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Relaxation of Ferromagnetic Precession by Excitation of Spin Waves in
Polycrystalline Nickel-Cobalt Ferrites

Q. H. F. VREHKN, A. BRQKsE vAN GRQENQU) AND J. G. M. DE LAU

I'hilips Research Laboratories, N. U. I'hzlips s Gloeilampenfabrieken, Eindhoven, The ¹therlands
(Received 7 July 1969)

A detailed test has been made of the spin-wave theory for anisotropy broadening in polycrystalline
ferrites. For this purpose, the effective linewidth W and the effective line shift S have been measured as a
function of the applied magnetic field, at 9 GHz, for samples of the composition Xi&,Co Mno 05FeI gg04,
with x=0, 0.015, 0.027, and 0.05. For these ferrites, the first-order cubic anisotropy field 2EI/M, varies
from —540 Oe for @=0 to +460 Oe for @=0.05, whereas 4~3II,=3400 G. The spin-wave theory may thus
be expected to be valid. To reduce the influence of porosity on 8' and S, very dense materials (p &0.8/&)
have been used. Well within the limits of the spin-wave manifold, the experimental data are in very good
agreement with a theory by Schlomann, except for x=0. Near the edges of the manifold, however, the
predicted singularities and discontinuities in W and S are not found. It is suggested that this must be at-
tributed to a broadening of the spin-wave frequencies themselves by the variations in the anisotropy field.
The amount of this broadening is calculated for a simple model, where the anisotropy field varies sinusoi-
dally. The result for the simple model is then generalized to the case where many Fourier components are
present in the anisotropy field. The modifications in the theory lead to an improved agreement with the
experiments, especially near the edges of the spin-wave manifold. A further modification of the theory is
proposed for the case where the anisotropy field is comparable to or larger than the saturation magnetization.
The distribution of anisotropy fields typical for cubic anisotropy must then be introduced into the theory.
The theoretical predictions are in fair agreement with recent data of Patton. For pure nickel ferrite, none
of the modified theories leads to a good fit with our experiments. This discrepancy remains unexplained.
Outside the spin-wave manifold, W has a constant value, At high fields, i.e., below the manifold, W increases
linearly with x (16 Oe/% Co). At low fields, the values are higher and not linear in x.

I. INTRODUCTION

INEWIDTHS for ferromagnetic resonance are
~ - ~ usually larger in polycrystalline ferrite samples
than in single crystals of the same chemical composi-
tion. This line broadening has been ascribed to the
presence' of voids in the polycrystalline material, and
to the random orientation' of the crystalline anisotropy
axes of the individual crystallites. The present paper
is concerned with experimental and theoretical aspects
of anisotropy line broadening. We shall assume that the
individual grains have cubic anisotropy, of which the
order of magnitude is characterized by the quantity
H, =2Et/M„where Eris the first-or'der cubic anisot-

ropy constant and 3I, is the saturation magnetization.
In the theories for anisotropy broadening, two

limiting cases -have been considered. First, when
H&)4m'„one may neglect the dipolar interactions
between the magnetizations in diferent crystallites.
If, moreover, the exchange interactions across the
grain boundaries are also negligibly small, the various
crystallites may be assumed to resonate independently.
Such a model is sometimes called an "independent-
grain" (IG) model. It has been studied in detail by
Schlornann' for negative cubic anisotropy (It t(0).

Second, when 4~3EI,))H, the anisotropy variations
may be neglected at first. The eigenmodes of the
homogeneous material are the uniform precession, the
magnetostatic modes, and the spin waves. The non-
uniformities in the anisotropy Geld lead to a coupling

' E. Schlomann, AIEEE Special Publication T-91, 600 (1956).
2 J. H. van Vleck, Phys. Rev. 78, 266 (1950).' E. Schlomann, J. Phys. Chem. Solids 6, 257 (1958).
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of the uniform precession to the spin waves, thus to a
decrease in the relaxation time of the uniform precession
and to a broadening of the ferromagnetic resonance
line. This so-called "spin-wave" (SW) model was first
proposed by Geschwind and Clogston4 and investigated
for anisotropy broadening by Schlomann. ' The essential
features of the IG model and of the SW model will be
discussed in Sec. II.

Experimentally, the SW theory for anisotropy
broadening has been tested by the measurement of the
linewidth AH as a function of frequency, as a function
of the shape of the sample' or as a function of the
orientation of an ellipsoid of revolution in the applied
magnetic field. ' These experiments were in qualitative
agreement with the theoretical predictions. A quantita-
tive comparison of theory with experiment was ham-
pered by the fact that the ferrite samples usually had a
porosity of a few percent, so that line broadening
arising from porosity might dominate the anisotropy
broadening.

The technology of ferrite preparation has now im-
proved to such an extent that many materials can be
made with porosities well below 1% so that a better
test of the theory should be possible. A better test of the
theory has also been made possible by the introduction
of the technique in which an "effective linewidth" 8'
is deduced from the microwave susceptibility data over

4 S. Geschwind and A. M. Clogston, Phys. Rev. 108, 49 (1957).
5 E. Schlomann, J. Phys. Chem. Solids 6, 242 (1958).' C. R. BufHer, J. Appl. Phys. Suppl. 30, 172 (1959).
7 W. Schirmer and K. A. Hempel, Physik Kondensierten

Materie 3, 187 (1965).
A. S. Risley, E. G. Johnson, and H. E. Bussey, J. Appl. Phys.

37, 656 (1966);37, 3646 (1966).
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a wide range of magnetic field at a given frequency,
rather than the measurement of a linewidth at reso-
nance ~ or maximum' X",only. Kohane and Schlomann'
deduced the effective linewidth from the imaginary
part of the susceptibility for a linearly polarized micro-
wave magnetic field. In that way, S' can only be
determined sufficiently far-off resonance. More effec-
tive is the method in which 8' is deduced from both the
real and imaginary components of the susceptibility.
Vrehen' introduced this method for a circularly polar-
ized microwave field and Patton" used it with a linearly
polarized microwave field. Vrehen" also measured the
"effective line shift" 5. The definition and measure-
ment of 8' and 5 will be considered in Secs. II and III.

In Sec. IV, we present the experimental results for H/'

and 5 as measured on a series of ferrites of composition
Xi~,Co,Mnp. p5Fe&, »04 at a frequency of 9.005 6Hz
for applied magnetic fields between 1600 and 8000 Oe.
The cobalt concentrations were x= 0, 0.015, 0.027, and
0.05. All ferrites had porosities smaller than 0.8%.
These compositions have been chosen because the
quantity H, (=2E i/M, ) varies approximately lin-
early "from H, = —540 Oe for x= 0 "up to H =+460
Oe for x=0.05, with H ~0 for x=0.027. '4 For all
values of x, one has H «47rM, . (4aM.~3400 G.) The
experimental results are therefore compared with
Schlomann's SW theory. ' It will be found that good
agreement exists except near the limits of the SW
manifold. The remaining discrepancies are most prob-
ably due to the perturbations of the SW manifold
itself by the anisotropy variations. In Sec. V, a simple
model is considered for which 8' and 5 can be calculated
exactly. The calculation is outlined both in a classical
formulation which starts from the equation of motion
and in a quantum-mechanical formulation with a
Hamiltonian formalism. The result of this calculation
for the simplified model is then generalized intuitively
for a more realistic situation. Improved agreement with
our experiments is obtained. Finally, we propose a
further extension of our formulation which gives a
reasonable description of 5 and 8' in the region
H ~& 4+35,. This formulation predicts the parameters 5
and IV for all values of H, /4mM„ i.e. , from the SW
limit (H,«4m M,) through the intermediate range
(H,~4~M, ) up to the IG limit (H&)47rM, ), provided
that we have u&/p))H„AM, . This extended theory is
compared with experimental data reported by Patton. "

