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An electron-ion scattering amplitude that takes into account the e&ects due to the d excited bands in

heavy alkali metals is proposed. The d bands are treated as resonant levels, and the scattering amplitude
is constructed via an effective-range approximation. The cross section is given in terms of two resonance
parameters and of the Born approximation for the pseudopotential. We use a modified form of the nonlocal
and energy-dependent Heine-Abarenkov model potential, where the high-angular-momentum components
of the potential are properly treated. We test our model by calculating the resistivity and thermodectric
power for the solid phase of K, Rb, Cs. The results give satisfactory agreement with experiment. In par-
ticular, for E we find that the strong d nonlocality obtained by I.ee and Falicov is equivalent to a d resonance
built into the electron-ion scattering amplitude.

I. INTRODUCTION

l 'HE aim of this work is to investigate the effects
of the d bands on the electron-ion cross section

in the heavy alkali metals.
Until now, all the "first-principles" calculations of

the macroscopic properties of alkali metals give the
least satisfactory agreement with experiment for the
heavy alkali metals. ' ' In a previous paper, we pointed
out that for Rb and Cs the excited d bands are im-

portant in calculating transport properties, so that, in
some sense, these elements look like transition metals.
Further evidence of this resemblance is given by the
energy-band structure. The calculations performed by
Ham' and Kenney' show that, through the sequence
K, Rb, Cs, the mixing between the s and d bands in-
creases, and the d bands approach the Fermi surface
and their width decreases. Through the sequence, the
energy difference between the position of the H», N&',
T25' levels, with respect to H25', E2, Ti2', becomes
smaller and smaller: For instance, in the case of K we
have' H»' —H» ——0.232 Ry, in the case of Rb '
Hg5' —H» ——0.1.81 Ry, and for Cs' H25' —H» ——0.080
Ry. Even if these levels do not have the reverse
order due to the hybridization, as in bcc iron, the

*Research supported in part by the C.N.R. (National Research
Council).'L Sundstrom, Phil. Mag. 11, 657 (1965).

2 J. M. Dickey, A. Meyer, and W. A. Young, Proc. Phys. Soc.
92, 460 (1967).

3 J. Robinson and J. Dow, Phys. Rev. 1/I, 815 (1968).
4 V. Bortolani and C. Calandra, Nuovo Cimento SSB, 393

(1968).' F. S. Ham, Phys. Rev. 128, 82 (1962).' J. F. Kenney, Quarterly Progress Report No. 66, Solid State
and Molecular Theory Group, M.I.T., 1964 (unpublished).

7 J. H. Wood, Phys. Rev. 126, 517 (1962).

resemblance to transition metals is clear in passing
from K to Cs.

In view of these facts, we postulate that the excited
d bands can be described by resonant states, as various
authors have already suggested for the noble and
transition metals. ' "

In the model we propose, we describe the total
scattering amplitude as the sum of a resonant term,
which accounts for the d state (1=2), and of the partial
scattering amplitude, calculated in Born approximation,
for all the other angular momenta. The resonant term
is obtained by using an effective-range approximation,
as described in Sec. II. The Born approximation of the
partial scattering amplitudes for //2 is calculated by
using the model potential of Heine and Abarenkov"

(HA) for /=0, T. For the higher angular momentum

components of the form factor, in Sec. III we show

how, by virtue of the centrifugal term, the potential
can be approximated, inside the model radius R~, by
Z/Esr, when Z is the ionic valence. In this way, we are
able to improve on the approximation introduced by
HA in their model potential for l~&2. To test our model,
we calculate the transport properties of K, Rb, and
Cs. The formulas for the resistivity and thermoelectric
power, for the case of a nonlocal and energy-dependent
form factor, such as the one we use, are given in Sec.
IV. Since for solid alkali metals it is possible to obtain
with accuracy the structure factor from elastic con-
stants or neutron data, ' 4 we performed the calculations
for the solid phase.

s J. M. Ziman, Proc. Soc. (London) 86, 337 (1965).
9 V. Heine, Phys. Rev. 153, 673 (1967)."R. I . Jacobs, J. Phys. C. 1, 492 (1968).
n V. Heine and J. Abarenkov, Phil Mag. 9, 451 (1964).
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In Sec. V our results for the resistivity and thermo-
power are displayed. The results were obtained by
taking the position and the width of the resonance in
the range of values suggested by the energy-band
calculations.

