0.03
—0.05

1.1 1.7 ~0.2 —0.05 —0.5

1.1 0.22~0.1 —0.06 +0.3

"K. A. Brueckner and K. Sawada, Phys. Rev. 112, 328 (1958)."S.D. Silverstein, Phys. Rev. 130, 1703 (1963) .
'4 See graph Ref. 11, p. 66.
"H. Kanazawa and N. Matsudaira, Progr. Theoret. Phys.

(Kyoto) 23, 433 (1960).

"P. W. Selwood, Magnetochemistry (Wiley-Interscience, Inc. ,
New York, 1956).

E. W. Collings, Phys. Kondensierten Materie 3, 335 (1965).
8 G. Busch and S. Yuan, Phys. Kondensierten Materie 1, 37

(1963).
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quite small, at least in the Silverstein approximation.
The principal contribution to the shift comes from A~
and 6L,, with the change in X' caused by the change in
density somewhat smaller. The unfavorable aspect of
the susceptibility shift is that it is quite small. Again
excepting Pb, the theory predicts the correct sign for
the shift, and for some metals gives a fair account of its
magnitude. It should be emphasized again that the
error in the experimental results is quite large.

The qualitative agreement with experiment for the
alkalis and the trivalent metals indicates that the basic
physical picture considered here is an adeuqate one for
these materials. The metal is represented by a distribu-
tion of point ions, immersed in a sea of interacting elec-

trons. Perhaps the calculated susceptibilities could be
brought closer to the experiments by a better treatment
of the electron-electron interaction which both correlates
the spins and screens the ion potential.

The theory does not seem to work for the divalent
metals. The experimental susceptibility above the melt-

ing point is much smaller than the free-electron value

and strongly temperature-dependent. " There is evi-
dence from the Knight shift in Cd that Xp takes the
free-electron value and is temperature-independent. "
Some new physics, probably involving the d electrons,
will be needed to understand the susecptibility of these
liquids.

VIII. CONCLUSIONS

The objective of the investigation has been to calcu-
late the effect of the ion potentials on the susceptibility
of liquid metals in terms of the liquid-structure factor
and the ion pseudopotential. This correction turns out
to be small and can be of either sign. When correlation
of the electron spins is taken into account, a larger
effect than the ion-potential corrections, the calculated
susceptibilities are in rough agreement with experiment
for some simple metals. Estimates of the shift in sus-
ceptibility on melting also are roughly confirmed by
experiment.

"A. Menth (private communication. )"R.V. Kasowski and L. M. Falicov, Phys. Rev. Letters 22,
1001 (1969).
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Energy Bands for fcc Lanthanum and Praseodymium)

H. W. MYRQN AND S. H. LIU

pepartment of Physics, and Institute for Atomic Research, Iovoa State University, Ames, Iovva 50010
(Received 6 October 1969)

We have calculated the energy bands of lanthanum and praseodymium in the face-centered-cubic struc-
ture using the relativistic augmented-plane-wave method. Calculations for the density of states, the mag-
netic susceptibility, and the Fermi surface are also performed, and the results are correlated with some of
the electronic and magnetic properties of these metals.

IGHT rare earths La (Z=57), Pr (Z=59), and
& Nd (Z=60) can be stabilized in two crystal

structures, namely, double hexagonal close-packed
(dhcp) and face-centered cubic (fcc).' ' Both phases of
La are superconducting at suKciently low temperatures
with slightly different superconducting and normal
state parameters. ' Pr and Nd in the dhcp phase order
antiferromagnetically at low temperatures, while in
the fcc phase, they order ferromagnetically. "In this

paper, we report results of the band calculation of fcc
La and Pr and compare them with similar calculations
for these metals in the dhcp phase. ' It will be shown that
the differences in superconducting or magnetic proper-

t Woric performed in the Ames Laboratory of the U. S. Atomic
Energy Commission. Contribution No. 2634.

~ D. L. Johnson and D. K. Kinnemore, Phys. Rev. 158, 376
(1967).' E. Bucher, C. W. Chu, J. P. Maita, K. Andres, A. S. Cooper,
E. Buehler, and K. Nassau, Phys. Letters 22, 1260 (1969).' W. C. Koehler, J. Appl. Phys. 36, 1078 (1965).

4 G. S. Fleming, S. H. Liu, and T. L. Loucks, Phys. Rev. Letters
21, 1524 (1968).

ties between the two phases can be understood from the
differences in their band structures.

The relativistic augmented-plane-wave (RAPW)
method is used for the band calculation. "The muffin-
tin potential is constructed in the standard way from
the atomic electron charge density. ' The Slater p'"
exchange energy is assumed. The electronic configura-
tion used for La is Sd'6s' and is Sd 6s for Pr. The lattice
parameters are a=10.011 a.u. ' (5.296 K) for La and
9.804' a.u. (5.186 A) for Pr. The lattice parameter for
fcc Nd has not been determined. The radius of the
muffin-tin potential is chosen as 3.158 a.u. The rela-
tivistic analog of the logarithmic derivative of the
wave function is found to be divergent in the energy

' T. L. Loucks, Phys. Rev. 139, A231 (1965).'T. L. Loucks, Augmented Plane Wgve Method (W. A. Ben-
jamin, Inc., New York, 1967).

'D. Liberman, J. T. Waber, and D. T. Cromer, Phys. Rev.
13/, A27 (1965).

8 W. B.Pearson, Handbook of lattice Spacings and Structures for
Metals and Alloys (Pergamon Press, Inc. , New York, 1958).


