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Scaled Equation of State and Critical Exponents in Magnets and Fluids
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A systematic analysis in the context of the scaled equation of state has been made of available experimental
data in the critical region of a number of ferromagnets LGd, CrBrq, Lao qSro qCoOs, Ni (two independent
sets of data)g and fluids (COs, He4, Xe) with the following assumed form for h(x) =HM ' ~M

~

' ~:

h(x) =A&L(x+xo)/xo](1+Ep[(x+xo)/xo]ss)i«' '& 'l"O

where h (x) is a scaling function, x = t
~

M
~

'~o, t = (T T,)/T„an—d x = —xo is the phase boundary. A nonlinear,
least-squares method was used to simultaneously determine the six parameters (p, 6, T„xo, E&, 82), Agree-
ment between the proposed form for h(x) and the experimental data was found. For both the magnets and
Auids, we 6nd that 5=4.4; for the magnets /=0. 37 and for the Ruids P=0.35. Reasons for the considerably
diferent values reported elsewhere for these exponents in the materials Cr02 and YFe03 are discussed.

1. INTRODUCTION

HERMODYXAMIC anomalies in the critical re-
gion can be described in terms of power laws

which are asymptotically valid as one approaches the
critical point. Those of direct concern here a,re the
following:

I. Coexistence curve:

M =8( t)s. —
II. Critical isotherm:

III. Susceptibility:

(a) On the critical isochore (M=o) T& T.,
Xv F$

(b) along the phase boundary T(T.,

IV. Specific heat at constant magnetization':

(a) M=0, T&T„
C„=(A+/tr) t—,

(b) "two-phase" region T(T.,

* On leave of absence from the University of Rome, Rome, Italy.' The case n =0 can be obtained as

lim (1/e) (t —1)= —lnt.

(c) jump in the specific heat across the phase
boundary,

(7)AC,~ dc( t)—— —

Here t is the reduced temperature (T T,)/T„wh—ere
T, is the Curie temperature, H is the internal magnetic

pp] ed L M, 3f is the magnetization a,nd D is
the demagnetizing factor. ' For fluids analogous relations
are found if one chooses the chemical potential ts(p, t)
and density p as variables and replaces 3f with Ap
= (p —p.)/p. and H with Ats=ts(p, t) —tr (p„t), where p,
is the critical density. The susceptibility &z then be-
comes the isothermal compressibility Ez multiplied by
the square of the density while C~ becomes pC„, C.
being the specific heat at constant volume.

The scaled equation of state' 5 gives a partia. l for-
mulation of the thermodynamic properties of the system
around the critical point which incorporates all of the
anomalies just described. A detailed review, making use
of the Quid language, is given in Ref. 6. In the notation
of magnetic phenomena4 the equation of state is written

' R. B. GriKths, J. Appl. Phys. 40, 1542 (1969).' B. Widom, J. Chem. Phys. 43, 3898 (1965); L, P. KadanoB,
Physics 2, 263 (1966).

4 R. B. Griffiths, Phys. Rev. 158, 176 (1967).' C. Domb and D. L. Hunter, Proc. Phys. Soc. (London) 86,
1147 (1965).

M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S.
Green, J. Res. Natl. Bur. Std. '73A, 563 (1969).
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Here, h(x) is an analytic function of the variable x in the
whole range, that is, from —xo which defines the phase
boundary (xp ——8 'tP) to infinity (M =0).Detailed prop-
erties of h(x) can be derived from the known behavior
of H as a function of M and T and have been reviewed
in Ref. 6. We recall that this equation of state leads to
equality of the primed and unprimed exponents and to
the fulfillment of the thermodynamic inequalities~ ' as
equalities, that is,

Now, if the value of two of the exponents were known,
experimental B, M, T data could be used to check the
validity of Eq. (8) even though the function h(x) is not
known to start with. On the other hand, if a closed-form
expression for h (x) were available, Eq. (8) could be used
to determine the values of the exponents using all
available data in the critical region instead of data along
preferred curves (critical isotherm, critical isochore, and
the phase boundary). The method of preferred curves
is the approach that has usually been taken in the past
for analyzing experimental data. In particular, for the
magnets, analysis of the low-field susceptibility above
T, is used to determine y and the critical temperature
by means of the Kouvel and Fisher technique, ' hence-
forth referred to as KF. This method is very attractive.
However, it relies upon a determination of the slope of
the Xz '-versus-T plot which is not very accurate, es-

pecially very close to the critical temperature where
visual extrapolation of the M'-versus-H/M curves gives
the value of the susceptibility. We shall discuss this
point in more detail later.