The introduction of the resonant d level gives a
substantial improvement, with respect to previous
calculations, for the transport coeKcients of Rb and
Cs, while for K the resonance contribution is less
remarkable. This is in agreement with the band
structure information, i.e., with the inhuence of the
d states on the sequence K, Rb, Cs.

II. TOTAL SCATTERING AMPLITUDE

The total scattering amplitude can be written in the
form

In this way, the limit (2.6) is preserved, and we can
introduce in (2.8) the position and the width of the
resonant d level from band-structure calculations. The
total scattering amplitude becomes

This expression can be written as

f(k,8) =fs(k, 8)+SP2(cos8)

Ed8p(1+pE)1X—
k (Eg E) i E—

dbms—

(k) (1+pE)

f(k, 8) =P (2l+1)fP(k)Pi(cos8)+SP2(cos8)
Z&2

X (1/k)Eg82s(k) (1+pE)/

$(Eg E) —iE~8—2s(k) (1+pE)5. (2.9)

f(k,8) =P (2l+1)fi(k)Pi(cos8), (2 1)
—f2 (k) . (2.10)

lim r(E) =(Ed/k)8i (k). (2 6)

Since BP(k) behaves as k' for small k, the function
F(E) goes to zero like E'. Then, for small k, (2.5)
becomes

(R'/45)Egk' cot82(k) =Ed —E, (2.7)

where E is the range of the potential. This shows that
our approximation for l =2 is the usual effective-range
approximation.

In order to extend (2.6) to the range of k of interest,
we shall in the rest of the paper assume F(E) to be of
the form

r (E)= (Eg/k)82s(k) (1+pE) . (2.8)

The parameter p is fixed by the condition that
k&r(E&) is equal to the width of the d band. "

where k is the incident momentum, 0 is the scattering
angle, and ft (k) is the partial wave amplitude of angular
momentum l, given by

fi(k) = 1/t k cotlt(k) ikj—; (2.2)

here hz is the scattering phase shift.
We assume that for l&2, fi(k) can be approximated

by the corresponding Born term:

fi(k) =bi (k)/k, for l/2 (2.3)

where bz is the lth phase shift in Born approximation.
To introduce the l = 2 resonant term, we rew rite (2.2) as

f, (k) =r(E)/LkF(E) cot8 (k) —ikF(E)j, (2.4)

where the function F (E) is chosen to satisfy the relation

F(E)k cot82(k) =Ed—E, (2.5)

with E& equal to the energy of the resonance and
E=O'. We shall assume that, as k goes to zero, the real
part of (2.4) goes to the Born approximation given by
(2.3). This approximation is reasonable, because we are
far away from the resonance. We than have

This formula gives the total scattering amplitude from
the knowledge of the two resonant parameters Ed,
kyar(Ed) and of the scattering amplitude in Born
approximation.

III. BORN APPROXIMATION OF
SCATTERING AMPLITUDE

The term fs(k, 8), which we need in order to calculate
(2.9), is the Fourier transform of the screened electron-
ion pseudopotential. We will consider the model
potential proposed by Heine and Abarenkov"

v(r) = —(Z/r)8(r R~) —Pi—8(R~ r)Ai(E)Pi. —(3.1)
0

The function 8(r) is the usual step function, Pi is an
operator that picks out the lth component of the wave
function, and the depths of the wells Ai(E) are chosen
to reproduce the correct eigenvalues of the free ion.
In the original version of the HA model potential, the
Ai(E) parameters were taken to be Ai(E) =A2(E) for
l~&2. Since previous calculations" show that this choice
is not accurate, we shall investigate this point in detail.