II. SOME GENERAL CONSIDERATIONS

In this section, we consider the essential features of
the IG model and the SW model, the definition of the

T. Kohane and E. Schlomann, J. Appl. Phys. 39, 720 (1968)."Q. H. I'. Vrehen, J. Appl. Phys. 40, 1849 (1969)."C. E. Patton, Phys. Rev. 179, 352 (1969)."G. Elbinger, Phys. Status Solidi 21, 303 (1967}.
"U. Enz and J. I iebertz, Naturwiss. 51, 54 (1964).
"C.M. van der Burgt, Philips Res. Rept. 12, 97 (1967).

experimental parameters 8' and 5, and their physical
interpretation. For a uniform isotropic ferromagnet with
an internal magnetic field II, derived from an externally
applied field JI„ the intrinsic susceptibility &+ for a
clockwise-rotating microwave magnetic field of angular
frequency co is given by

x+ ——M, H —— iP
7

Here, y is the gyromagnetic ratio and P is a relaxation
parameter describing the intrinsic damping (P, )0). In
the limit A. ~ 0 we obtain

(2)

We take into account the presence of magnetic anisot-
ropy by adding to the field H a term A(r), the magni-
tude of which depends on the position r because it
varies with the grain orientation. The direction of A (r)
is supposed to be parallel to II everywhere. In the
indePendent groin model-, the susceptibility is then given
by

(3)

which in the limit A. —+ 0 yields for the imaginary part
of ~+,

Imx+ —=&+"=sM, — 8 H+A(r) ——~dr, (4)

where v is the volume of the sample. In Eq. (4), the
factor between square brackets represents the distribu-
tion function of the field A(r). This distribution func-
tion completely determines both the real and imaginary
part of the susceptibility.

It has been assumed above that the random orienta-
tion of the cubic anisotropy axes in the crystallites ex-
presses itself as an additional field A(r) with is parallel
to II. In general, this is not correct. If, for a particular
crystallite, H does not coincide with a L100], $111j,or
L110j direction, the equilibrium orientation of the
magnetization in that crystallite will not be along H.
Moreover, under microwave excitation the magnetiza-
tion will perform an elliptical precession around its
equilibrium position. Schlomann' has calculated the
susceptibility for negative 6rst-order cubic anisotropy
at various values of yH, /cu. In this paper, we shall, as a
rule, assume H,&(cv/p, so that Eqs. (3) and (4) may
be used.
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It must be noted that a relaxation time for the uni-
form precession does not exist in the IG model. After
a temporary excitation of the uniform precession by a
microwave field, the magnetization in each grain will

precess with its own resonance frequency. Phase
coherence between the transverse components of the
magnetization is lost and thus the "uniform" precession
dies out. There is, however, no reason that this should
occur exponentially.

In the SW model, one starts from the eigenmodes of a
uniform ferromagnet. Only the uniform precession and
the SW of sinall wave number (k 10' cm ') are of
interest here. The nonuniformities in the anisotropy
field lead to a coupling of the uniform precession to the
SW. This results in a frequency shift Ro and a relaxa-
tion rate 1/T for the uniform precession. In terms of the
Fourier components, A&, of the internal field, defined by

where

B'(8)= —cosh'/2(8) k' dky'A/, '

= 22ry2(A2) cosh2/i(8), (12)

1/T= uB'(80)/&o, ~„cos80, (13)

where it has been assumed that Ai, is independent of
the direction of k.

In Sec. V, the effect of the perturbations on the SW
frequencies will be studied. It will be argued that the 6

function in (11)has to be replaced by a suitably chosen
normalized density-of-state function. As it stands, the
8 function in (11) can be integrated easily; with (10)
this gives

H(r) =H+A(r) =H+P A/, e'"'

T and bar are given by

(6)

where 82 satisfies ru(80) =&o, u&;=yH, and co =y47rM, .
The quantity (A') can be expressed' in terms of the

first-order anisotropy constant E&. If necessary, the
second-order constant E2 can also be used (Sec. V D).

From (13), some essential features of the SW model
can be observed: (1) 1/2' is nonzero only inside the SW
manifold which is defined at constant frequency by the
range of magnetic field that satisfies

and yH & (v & y(H2+42rM, H) '/2.

~~& =&v(A (r))+p l &Ok l '/(» —»k),
k&0

where Pp& is related to Ak by'

(7) (2) 1/T has a singularity for 80——222r.

An interesting property of 1/T is that the integral
of this quantity over frequency is related to the second
moment of the absorption line, defined by

l Pop l
'= y'//2'A2' cosh'/ig.

(47)M kd X"((o) do).

Here, pk is de6ned by

COSh2p2 ———,
' [1+(H+ Dk'+ 22rM, Sin28)/(&o2/y) j, (9)

From (6), one finds that

where p pT

~~ —~(H+Dk2) i/2(H+ Dk2+47rM sjn28) i/2 (10)

D is the exchange constant, and 8 is the angle between
k and H.

We shall assume that the k values of interest are so
small that the term Dk' may be neglected in (9) and
(10).Therefore, /i& and cu& depend only on 8, and may be
written /2(8) and &u(8). The sums in (6) and (7) can be
transformed into integrals. The integration over p and
k leads to

where the second equality has been derived by
Schlomann. 2 From (14) and (8) one finds in good
approximation'

da 22'(A').
p pT

Since the experiments are performed at constant
frequency, a more useful quantity is the integral of
1/T over field. To a good approximation, one has

m'/2

T Q

AB2(8) 8(»—»(8)) sin8 d8, (11)
p pT

dH 22r(A2) . —
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In this expression, the dipolar effects are a small
correction only )for NiFes04 at 9 GHz the result from
Eq. (15) is 2% too largej. In Sec. V E a relation
similar to (14) for the IG model will be given.

The SW theory leads to two relaxation parameters,
namely, the relaxation rate 1/T and the frequency
shift Ro. Experimentally, we measure the real and
imaginary parts of the susceptibility X+. From these we
deduce the effective linewidth 8' and the effective line
shift S according to the following definitions:

(16)

The deGnitions have been discussed in detail in Ref. 10.
In (17), H is the internal magnetic field and X+ is the
intrinsic susceptibility. For a spherical sample, however,
8' and S can be deduced from the effective susceptibility
and the external magnetic field H, ."

In using (16) and (17) for the determination of W
and S from the experimental data, S has always been
assumed to be equal to zero for II,~& 6 kOe. This allows a
determination of ~/y from the high-field data, where

&o/y now incorporates any field-independent part of
the line shift, e.g. , the term (A(r)) in (7).

In terms of the SW model, the quantities I/t/' and S
have a simple physical meaning as we shall see below.
For the IG model, such a simple interpretation does not
seem to be possible. However, 8' and S can always be
calculated from the susceptibility as predicted by the
IG model with Eqs. (16) and (17), and these predictions
can then be compared with the experimental results.
This often has an advantage over a direct comparison
of the imaginary part of the susceptibility from theory
and experiment because X+" has a resonancelike be-
havior which 8" does not have.

If a relaxation time does exist for the uniform pre-
cession, and this is in particular the case for the SW
model, then it can be demonstrated" that W=1/yT
and S= —8~/y, where T is the energy relaxation time
and bee is the frequency shift. The Geld-dependent
quantities S and 8'can thus be compared directly with
the predictions of the SW theory. For a discussion of
this point, we refer again to our earlier paper. "

To give a very direct demonstration of the interpreta-
tion of 8' and S, we present, in Fig. 1, the results for 8'
and S for a single-crystal nickel-ferrite sample. The
measurements were made at 9 GHz, room temperature
and with HjjL100j. W is constant and equal to 10 Oe
over a large range of magnetic fields, including the Geld
value for which ferromagnetic resonance occurs (3512
Oe). A large peak is observed at 3434 Oe. This peak
arises from the fact that the (310) magnetostatic mode

"C. W. Haas and H. B. Callen, in Magnetism, edited by G. T.
Rado and H. Suhl (Academic Press Inc. , New York, 1963},Vol. I,
Chap. 10, pp. 467—470.
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FIG. 1. Effective linewidth W and line shift S as a function of
applied magnetic 6eld H, for a sphere (1.45 mm diam} of a single
crystal of NiFe&04. lf, was applied parallel to L100). The sharp
variations in 8 and S are due to the excitation of the (310) mag-
netostatic mode.

where W„, is taken at the Geld for resonance and AS
is the difference between the S values found at the Geld

values for half-power absorption.