We have decided to take the other approach using
all available data and as the closed-form expression for
h(x) the function

h(x) =Eif(x+xp)/xpj
X(1+EpL(x+xp)/xp]'t'} 'i'&' "—'li@' (12)

where P, 8, xp, Ei, Ep, and implicitly T, are adjustable
constants. This function gave a good ht to the data in
the Quid case where the exponent P and the value of the
parameter xo were assumed to be independently known
from an analysis of the phase boundary. " This as-
sumed form for the function h(x) satisfies the following
requirements of scaling: (a) h(x) is analytic everywhere,
—xp(x( pp ' (b) k( xp) =0, the derivative, li'( —xp)
finite, Xr(—xp) defined; (c) P8h(x)~xh'(x), x) —xp,

Xr positive; (d) h"(x))'0, sufficient for C~)0. For

R. B. Gri%ths, J. Chem. Phys. 43, 1958 (1965); Phys. Rev.
Letters, 14, 623 (1965).

G. S. Rushbrooke, J. Chem. Phys. 39, 842 (1963); 43, 3439
(1963).

9 M. E. Fisher, J. Math. Phys. 5, 944 (1964).
'0 J. S. Kouvel and M. E. Fisher, Phys. Rev. 136, A1626 (1964).
"M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S.

Green, Phys. Rev. Letters 22, 389 (1969).

large values of x(M —+0) the function h(x) has the
series expansion

r(*)=x LQ ~.x-'i'-+g ~.x--j.
n=o n=l

(13)

The second series on the right-hand side of Eq. (13)
gives spurious terms, the first of which is proportional
to x& '. Since experimentally it appears that 2P(1, but
4P) 1, this spurious term will then be the third term in
the large x expansion of h(x). Consequently, this func-
tion will not give the correct behavior of the higher-
order derivatives of H with respect to 3f. We will dis-
cuss this point in detail later.

Equation (12) has the advantage of giving a closed
form for h(x) with a relatively small number of ad-
justable parameters: P, b, xp, Ei,¹,and implicitly T,,
which is suitable for a multiparameter fit of the experi-
mental data.

'P D. W. Marquardt, I. Soc. Ind. Appl. Math. 11, 431 (1963).

2. DATA ANALYSIS

The multipararneter (nonlinear) Qt to the experimen-
tal &, M, T data was done using Eq. (8) with /g(x)
given by Eq. (12), by employing the maximum neigh-
borhood technique developed by Marquardt. "This pro-
cedure combines features of the Taylor series expansion
method with properties of the method of steepest de-
scents to construct an algorithm which determines at
each iteration the range over which a linearized function
will give an adequate representation of a nonlinear func-
tion. In this procedure, an initial guess of the (many)
parameters to be evaluated must be given. In actual
practice we have found that depending on the number
of experimental data points available, and their dis-
tribution in the critical region, different initial guesses
for the parameters would, or would not, converge to the
same final answer. In general, the different final values
for the parameters were in agreement within the stan-
dard error given by the nonlinear fit (which was eval-
uated assuming linearity). Once the successive iterations
remained within the standard error limits, convergence
was accelerated by taking the average of a suitable num-
ber of already obtained values as initial guess. Only very
few iterations were then needed to stabilize the param-
eter values completely. Moreover, a detailed analysis of
the deviations of the experimental points from the cal-
culated function showed that truly systematic devia-
tions appeared when the parameters were varied outside
of their standard error range. Accordingly, the proce-
dure we adopted was to study the convergence for many
different sets of initial guesses of the parameters for
every substance studied. VVe then chose the common
value or the average obtained from the various fits as
the most probable value of each parameter and assigned
to it as an error the standard error given by the multi-
parameter fit itself.



2314 VICENTINI —MISSONI, JOSEPH, GREEN, AND SENGERS

%eights were assigned to II, 3f, and t according to
the reported precision of the experimental data. The 6t
was done assuming the variable x free of error, and
through propagation of errors the quantity Lh(x)$,„~&

=H/M ~M ~' ' was weighted according to

.={(./~)'+(. /M)'9 —*/I'( +")7
+(oP/t)Lx/(x+xo) j'}—'Ph(x)),-,» ', (14)

where the 0- are the appropriate errors in the experi-
mental quantities.