As is well known, for large values of l the centrifugal
potential prevents the electron from approaching the
nucleus, so that, for these l components of the potential,
one can replace the true potential with a Coulombic
one. To see quantitatively the value of l0 beyond which
this replacement is valid, we rewrite (3.1) as

Z l& Z
n(r) = ———P A i(E)——8(R~—r)Pi

y 0 r

00 z
i.+ —8(R~ r)P„(3.2)—

Zp+1 r

"V. Bortolani and G. Pizzichini, Phys. Rev. Letters 22, 840
(1969).
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TABLE I. Screened form factors and depletion holes of the model TABLE III. Calculated resistivities and thermopowers of Cs at
potential for K, Rb, Cs at the Fermi surface. The values are in 273'K (in units of pQ cm) for different values of Eq.
ryd bergs.

g/2k'

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
0.1

—0.10386—0.10234—0.09845—0.09549—0.09142—0,08635—0.08043—0.07381—0.06669—0.05924—0.05164—0.04409—0.03675—0.02979—0.02335—0.01758—0.01263—0.00861—0.00568—0.00397—0.00473

0.28111

—0.09090—0.08801—0.08659—0.08400—0.08041—0.07595—0.07072—0.06490—0.05863—0.05209—0.04546—0.03890—0.03260—0.02671—0.02141—0.01684—0.01317—0.01055—0.00915—0.00916—0.01199
0.33319

Cs

—0.07761—0.07541—0.07352—0.07135—0.06834—0,06458—0.06016—0,05522—0.04990—0.04431—0.03863—0.03301—0.02762—0.02259—0.01810—0.01429—0,01132—0.00934—0.00855—0.00913—0.01257

0.38090

lp

Ll
1

Na
1

Rb
2

Cs
2

For l)lo, the true potential can be replaced by a
Coulombic one. We also found that for l& lo, the matrix
elements

where v, is the atomic potential calculated self-con-
sistently. " Formula (3.2) is obtained by replacing in
(3.1) A((E) for /)lp by the true potential v, and
assuming that for r) R,~, v, = Z/r. —

Equation (3.2) gives us a criterion to fix lp.

The order of magnitude of the form factor is typically
10 ' Ry, around the erst reciprocal-lattice vectors, so
that we fix 4 by requiring that the last term of (3.2)
is at least one order of magnitude less than 10 ' Ry.
We calculated the matrix element of (3.2) with the
initial momentum k~ on the Fermi surface and for
various values of the momentum transfer q. The values
of lo, for which the last term gives a contribution (10 '
Ry, are given below the alkali metals:

0.23642
0.21642
0.200

11.05
13.43
17.81
19.0~
7.5b

3.6
2.2
0.4
0.2~
6.4b

a Experimental values.
b Results in Born approximation.

IV. RESISTIVITY AND THERMOELECTRIC
POWER

It is well known that the resistivity and thermo-
electric power depend sensitively on the scattering
amplitude. We have therefore calculated these quanti-
ties, in order to test the correctness of our model
scattering amplitude of Eq. (2.10).

This test is possible for the solid phase, because the
structure factor S(q) can be constructed very accurately
from experimental phonon frequencies or from elastic
constants data, ' so that any error is due almost ex-
clusively to the computed cross section.

TABLE IV. Calculated resistivities and thermopowers of Rb at
273'K (in units of pO cm) for diA'erent values of Ed.

justiied approximation of the HA model potential, i.e.,
the assumption A i(E)=A 2(E) for /) 2.

Our formulation of the nonlocal and energy-de-
pendent HA potential becomes

l.
v(r) = —P 8(R~ r)(At(E)—Z/R~)Pg—

—(Z/R~)e(R, ~ r) Z/re(—r —R~) . (—3.3)

The screened form factor f(k, 8) is obtainable by a
linear self-consistent screening of (3.3). We follow
exactly the procedure of Shaw and Harrison, "which
takes into account both the nonlocality and energy
dependence of the model potential and treats correctly
the depletion hole o..

The screened form factor in units of q/2k' and the
depletion hole'4 o. are given in Table I. The parameters
that enter the calculation are taken from Animalu. "

are smaller than 10 ' Ry and that the series P &.+&" ~&(q)
is rapidly convergent.