III. EXPERIMENTAL METHODS

The experimental methods for the determination of 8"
and S have been described in detail in Ref. 10. The real
and imaginary parts of the susceptibility X+' and X+"
are derived from the frequency shift and insertion loss
of a cylindrical cavity excited in its TE 112 mode at

"R. Plumier, Physics 28, 423 (1961).

is strongly coupled to the uniform precession as a
result of the large diameter (1.45 mm) of the spherical
sample used. "This peak has a width of just 10 Oe, in
agreement with the constant relaxation rate in the
sample. Coupling to one mode apparently leads to a
narrow resonancelike peak (which would approach
a 6 function for very small losses) and to a corresponding
dispersive resonance in S. According to the SW model,
the uniform precession is coupled to a continuum of
SW modes, and we may thus expect a broad hump in 8"
extending over the SW manifold.

The usual linewidth DH is defined as the difference
in Geld values where X" is half its maximum value.
Therefore, AH is deGned over a range of Geld values,
whereas the quantities H/' and S are known at every H
value. ' An approximate relation between DJI and W
and S is given by

AP W...+AS,
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FxG. 3. photomicrograph of a polished and etched sampl«f
the sintered ferrite of composition NiMno. op ep g~04. The porosity
is 0.36X10 '.

FrG, 2. 8' and S as a function of magnetic field for a 4% porous
polycrystalline Nip 3QZno &4Fe204. The results of using linear and
circular polarization are compared.

mately by writing

9005 MHz, over a range of external magnetic fields H,
extending from approximately 1600 Oe up to 8000 Oe.
All measurements were performed at room temperature.
For each material to be investigated, we made measure-
ments on three spherical samples with diameters of
roughly 0.6, 1.2, and 2.4 mm. The smallest sample was
used for magnetic fields close to resonance, the larger
ones for fields farther away from resonance. The
uniform precession was driven with a circularly po-
larized microwave Geld.

The question is of some interest whether similar
results could not also be obtained from measurements
with a linearly polarized excitation in a rectangular
cavity. From a theoretical point of view &+ can be
interpreted more easily than X, and thus a direct
measurement is to be preferred for samples that have
cylindrical symmetry around the s axis. On the other
hand, it is easier to measure X, than X+, while, more-

over, X+ can be obtained with acceptable accuracy from
as follows. Since X+——X %i&„„we have &+=2X,
. In the latter formula X represents a rather small

correction, which we can take into account approxi-

Ql

x '=~,
~
a+- (19)

(H s)/y '—
x "

(
x„"—=ex+".

aH+co/p
(20)

The approximation of Eq. (20) breaks down for fields
close to resonance, but for those fields X " is negligibly
small anyway. From Eqs. (19) and (20) we deduce

& '=2&,' —M, H
7

(21)

x'"=2x„'/(1+n). (22)

With the help of Eqs. (21) and (22), x+, may be cal-
culated from X and then 8' and S from X+. To con-
firm that this procedure works quite well in practice,
we measured X+ directly with our TE 112 cavity, and
X with a linear TE 102 cavity. 8' and S as obtained
by these two different methods are shown for a porous
NiZn ferrite in Fig. 2. Excellent agreement is found.
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0.7 X10 '
0.8 X10 '
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I:

340 320
150 172
68 90

260 245

—540
—250

0
+460

TALKIE I. Cobalt content x, porosity p, and anisotropy parameters
Ae for Nio. ggg z +Cog +Mnp, pp5+Fei, g;5+Mnp. Q4o3+04 ~

~ 400
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s 800

~ 200

li 1QQ

0
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=X

FIG. 4. Ferromagnetic resonance linewidth, measured at 9 6Hz,
versus Co content for Nip gg5 Co Mnp. oog Fei.g5g Mnp. Q45
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In the Introduction, it was emphasized that the test
of the anisotropy broadening theory depends critically
on the availability of very dense materials and therefore
a few words will now be said about the preparation of
the ferrites.

FIG. 5. TV and S versus external magnetic held for NiMnp p5

Fei.5504 The dashed line has been drawn according to (6) and (7).
A constant intrinsic damping has been added, so as to bring theory
in agreement with experiment at high magnetic fields. The drawn
line follows from the theory in Sec. U, where the intrinsic damping
has been incorporated into the equations of motion.

FIG. 7. S versus II. for Nip, gs +Cop. p152+Mnp pp„2+Fe1 g5~'+

Mnp. p4~'+04,. lines as in Fig, 5.

Dense and homogeneous materials have been made by
the following techniques. Sulphate spray drying and
roasting'~ " were used for the preparation of the
powders, which were then compacted by hydrostatic
pressing at 1000 kg/cin'. The final sintering was carried
out at 1250'C for 22 h in a pure oxygen atmosphere.
The special method of powder preparation combines the
advantages of a high degree of chemical purity and
homogeneity with excellent sintering properties.

The density of the final product was measured on 10 g
of material by weighing both in air and in water. After
correction for the inhuence of the temperature on the
density of the water, the density can be determined
within 0.1'f41. In all cases, densities larger than 99% of

the x-ray density were obtained (Table I).
The microstructure was determined on polished and

etched samples. Figure 3 shows a regular structure with
an average grain size of about 10 p.

The electrical resistivity was measured by the four-
point compensation method. The values found lie in
the range between 10' and 10' 0 cm.
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FIG. 8. lyte and S versus B, for Nip, gp8'+Cop. 02~'+Mnp. pp~'+

Fei.g:5'+Mnp. p453+04. Lines as in Fig. 5.

FIG. 6. Hy' versus II, for Nio. gsn+Coo. o15 +Mno. oos +Fei.g553+

Mnp, p4p'+04, lines as in Fig. 5.

~' J. G. M. de Lau, Klei en Keramiek 19, 86 (1969) (in Dutch).
js J. G. M. de Lau, Seventy-First Meeting of the American

Ceramics Society, 1969 (unpublished).
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Fzo. 9. 9 and S versus II, for Nip. 945 Cop. p5+Mnp. pp5 Fe]..p55'+

Mnp. p4P+04. The dashed line as in Fig. 5; the dot-dashed line has
been drawn according to first-order theory, taking into account an
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' M. H. Sirvetz and J.H. Saunders, Phys. Rev. 102, 366 (1956}."Q. H. F.Vrehen, A. Broese van Groenou, and J. G. M. de Lau,
Solid State Commun. 7, 117 (1969).

IV. EXPERIMENTAL RESULTS

For a series of NiCo ferrites, data were taken of the
linewidth at resonance. The results, shown in Fig. 4,
are similar to those obtained by Sirvetz and Saunders. "
The minimum is due to the variation of Ez through
zero. Quantitatively these results will be discussed in
Sec. V.

In Figs. 5—9, data on W and S are given as obtained
from the experimental results on the susceptibility,
using Eqs. (16) and (17). A preliminary account has
been given before. '

According to the considerations given in Sec. II,
large W and S values are expected when the uniform
precession is degenerate with long-wavelength SW. For

'

a frequency of 9.005 6Hz and y/2~= 3.10 the limits of
the SW manifold are found at H = 2.8 kOe (Hk = 90') and
at H=4.0 kOe (8s=0').