A reasonable amount of experimental information was
available to us for the following substances:

Magnets: Ni" Ni,"Gd" Cr02" CrBr3 "I.ap. 5Srp. 5-

CoO and YFe03."
Fluids: CO2,"Xe,"and He4."

A detailed discussion of the derivation of the chemical
potential-density data for the Ruids from the pressure-
volume isotherms together with the appropriate nu-
merical values of Ap and Ap and an analysis of their
errors is given in Ref. 6. Reducing factors for the density
and chemical potential are given there in terms of the
critical parameters. For the magnetic substances we
used reduced units for the magnetization and the mag-
netic field. The reducing factor used for the magnetiza-
tion was the approximate value of the saturation mag-
netization Mp at 0 K and for the field the quantity
k+T,/m, where kz is Boltzmann's factor and m the mag-
netic moment per spin. For the magnetic substances the
reducing factors used are given in Table I. The internal
field was derived from the applied field using the dernag-
netizing factor D given by the respective authors in
Refs. 13—19. A variation of D around these values was
shown not to significantly inhuence the results of the fit.

Obviously in order to obtain information on the
critical-point behavior one needs to have experimental
data as close as possible to the critical point. In order to
gain some insight into how close the data for the various
substances are we have used approximate values for xp,

P, and T, to construct "Widom plots, "' t versus

xo~ M ~'I&, and these are shown for some of the materials
in Figs. 1(a) and 1(b). In these plots, the straight line
at 45' in the lower quadrant represents the phase bound-

ary, the one-phase region being the upper unshaded
area. For each substance the line represents the closest

"P.Weiss and R. Forrer, Ann. Phys. (Paris) 5, 153 (1926).
1 J. S. Kouvel and J. B. Comly, Phys. Rev. Letters 20, 1237

(1968).
» C. D. Graham, Jr., J. Appl. Phys. 36, 1135 (1965)."J. S. Kouvel and D. S. Rodbell, J. Appl. Phys. 38, 979 (1967)."J. T. Ho and J.D. Litster, Phys. Rev. Letters 22, 603 (1969);

J. Appl. Phys. 40, 1270 {1969).
"N. Menyuk, P. M. Raccah, and K. Dwight, Phys. Rev. 166,

510 {1968).
» G. Gorodetsky, S. Shtrikman, and D. Treves, Solid State

Commun. 4, 147 (1966).
'OA. Michels, B. Blaisse, and C. Michels, Proc. Roy. Soc.

(London) A160, 358 (1937).
21 H. W. Habgood and W. G. Schneider, Can. J. Chem. 42, 98

(1954)."P.R. Roach, Phys. Rev. 17'0, 213 (1968).

TABLE I. Magnetization and 6eld reducing factors.

CrBr3
Gd
Xi
Lao. ~Sro.qCo03

Magnetization
(Mo in emu jg)

1
69.974
58.6
40

Field kgT, /m
in Oe&10 '

0.163
1.526

15.16
8.0

23 D. S. Rodbell, J. Phys. Soc. Japan 21, 1224 (1966).
'4 P. Belier, Rept. Progr. Phys. 30, 731 (1967)."D.Treves, J. Appl. Phys. 36' 1033 ('1965).

approach to the critical region, that is, experimental
data, were available above and to the right of the ap-
propriate line. Ideally one would like to have a large
number of data points inside a circular region of some
small radius about the origin. In Fig. 1(a), it is seen
that the amount of information one can obtain from
the two sets of Ni data, and the data on Gd and CrBr3
is comparable. For the case of Lap. ~Srp. ~Co03 on the
other hand, it is clear that the results will be less re-
liable. There is only one isotherm below critical, t(0,
for the present choice of T„also, the experimental data
are considerably further removed from the critical point
than in the other cases. Ke have not included on this
plot the data for CrO~ because there is evidence23 that
close to the Curie point magnetocrystalline anisotropy
severely affects the data. As to the YFe03 data, they
are indeed very close to the critical point, but as Belier"
has pointed out, this material is really an antiferro-
magnet and what is actually measured is the product
of canting angle and sublattice magnetization. The
canting angle is known only'5 to be constant below 0.99
T, which is outside of the range of the present measure-
ments and hence it is doubtful that these measurements
give the true behavior of the magnetization. In fact, if
one plots M' versus H/M for these data one finds an
upwards curvature rather than the usually observed
downwards curvature. From Fig. 1(b) it is seen that
for He4 the spacing in temperature is far better than for
CO2 and Xe (for Xe no subcritical isotherms are avail-
able), but for the latter two cases, the approach to the
critical point as far as 4p is concerned is somewhat
better. Consequently, the nonlinear method of 6tting
the data was applied to the data for all the materials
except YFe03.