This shows that, for high l, the Coulombic potential
acts as a weak potential and can be substituted by
Z/Rpi. In this way it is possible to eliminate the un-

0.270
0.260
0.250

9.59
10.33
11.38
11.6'
6.6b

3.8
3.3
2.6
2.3~
6.3b

TABLE II. Values of the d scattering amplitudes in Born
approximation at the Fermi energy.

a Experimental values.
b Results in Born approximation.

0.14549

Rb

0.17984

Cs

0.21439

'3 F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cli6's, X. J., 1963)."R.Shaw and W. Harrison, Phys. Rev. 163, 604 (1967).

»A. O. E. Animalu, Technical Report Xo. 4, Cavendish
Laboratory, Cambridge, 1965 (unpublished) ~
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TABLE V. Calculated resistivities and thermopowers of K at
273'K (in units of pO cm) for diferent values of Eq.

0.315
0.300
0.290

3.96
4.33
4.72
6.1.
3.15"

5.3
45
3.7
38a
7.3b

a Experimental values.
b Results in Born approximation.

Here the average is performed as in Ref. (3), and
the symbols have the following meaning:
k is the unit vector in the direction of the incident
momentum; /(k) is the electron mean free path in the
direction k and is given by

40pm'
1/l(k) =

9~'A4k p'
v'I f(&,v) I'~(4)d~ (4 2)

p(k) is the partial resistivity coeKcient:

p(k) = (Skag/ e'r)t(1/l(k)) . (43)

Similarly, the thermoelectric power coeKcient g is
given by

(4.4)r=Z &(k)&(k)/2 ~(k),

with the partial thermopower coeKcients given by

~(k) = 1+Ld in'(u) ld in'(u) j,=,. (4.5)

S (k,q) is the structure factor with the initial momentum
in the k direction.

V. RESULTS AND DISCUSSION

To evaluate the transport coefficients of the solid
phase, we use the structure factor Sa(g), obtained from
elastic constant data, ' with k along the principal sym-
metry directions (100), (110), (111).

The partial scattering amplitude f / (k,e) is calculated
by projecting the screened form factor on the l=2

In the relaxation time approximation of the Boltz-
mann equation, the resistivity of the metal in the solid
phase can be written as

p=Z l(k)p(k)/2 t'(k).

subspace of the angular momenta. The results are
given in Table II.

We found that the calculated transport coefficients
are more critically dependent on the position of the
resonance than on its width. Ke have therefore taken
the width of the resonance to be equal to 0.1 rydbergs,
for all the elements, in agreement with band calcu-
lations, 4 5 and we have evaluated the transport proper-
ties for various values of Ed, in the range suggested by
the band structures.

In Tables III—V are collected our calculated values
for resistivity and thermopower, together with experi-
mental data" ' and the values calculated in Born
approximation. On the whole, the results indicate the
importance of the resonant d levels. From Tables
III—V, it is evident that the resonant contribution gives
a considerable improvement with respect to the results
of the Born approximation for Rb and Cs. For k, even
if the d bands are more distant from the Fermi surface
than for Rb and Cs, the resonance contribution is still
noticeable. This is in agreement with the strong d non-
locality of the potential found by I.ee and Falicov"
from Fermi-surface analysis. These authors introduce a
deep square well for the d component of the potential,
to account for this strong nonlocality. Using their
parameters, we find that the condition that gives a
resonance" for a square-well potential of a range E and
depth Vo, i.e. , Jt r((k'+ Vo)'t2E) 0 is satisfied in the
range of energy suggested by the band structure calcu-
lations. Hence a strong d nonlocality seems equivalent
to a d resonance in the electron-ion scattering.

From Tables III—V it appears that in the Born
approximation the computed resistivity is lower than
the experimental value, while the computed thermo-
electric power is higher than the experimental one.
The introduction of the d resonance in the theory
enhances the resistivity and lowers the thermopower,
giving a reasonable agreement with experiments for
both quantities. This fact strongly supports our hy-
pothesis that the d levels of heavy alkali metals can
be treated as resonant levels in the electron-ion
scattering.
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