Qualitatively, the experimental results agree with
theory. At low fields (between 1.6 and 2.5 kOe), small
values of W and S are found. S is negative. Here, the
operating frequency is above the frequency for Ok=90'
spin waves.

At fields between 2.5 and 4.2 kOe, W and
~
S~ are

much larger, while S becomes positive. In this range, the
uniform precession is degenerate with k~0 spin waves.
The third range is found for fields between about 4.2
and 8 kOe, which is the highest-field value where
meaningful values of the damping could be measured.
In this high-6eld range, the value of W is found to be
small, but constant, whereas S decreases to zero.

Since a constant level of W is found at low and high
fields, we shall 6rst consider these two ranges together.
A quantitative description of the anisotropy effects
within the SW manifold will be given in the last part of
this section.

The W values at H = 2 kOe and H = 6 kOe were taken
as representative of the low- and high-field values,
respectively. Figure 10 shows the variation of these
values with Co concentration x.

For the 6-kOe data, a linear relation between W
and x is found, with a slope of 16 Oe/% Co. These data
have been taken below the SW manifold, where anisot-
ropy broadening is absent. Therefore, it is possible to
compare these data with the value of the linewidth mea-
sured on single crystals, where anisotropy broadening
is also absent. Linewidth data on Co-substituted
NiFes04 have been published by Smith and Jones, "
who found AH=18 Oe/% Co, and by Miyamoto,
Tanaka, and lida, " who reported AH=8 Oe/% Co.
The reason for this discrepancy is not clear. Our results
clearly favor Smith and Jones's data.

These data can also be compared with the SW line-
width AH& obtained by parallel pumping. At 9 GHz,
Beljers found with our samples the values of AHk

given in Fig. 10. Again, a linear relation is found, the
slope being 10 Oe/% Co. Taking into account that the
SW frequency in this experiment is half that of the
pumping frequency, one Inay conclude that the in-
huence of Co on damping seems to be a nearly linear
function of frequency.

The effects of Co on the relaxation of the uniform
precession have been discussed in terms of two-magnon
processes. " From our experiments one may conclude
that such processes do not play an important part. In
this connection it should be noted that Teale" arrived
at the same conclusion from his experimental results on
single crystals of Co-substituted MnFe204.

At field values below 2.5 kOe the W curves are sys-
tematically higher than the curves at higher 6elds. The
difference between the W values at 2 kOe and those at
6 kOe is seen in Fig. 10 to be a minimum at @=0.027,
where ~Et~ is smallest. This suggests that anisotropy
broadening is still present when the exciting frequency
is above the 0= 90' SW frequency. Such a broadening
might be due to scattering to k/0 SW.

In the following, the high-field values of lV will
be used as the intrinsic damping parameter of both the
uniform precession and the spin waves. In order to
compare the experimental results with anisotropy
broadening theory, this intrinsic damping has to be
taken into account. In most cases this can be done by
adding the high-field 8' value to the theoretical W
values.

"A. B. Smith and R. V. Jones, J. Appl. Phys. 37, 1001 (1966)."S. Miyamoto, N. Tanaka, and S. Iida, J. Phys. Soc. Japan 20,
753 (1965).

"R.W. Teale, J. AppL Phys. 33, 1295 (1962).
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Our experimental results within the manifold will now
be compared with the theoretical expressions (12) and
(13) which are shown as dashed lines in Figs. 5—9.

Good quantitative agreement is found in Figs. 6, 7,
and 9. In Fig. 5, the shape of the experimental W and S
curves is quite different from that of the dashed lines.

Rather low S and 8' values are found in Fig. 8, which
is in agreement with the low anisotropy constant E& for
this compound. "The small amount of porosity present
(p=0.7X10 ') may now contribute substantially to the
relaxation. We attribute the broad maximum in the 8'
curve at H=3.8 kOe to porosity broadening. The 5'
value, 30 Oe above the high-6eld level of 50 Oe, is in
reasonable agreement with the value deduced from
measurements on porous NiZn ferrites. ' In Fig. 8, the
drawn curve is the result of anisotropy broadening
theory, using the intrinsic damping of 50 Oe and
II,= j.10 Oe. The curve gives a reasonable description
of two pecularities in the 8' and S curves at 2.8 kO" -a

step in S of 20 Oe and a narrow peak in 5' of 36 above
the high-held level. In Sec. V D, the second-order
anisotropy constant E& will be shown to be responsible
for this large value of jI .

The dashed lines in Figs. 5—7, and 9 do not agree
with the experimental results in a range of 6elds around
the limits of the SW manifold. In particular, the pre-
dicted infinite peak at II=2.8 kOe is not found, al-
though pronounced maxima are present in both S and
TV curves.

As for the peak, Schlomann' has already shown that
the presence of some intrinsic damping removes the
singularities. Taking for the intrinsic damping the value
of 8' at high fields, we find for x=0.05 that the theo-
retical curve is changed, as shown by the dot-dashed
line in Fig. 9. At II=2.8 and 4.0 kOe the curves are
somewhat rounded off, but the peak remains too high in
comparison with experiment. Since the intrinsic damp-
ing for the other compositions is even smaller, it cannot
remove the disagreement.

In Figs. 5, 6, and 9, 8' is seen to decrease to its low
'intrinsic" values outside the SW manifold over a

range of fields, which equals about 500 Oe for Figs. 5
and 9 and about 250 Oe for Fig. 6. These values are of
the order of magnitude of the anisotropy field.

In Sec. V, a simple extension of the theory will be
presented in order to improve on these details of the S
and 8' curves.

V. ANISOTROPY BROADENING THEORY

A. Simple-Model Equation-of-Motion Calculation

In Sec. IV the experimental data were seen to fit
Schlomann's anisotropy theory closely if the frequency
of the uniform precession is well inside the limits of the
SW manifold. The experimental results showed also
that the edges of the manifold are not as sharp as the
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FIG. 10. W' at 6 kOe, g at 2 kOe and 5% linewidth hIIq from
parallel pumping instability versus Co content x.

first-order theory assumes, which is not surprising in
view of the nonuniform anisotropy field.

It is of interest to calculate the influence of a non-
uniform field in detail. For the simple case of one
Fourier term in the internal field we mill show that the
SW frequencies are broadened, by the interactions be-
tween the spin waves. This broadening affects the re-
laxation of the uniform precession to the spin waves.

In order to calculate this effect, we consider an
ellipsoidal sample in a static magnetic field. Around the
field direction there is cylindrical symmetry, the
transverse demagnetization coefFicient being &V. Suppose
that the anisotropy adds to the s component of the
internal field, H, a simple cosine variation, so that

H(r) =H+A, cos(q r). (23)

The angle between q and the direction of H will be
called 8~.

There are several ways of obtaining the influence of
the cosine term in (23) on the uniform precession. First,
we shall use the method of the equation of motion,
leading to a solution which includes intrinsic damping.
In Sec. VB, a transition probability calculation will

be given, an approach that can more easily be extended
to the case mhere many Fourier components are present
(Sec. U C), or where the cubic character of the anisot-

ropy energy has to be introduced explicitly (Sec. U E).
The equation of motion reads

18M
——=MXHetr—
7 Bt

—MX
y) M/ Bt

(24)

where M is the sum of a small component m(r, t), per-
pendicular to the s axis, and a component along the s
axis, which is assumed constant and equal to the
saturation magnetization M, in the linear approxima-
tion. H, ff includes the static Geld H(r) given by (23),
the applied uniform microwaveaeld h(', perpendicular
to FI, and the demagnetizing Geld h&"&(r,t). The con-
tribution of exchange to H, qg will be neglected. The
quantity o. is the damping parameter. In the absence
of propagation effects h("' satisfies Maxwell's equation

divb= divQ& &+4m-m(r) j=0, roth&+=0 (25)
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Hg-Ag H~ Hg+ArI

H

where lV is nonzero. The width of this region equals
the total spread in internal field, 2A~. The same value
is found for the maximum of W, which is apparently
not reduced by dipolar narrowing. Such narrowing is
found only when the anisotropy variations occur in
many directions. This will be shown in Sec. V C.

B. Simple-Model Transition-Probability Calculation

-Aq

Fio. &t. W/A» and S/A» versus magnetic field H as calculated
for a sinusoidally varying anisotropy field. The dashed line is for
6rst-order theory, the drawn lines for the exact solution. Hri is
the field value for which ~=co& in Eq. (28).

and the appropriate boundary conditions on the surface
of the sample.

The stationary solutions of (24) and (25) at frequency
rp, m(r, I) = m(r)e'"', are known to be given, for A, =O,
by the uniform precession, the magnetostatic modes
and the short-wavelength SW. Since the wave vector q
of the perturbation is much larger than the inverse of
the sample dimensions, the coupling to the magneto-
static modes is weak and will be neglected.

In this approximation, divm consists of a contribu-
tion froIn the bulk due to the spin waves and one from
the surface due to the uniform precession.

In terms of the Fourier components of I, given by

Here, we shall present a quantum-mechanicaI. treat-
ment of the problem formulated in Sec. V A. We
describe the system by a Hamiltonian BC=Xp+V,
where BC0 is the unperturbed Hamiltonian for a uniform
internal field H, and V presents the perturbation by the
anisotropy 6eld A(r) =A» cos(q r). For reasons already
outlined in Sec. V A, we may restrict ourselves to the
set of SW with wave vectors nq, where n is any integer.
We also assume that the contribution from the ex-
change interaction to the SW energy may be neglected.
All spin waves of the set with n/0 then have the same
energy Ace~. The energy of the uniform procession 6~0,
however, may differ from Ace„since surface dernag-
netization affects &0 and volume demagnetization
influences ~~. Thus,

Kp ——Aoip(botbo+22)+ Q Iroi»(b. tb.+22), (29)

where b„~ and b„are the creation and annihilation
operators for spin waves with wave vector nq, In the
perturbation V we distinguish between three different
parts V~, V2, and Vs, as follows:

Vi= —(spkA») cosh@»

X (bo'bi+ bobi'+bo'b-1+bob-1'),

m(r) =P m(k)e'" r

the expression for h&"& can easily be written

(26)
V2 ———(22' AA q) P'

(cosh�»I2»+

sinh2I2»)

X(b tb pt+b.+ttb ),
(30)

In the Appendix, it will be shown that the solution
of (24) and (27) contains Fourier components with
k=nq only. The susceptibility X+(0) can then be cal-
culated, which yields the quantities S and W.

In a first-order approximation, one restricts the series
to the terms with n=0, &1. Figure 11 shows schemati-
cally the results for S and 8' of this first-order theory by
the dashed lines. These curves are typical for the cou-
pling to one single mode (compare Fig. I) at a frequency:

pp(g ) —++1 2(++4K~ slnsg )1 2 (28)

Equations (27) and (28) can also be solved exactly.
The details of the calculation are given in the Appendix.
The results for negligible intrinsic damping are shown
in Fig. 11 by the drawn lines. Instead of a sharp loss
peak. at one single-field value, a range of fields is found

hi'&= —4»r p (kpm(k) k]/~k~2)e"r —4»rÃm(0). (27)
k&0

Vs ——('2yfsA») P' 2 coshI2» sinhI2»/exp(2igq)b tb „ it

+exp( —2i4») b-nb n+1] .

The primed summation is over all n~0, &1. The
quantity pq is defined in Eq. (9). The angles P» and 8»

are the polar angles of the vector q. Expression (30)
becomes particularly simple for H&&4m&„because in
that limit cosh@~ 1 and sinhp~ 0.

In (30), Ui describes the interaction of the uniform
precession with the SW system, whereas V& and V3

present interactions between spin waves. It should be
noted that within our approximations the various terms
in V~ do conserve energy, whereas those in V3 do not.
V~, moreover, contains the factor sinhp~ which becomes
small for ~ larger than co . Therefore, we shall dis-

regard V3 in the remainder of the discussion.
The Hamiltonian Kp+ Ui+ U2 can easily be di-

agonalized exactly if co0=u, . One finds new states
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c„,gt ——(2/or)'i' P b~„t siney, 0(y(7r
n=l

(31)

whose energy is spread, approximately, from ct)q . &Aq

up to op»+yA». From the new states one may derive the
tensor susceptibility X+ and from this the effective
linewidth 8' and the effective line shift S. The results
are very similar to those obtained in Sec. U A.

It seems of more interest to follow a slightly different
approach here. We hrst diagonalize the Hamiltonian
X,+Vo. This procedure leaves the uniform precession
unaffected, but it yields new spin-wave states whose
energies are spread around cuq. Next, the consequences
for the uniform precession are investigated by taking V»

into account as a perturbation. Transition probability
theory yields the energy relaxation time T, and pertur-
bation theory, the frequency shift bee. This approach is
more closely related to the usual treatment of the SW
model. The diagonalization of Xo+ Vo can be realized

by the introduction of new creation and annihilation
operators c„,~~ and c„,~, which are functions of the
continuous variable y and of a discrete variable taking
on the values + and —.The relations between the
c~,~~ and the b~„~ are

where coo must be restricted to values at which the ex-
pression under the square root remains positive. We
have used the abbreviation

'gq= cosli pq+ slllll pq (37)

It is interesting to compare Eq. (36) with the result
arrived at when the coupling between the spin waves
ng with nAO is neglected. The uniform precession is
then coupled only to the waves +q and —q. From
Eqs. (11) and (12) with (A') =-', A»' we get

1/T=2(2or/h)(-, 'pe )' cosh'p b(»p —» ) (38)

Comparison of Eqs. (36) and (38) shows that owing to
the coupling between the spin waves the 8 function has
been replaced by a normalized density-of-states func-
tion p(»),

The first factor of 2 arises from the scattering to states
p+ and q which are degenerate. Performing the
integration yields

1/2'= 2(2or/$)(-', ykA )' cosh'p {(2/or)P(yAA )'q '
—(»o—» )'7'"/b&A»v )'} (36)

b~„t=(2/or)'i' c„,~t siney dy, ran=1, 2, . . . (32)

Xp'+ Vi' »p(bptbp+——', )+Q-&.(c.,+'c.,++.)dy

with similar expressions for the annihilation operators.
We then have

(yPiA, rl, ) '. (39)

In the derivation, we have considered II and thus coq

to be constant, whereas u was variable. We may just as
well keep the frequency constant and vary the magnetic
field H and with it &o»

= &uq(H). Let the field H» be defined

by

opq(H») =M.

For small values of (H —H, ) we may expand the
equation

where

—(ov&A») Z (2!~)"' (boc, ,g +bo'c, ,g)

Xcoshpq siny dy, (33)

E„=»q+yAA»(cosh-'pq+ sinh'pq) cosy. (34)

(Boo»
~q(H) =~»(H»)+(H —Hq) l + . .

~&H +=Jr»

op+7(H —H, )qq

to obtain

The last part of the Hamiltonian (33) is treated as the
perturbation which couples the uniform precession to
the states (y, &).The transition probability can now be
obtained in the standard way (see, e.g., Ref. 24). The
result is

2' 2—=2—— sin'y b(»o —»,)
T PL 7r

X(»eA»)' cosh»„»d y. (3S)

'4 M. Sparks, Ferromagnetic Relaxation Theory (McGraw-Hill
Book Co., New York, 1964).

1/yT= 2(cosh'pq/gq) LA»' —(H —II,)'7'i', (41)

which is the same result as obtained in Sec. V A for the
W function. Now 2{A,'—LII—(oi/y)7'} 'i' equals the IV
function as found in the IG model with an anisotropy
field of the form (23). Therefore, the density-of-states
function p, considered as a function of H, equals 1/yq
times the 8' function as found in the IG model nor-
malized to 1, and centered on H» instead of op/y. In
terms of magnetic held, the spin waves q and —q are
broadened over the range from II,—A» up to Hq+A».
No dipolar narrowing occurs, which must be under-
stood from the fact that the anisotropy held couples the
states nq, and for all of these the contribution of the

f
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A, values the inRuence of the SW manifold disappears and 6nally
the 8' curve resembles that for one A& term, as presented in
Flg. 11.

dipolar interaction to their energy is the same (the ex-
change energy is still neglected).

C. Generalization of Simple Model

A nonuniform anisotropy field A(r) broadens the
SW frequencies. As found in Secs. V A and VB, the
broadening of the relevant spin waves could easily be
calculated for the simple model where A(r) =As cosq r
The calculation was easy, because only a set of de-
generate spin waves had to be considered. For such
degenerate spin waves the broadening is of first order
and extends over the full range of field variations 2Aq.

For the general case, where A(r)=+2Ase'"', the
spin waves to which the uniform precession is coupled
will themselves be coupled to other spin waves, both of
the same and of diferent frequencies. The broadening
of the relevant spin waves is then partly of first and
partly of higher order, and an exact calculation becomes
extremely dificult. We shall restrict ourselves to a
generalization of the simple-model result.

For the simple model, the result (38) is modified into
(41). We propose to apply a similar modification to the
result (11). This can be done straightforwardly by
replacing the quantity A~' for the simple model by
2(A')=—A, ' in the general case. One finds that

W= 1/pT= Single d8k(COSh iuie/'pie)

X(A ' LB—H(0&)3'}"2 (42)

The result of this integration is shown in Fig. 12,
where l'V42rM, /A, 2 has been plotted as a function of
H/4rrM, for several values of A,/42r3II, at fixed fre-
quency (oi/p = 10X47rM,).The intrinsic damping of the
spin waves has been put equal to zero.

Qualitatively, the W curves change drastically with
increasing A .. For A,/42rM, = 0.005, one recognizes
the curves from the 6rst-order theory, given by the
dashed lines in Figs. 5—9. lV is nonzero only inside the

SW manifold. For A,/42rM, = 0. 05, the peak of the
curve is reduced and W is seen to decrease gradually to
zero outside the limits of the undisturbed SW manifold.

For A,=0.5)&4+35, no trace is left of the maximum
at the lower limit of the SlV manifold. A broad maxi-
mum is observed, which for large A, values changes
into the half-circle shown in Fig. I1 for the case of one
Fourier component. In this limit the exact location of
the SW Inanifold is irrelevant. One Ands the results of
the IG model for a distribution function corresponding
to the sinusoidal variation of A(r). In Sec. V E, a
modification will be proposed to introduce some features
of the correct distribution function for cubic anisotropy
into the lV curves for large A values.

The variation of the shape of the W curves in Fig. 12
does not affect the integral of S' over the magnetic
field, which is still given by Eq. (15).

Consider now the quantitative relation between IV
and A, . For small A, the variation of 8' with A,
depends on the value of the magnetic 6eld. At the
high-field limit of the SW Inanifold 5' is given by
[cf. (13)j

W = rroiA, 2/4rrM, oi;. (43)

This result is also found in the first-order theory.
At the low-field limit the value of H is finite in

contrast to first-order theory. In formula,

W = 3.6(A,2/42rM, ) (4s-M, /A, )"'. (44)

The expression (44) has been written in this par-
ticular way for comparison with two formulas given by
Schlornann. ' In order to remove the singularity, he
considered the case of finite intrinsic damping, given by
a linewidth AH;, and the case where the exchange term
cannot be neglected. In the first case, 8' is given by

W = 1.5(H.2/4s M,) (42rM, /AH, )'", (45)

whereas the presence of the exchange field H,„leads to

W (+ 2/42rM )[42rM /+ (l22/y 2)$1/2 (46)

"E.Schlomann, J. Appl. Phys. 40, 1199 (1969); Phys. Rev.
182, 632 (1969).

where a is the lattice constant and ro a measure of the
grain diameter. '

In the result given by Eq. (44), W is no longer pro-
portional to the square, but to the -', power of the rms
anisotropy 6eld.

At the limits of the SW manifold, Fig. 12 shows that,
for small values of A,/42rM. , W decreases linearly to
zero, as a function of H. The range of 6eld over which
this occurs is given by A, . Indeed, in our model, the
dipolar narrowing is effective for the uniform precession,
but not for the spin waves, which are broadened over
the full range.

Our results can be compared with a recent theory of
Schlomann's. " Since the results are diferent in some
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details, it is worth considering these differences and
their origin.

The uniform precession is coupled to spin waves with
k=rp ', where rp is the average grain size. The question
is: By how much are the energies of such spin waves
themselves broadened? It is difficult to determine ac-
curately the broadening for k=rp ', but, as Schlomann
pointed out, it is easily done for k«rp

&
or for k)&rp '.

Spin waves with k«rp ' are very similar to the
uniform precession and their frequencies will be broad-
ened by the same amount pe. Spin waves with k&)rp '
are coupled by A (r) to nearly parallel spin waves, with
nearly the same frequencies. The disturbance now
produces the full amount of broadening; there is no
dipolar narrowing for such spin waves.

Schlomann" has used a self-consistent treatment in
which the spin waves are assumed to have the same
linewidth as the uniform precession; it corresponds to
k«rp '. In our treatment the spin waves were assumed
to be broadened over the full range of held variations;
this corresponds to k»rp '. The relevant spin waves
have k=rp ', and their broadening should be some-
where in between that for k&(rp ' and that for k))rp '.
The two treatments yield the same result inside the SW
manifold, but signihcant differences are found near the
limits. In our case (Fig. 12), W decreases to zero over a
range of magnetic helds equal to A „whereas in
Schlomann's treatment, this held range is of the order
of the value of 8' inside the manifold.

Another difference is found in the maximum value of
8'. Schlomann's result is proportional to H 4", whereas
(44) gives a factor H '~'.

One may expect the correct results to lie somewhere
in between these limits.

D. Comparison with Experiment

In order to compare the theoretical results with the
data in Figs. 5—9 two parameters have to be chosen-
the intrinsic damping and the value of A, . As before,
the magnitude of the intrinsic damping will be derived
from the high-Geld 8' value. This intrinsic damping has
been incorporated into the equations of motion.

The A, values that have been used in calculating the
drawn lines in Figs. 5—9 are given in Table I in the
column labeled A, (expt).

These A, values should be compared with the values
derived from the relation 2,'=2(A'), where (2') can
be expressed in terms of first-' and second-order anisot-
ropy constants Ej and E2. These quantities are known
from static measurements on single crystals. ""Their
values for Nii, Co,Fe20' are Ei (—7+260x)X10'——
erg/cm' and E2 —400m&&10' erg/cm'. Fo——r x larger
than 0.01, ) E,

~

is bigger than
~
Ei ( .

The anisotropy Geld can be expressed in E&, E2, and
the direction cosines of the magnetization (ni, n2, n3)

with respect to the cube edges t 1001, L010j, and $001j.
One hnds that

2 (ni, n2, n3) =L2Ei+ (E2—10Ei)

yg n,'n;2 —21E2ni2n, 'na'$/M, . (47)

The average value of A' is then found to be

(A') = (16/21) LE '+ (2/11)E,E',

+ (5/143)Eg'1/M', '. (48)

Using 2,'= 2(A'), (48), and the single-crystal data on
Ei and E2, one fin'ds the A, (theor) values given in
Table I. A reasonable agreement is found with A, (expt).

For @=0.027, one may note that E&=0 and therefore,
that the drawn curve shown in Fig. 8 is determined by
the E~ value and the intrinsic damping.

The experimental data shown in Figs. 6—9 are in
good agreement with the modified theory. In particular,
the heights of the peaks in the 8' and S curves show a
good ht. The gradual decrease of 8' outside the limits
of the SW manifold is also well described.

Agreement between theory and experiment for @=0
(Fig. 5) is rather bad, whereas for @=0.05, with a 12%%uz

smaller A, value, the agreement is much better. We do
not believe that the discrepancy for x= 0 can be ascribed
to porosity (P=0.36)&10 ') or to chemical inhomo-

geneity, since spray drying gives very homogeneous
materials. Moreover, the results were exactly the same
for a second nickel ferrite. Another argument is that
J'8' dH t cf. the relation (15)) has the correct value.
Since these experiments were performed, similar curves
have been observed in Mg ferrite" and in YCaV
garnet, " with comparable 2,/4irM, values. At the
present time the theory has not been extended far
enough to account. accurately for the S and 8' curves
of Fig. 5.

In the theories discussed so far, the sign of Ej was
unimportant, since only quadratic relations in A, were
used. The experimental data, however, give some
indication that the sign of E~ might be of some im-
portance. In Fig. 9, one notes that in the Grst case,
where E~&0, the experimental data are found to be
shifted slightly to lower-held values in comparison to
the theoretical curve In Fig. .5, where Ei(0, the
maximum in the 8" curve is shifted to higher-Geld
values. In Sec. U E, special attention will be paid to the
cubic aspects of the variations in anisotropy Geld.

Having considered so far the details of the effective
linewidth 8' and the line shift S, we now turn to the
norrrial linewidth hH (Fig. 4). d,H is related by (18)
of Sec. II to 8'„„the 8"value at the Geld for resonance
at 9005 MHz, and to DS, the difference in S values
found at the magnetic helds where X" is half its maxi-

26 Q. H. F. Vrehen, H. G. Beljers, and J. G. M. de I.au IREE
Trans. Mag. 5, 617 (1969).
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FIG. 13. AII—W„(crosses), lV(H„,) —H/ (open circles) and
s'(H, e,) —lv„+As (squares) as a function of (A')/47i-M, .

(FI oi/—y)/(2Kt/M, ). The singularity in X+" is due to
grains for which H~~L110j. At the field limits H= (o&/y)

,'H—, —and H = (oi/y)+H„ the susceptibility X+"
arises from grains for which HE~[111] and HE~[100],
respectively. The picture has been drawn for E&(0.
For positive anisotropy the abscissa changes sign,
thereby changing the center of gravity from —0.04 to
+0.04.

The effective linewidth 8'iG and line shift Sio can
now be calculated formally from Eqs. (16) and (17).
The result in Fig. 15 shows that the singularity in X+"
has led to a zero in 8'&G and to a discontinuity in 5&o.
Curves similar to those for I/I'io and 5io must be ex-
pected for 8' and 5 for H&)4~&, .

The integral of 8'&0 over the frequency can be
shown" to be proportional to the second moment of the
absorption X"(oi), just as in the SW model, Thus,

mum value. In order to compare AB and 8'„, with

anisotropy broadening theory, a correction for the
intrinsic damping has been applied to both quantities
by subtracting H'„, the 8' value at 6 kOe. Figure 13
shows a plot of AH —W„, W...—W„, and W„,+25
—W„against (A')/4rrM, as determined from (18) and
the Ej and E~ values given above.

For small A values the 65 correction is not important
and good agreement is found between AH and t/t/ „,. For
the highest A value (NiFes04) the 45 correction of

about 100 Oe is necessary.
In Fig. 13, the slope of the straight line is 20, which

should be compared to a value of 33 in Schlomann's
theory. ' Since the SW broadening reduces the peak of
the 8' curve, this reduction of the linewidth for reso-
nance on a sphere is not surprising.

E. Large Cubic Anisotroyy

In this part, the case of relatively large cubic anisot-

ropy fields, II,~&4m.3f„will be considered. In Secs.
VA—V D the anisotropy field entered into the final
expressions only through the quantity (A'(r)). In the
following, the detailed distribution function of the
anisotropy fields for cubic anisotropy will be needed.

The effects of the anisotropy will again be described

by an additional field A(r) parallel to H. For cubic
anisotropy this is valid if cv))yH . Exchange inter-
actions will be neglected as before.

First consider the case where H )&4+35, so that the
dipolar interactions are unimportant. The effective
linewidth and line shift may then be calculated in the
IG model. From the anisotropy field distribution given

by Schlomann, ' the real and imaginary parts of X+ may
be calculated with Eqs. (2)—(4). The distribution
depends on the ratio yH /oi, and the calculation was
made for yH, /oi = 0.18, the value appropriate for
ibiFe204 at 9000 MHz. The result is shown in Fig. 14,
where &+' and X+" have been plotted as a function of

Wro d~= X"(~)(oi—~)'doi=2~y(A').
M. „(49)

The second equality follows from Eqs. (3) and (4).
For the case H,~4~%„ it is very difficult to make a

detailed calculation of t/t/' and 5. On the basis of the
insight gained in the Secs. VA—V C, we now put
forward some qualitative arguments leading to ex-
pressions from which H/ and 5 may be calculated with
fair success in this intermediate range. We note that
we have already assumed ~))pII . Since, furthermore,
H,~4rrM„we have o&)&y4rrM so that in Eqs. (37)—(41)
we may put cosh@~= q, =1.

In Secs. V A and VB, we found that for a simple
sinusoidal variation of A(r), the interaction between

spin waves could be taken into account by replacing the
b function for the SW frequency by an appropriate
density-of-states function. This density-of-states func-
tion was just equal to the normalized 8' function as
calculated for that particular anisotropy field distribu-
tion in the IG model.

4

1

0 2/g

—0.6 -OA -G2

2IKti =0.18—
Ms

'

I

~~0 0.2 0.4 0.6 O.e 1.0
H-~/gl

2 (Kj/M~)

FIG. 14. x+' and x+", as a function of H —cu/y, calculated for
the IG model and for first-order anisotropy. II,=2~E, ~/M, has-
been taken equal to 0.18 or/p.

"The proof can be given by function-theoretical methods
PJ. A. Geurst (private communication)].
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The appearance of this feature of the IG model was
understood from the fact that the interacting spin waves
were all degenerate in the absence of A(r). A similar
density-of-states function was then used (Sec. V C) for
the case of many Fourier components present in A(r).
It was also indicated that in the latter case the width of
the density-of-states function was probably somewhat
overestimated because some dipolar narrowing should
occur. This narrowing should become less important
when H increases with respect to 4vrM, . Thus, for
H, ~&4x3f„we expect to find good results simply by
replacing the 5 function at the SW frequency by a
normalized H/ function calculated on the basis of the
IG model.

instead of using the density of (39) which is valid
for a cosine variation of A(r), we must use the nor-
malized 8'iG function for cubic anisotropy, which has
been given above in Fig. 15. Thus, we use the function
w(oz —yH) defined by

w(oz YH) = W, G(—oz —yH—) Wz G(oz yH)dco—

= Wz G(o~ —yH)/2zry(A'), (50)

where Eq. (49) has been used. Replacing the 8 function
in Eq. (11) by w(o& —cv(8)) one obtains

=24ry(A ')
m/2

w(zd —zn(0)) sing d9, (51)

where cosh@(8)=1 has been substituted in Eq. (12).
Similarly,

(~(r))—V(~')
+" zs w(zn' —o~(8))

&(sin9d0. (52)

.~w

~ 02-
2/3o,&

06 -OA- -02 0 02 -04 06 08 10

2 (Kj/Mp)

FzG. 15. W and S as a function of H cu/y, as calc—ulated from
the susceptibility shown in Fig. 14.

The expressions (51) and (52) are correct for both
limits H&)4~311, and H ((4xkf„provided co))cv . For

300
W(oe)

250-
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Y13 Ca5.7FBg g V0.85 ~12—Experiment--—Theory
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0
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= H, (aOe)

FIG. l6. 8' versus B. for Y1.3Ca1.7Fe4.15V0.8~012, for which
4m3SI, =265 6 and H, =350 Oe. Experimental results of Patton's
{Ref. 11) are compared with theory LEq. (51)g.

H&)4zrM, this can readily be seen'from Eq. (50) by
using zn(8) =yH, since dipolar effects are now neglected.
For H,((4zrIV„ the density w(nz —oz(8)) becomes very
narrow and approaches the 5 function in (11) Lcoshzz(g)
= 1 in our present approximation).

Since the expressions (51) and (52) are valid for
H,&(4aM, and for H&)4m&„one might hope that they
are also- of use in the intermediate range. It turns out
that for NiFe~04, where H, /47rIV, = 0.16, Eq. (51) does
not describe the experiments any better than Eq. (42).
The discrepancy between theory and experiment for
this ferrite is, therefore, not removed by the considera-
tions presented in this section. Much better agreement
is found for a material where H ~) 4m-3f„namely, for
Y~.SCa~.7Fe4.~~V0.850~2. The effective linewidth of this
ferrimagnet, which has the garnet structure, and for
which H, =—350 Oe and 4~35,=265 G, was recently
measured by Patton. With his kind permission his data
are reproduced in Fig. 16, together with a theoretical
curve calculated with Eq. (51). Satisfactory agreement
exists.

It may- be concluded that the extension of the theory
proposed in this section works satisfactorily for
H &4m-3f„and it is precisely for this range that the
theory was made. The modification of the theory does
not improve the agreement between theory and experi-
ment for H,/4zrcV, 0.15.

VI. CONCLUSION

Our results can be summarized as follows: (1) The
use of the quantities 8' and 5 allows a detailed com-
parison of experiment and theory, both with the SW
model and the IG model. The usual linewidth DH
depends both on W and S (Sec. IV). (2) Experimental
data on dense NiCo ferrites have shown that, outside
the limits of the SW manifold, defined by (10), W is
independent of magnetic field, but a monotonically in-
creasing function of Co content (Fig. 10). The relaxa-
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tion due to Co'+ ions can therefore not be described by
a two-magnon process. (3) Experimental results on 8'
and S well inside the limits of the SW manifold show
quantitative agreement with Schlomann's theory' as
long as H, /4irM, &0.1 (Figs. 5—g). For Ni ferrite this
quantity equals 0.16 and no agreement is found (Fig. 5).
(4) The singularities and discontinuities in W and S, as
predicted by Schlomann's theory at the limits of the
manifold, were not observed experimentally. This led
to a consideration in Sec. V of the SW modes in a non-
uniform internal field. For a sinusoidal variation of
A(r), the result is that the density of states of a spin
wave is broadened over the full variation of the in-
ternal 6eld Las in (39)).The result has been generalized
to the case where A(r) contains many Fourier com-
ponents by assuming that the spin waves are broadened
over a field range 2(A'(r))'~'. Good agreement with the
experimental data was obtained, except for nickel
ferrite. (5) An attempt was made to consider the case
of large anisotropy, where the cubic features of the IG
model were incorporated in the density-of-states func-
tion (Fig. 15). The result agreed well with Patton's"
data (Fig. 16), but again did not with those of Fig. 5 for
nickel ferrite. In conclusion, Eq. (42) described the
experiments well for (H,/4irM. )~&0.1, and Eq. (51)
does so for (H,/4irM, )&~1. For Ni ferrite and Mg
ferrite, which have (H,/4irM, ) =0.15—0.2, neither (42)
nor (51) leads to quantitative agreement with experi-
ment. The reason is unknown.
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APPENDIX

In this Appendix, we present the calculation of the
susceptibility X+=—(m~(r))/h~&'&, of a system described
by (24), where the demagnetizing field is given by (27).

In terms of the circularly polarized components m+(r)
and h+(r), defined as +m= &mi „mndah+ h, +ih„, ——
Eq. (24) becomes

&(a&/y)m+(r) = LH+A, cos(q r)+iX)m~(r)
—cV,Lh~ &'&+

h~ &+(r)], (A1)

where l~=u&n/y. In terms of the Fourier components
of m(r) and h(r), Eq. (A1) reads

fH~ ~/p+ y ]ut~(k)+-,'A, Lm~(k+ q)+m~(k —q))
=~,t h~ 8, .,+4r'i(1)), (A2)

where

m(r) = Q m(n)e'"&'—=m(q r). (A4)

The demagnetizing field (27) can now be written as

h&"~ = —4ir sin'8, ei P [m(n) ei)e'"i' —4ir1Vm(0)

= —4ir sin'8, ei{Lm(q r) —nt(0)) ei}
—4ir/Vm(0), (A5)

1

where c~ is a unit vector along the projection of q on the
xy plane. Choosing a new x axis along e& we can write
for the circularly polarized components

h+~+= —2ir sin'8~Lm+(q r)+m+(q r) —m+(0) —m~(0))
—

4irÃmg (0) .
After substituting into (A1), one finds that

LH+2, cos(q r)+i7 W&v/y)m~(q r)
=SI,{h~ i'i —

4irlVttt~ (0) —2ir sin'8

XLm~(q. r)+m~(q. r) —m~(0) —m~(0))} .

After rearranging terms, this becomes

LH+2, cos(q r)+iXW~/y+2irM, sin'8i)m+(q r)
+2ir3E, sin'8, m~(q r) =BI,{h~&'&—4ircVttt~(0)

+2ir sin'8, Lut~(0)+m+(0))} =3/, E+. (A6)

Since the right-hand side of (A6) is independent of r,
two components E~ of a vector K have been introduced.
Solving for m~(r), one finds an expression of the
fo}lowing form:

()= () I (A7)
j

It is not difficult to see that g(r) has a component with a,

sharp peak at those values of r for which the angular
frequency co and the total field

H(q r)—=H+Ai cos(q r)
satisfy

cv=y{H(q r)LH(q r)+4ircV, sin'8 )}'i~.

A similar result is found in the IG model, provided
3f, sin'8~ is put equal to zero.

The uniform precession can be obtained from (A7)
by taking the integral over r. After some elementary

h~'"'(k) = —4~cVm~(0) 8g, o

—4~&~[m(k) k)/~ k
~

'. (A3)

From (A2) and (A3) the component m(k) is seen to be
coupled to the components m(k+nq), where n is any
integer. The equations for ut(k+nq), with a fixed
k/nq and all values of n, are homogeneous. For a finite
value of X, therefore, ut(k) =0 for these k values. The
general solution m(r) may thus be written
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algebra, one finds that this involves integrals of the
following type:

I(c )= dxgcg+iXy+yA«cosx] ',

where

RIll

c =yH +8&((o'+8')"'

8=2m', sin'8, .

For ~c()A«one has

2~/I(c) = sgn(c) (c'—y'A «') "'
+ipic/(c yA «) '~— (AS)

for ~c~ (A„one has

27r/I(c)=i(y'A ' c'—)' '+pic/(y'A ' c'—)'~' (A9)

Using (AS) and (A9) and eliminating X+ and E
by (A6), one derives expressions for the uniform pre-
cession m~(0), the susceptibility X+ and the quantities
5 and 8'. Neglecting the nonresonant contribution from
I(c+), one recognizes the semicircular shape of the
W(H) curve in Fig. 11 in the imaginary part of (A9).
For vanishing A., the only contribution to 5' comes from
the field range H =H«&A «, where H«= (a&'+8') 'i' —8

For the integration described in Sec. V C the
quantities S and 8' for finite A. were integrated numeri-
cally in order to derive the drawn lines in Figs. 5—9.