Since what we are trying to establish is the asymp-
totic behavior in the critical region, a "cutoff" line de-
6ning the extent of the asymptotic region in Figs. 1(a)
and 1(b) is then needed. However, nothing is a priori
known on this subject, and hence one can only guess the
form that line might take. One method of proceeding
would be to assume that this region extends to some
maximum value of the magnetization. For isotherms
very close to the critical isotherm this is equivalent to
a maximum field cutoff, but for isotherms further from
critical, this is not the case. Ke have therefore decided
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to systematically disregard points at large fieIds and the range in which the data points were taken did not
large magnetization. The data were assumed to be in affect the values of the derived parameters. It was thus
the true asymptotic region when further reduction of found that points with M& 0.35—0.40 were outside of
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Xe
0 le I

0
l]p

24

—20
(b)

Fro. I (contieled)

this range for all temperatures and that the range in M for all the magnets and Quids considered except Xe,
at temperatures not close to critical was smaller. Lap. 5Sro.gCo03, and Cr02. What is shown on a log-log

Figures 2(a)—7(a) show the results of our analysis plot is a comparison between the derived h(x) (solid
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TABLE II. Derived parameters LT, (K),xp,P, b,E&,Ep] in the critical region fo™gnetsand fiuids. Exponent p is obtained from Eq.(11).For magnets numbers in parentheses are those reported by authors mentioned in text (see Refs. 10, 14, 15, 17, and 18). values
of y marked by t are obtained for the given values of b and P by Eq. (11).For fluids numbers in parentheses are results of four-parameter
fit (see Ref. 6).

gp

0.596&0.010
(0.609+0.009)
0.670&0.050

CrBr3

Nits

Nib

He4

32.841 &0.008
(32.844)

Gd 292.05 &0.15
(292.5 &0.5)
627.4 ~0.3 0.376&0.047

(627.4)
626.5 ~0.2 0.363&0.030

(627.2)I ap. gSrp. ;C003 227.7 0.618
228.4 0.144

(228,4)
C02 304.12 &0.04 0.139&0.011

(304.10 &0.04) (0.135)
Xe 289.73 &0.04 0.18 &0,06

(289.73 &0.03) (0.186)
5.1874&0.0011 0.369&0,018

(5.1884+0.0008) (0.360)

0.364&0.005
(0.368+0.005)
0.370&0.010

(0.44 +0.04) 1'

0.373&0.016
(0.378a0.004) t
0,375&0.013

(0.404&0.020) t
0.37
0.63

(0.62 &0.03)t
0.352&0.008

(0.350)
0.35 &0.07

{0.350)
0.355~0.009

(0.359)

4.32&0.10
(4.28+0.10)
4.39&0.10

(4.0 +0.1)
4.44~0.18

(4.58%0.05)
4.48&0.14

(4.22&0.03)
4.39
3.0

(3.05&0.06)
4.47&0.12

(4.6 &0.1)
4.6 &0.5

(4.6 ~0.1)
4.44&0.10

(4.45+0.10)

0.022
0.006

2.14&0.16
(2.36+0.02)
2.7 &0.9

(2.96+0.07)
2.80&0,25

(2.78+0.03)

18.5
7.9

0.300~0.15
(0.30&0.02)
0.36 ~0.13

(0.37 a0.03)
0.41 +0.06

(0.48 &0.03)

E1

0.55&0.02 0.64 &0.03

0.70%0.10 0.97 &0.10

0.19&0.04 0.77 %0.06

0.18~0.03 0.83&0.08

1.21
(1.215~0.020)
1.25

(1.33)
1.28

{1.34 ~0.01)
1.31

(1.35 ~0.02)
1.26
1.26

(1.27 ~0.02)
1.22

{1.26)
1.26

(1.26)
1.24

{1.24)

a Reference 14.
b Reference 13.

line) and the experimental h(x) (points). Since this sort
of plot conceals systematic deviations, we have plotted.
in Figs. 2(b)—7(b) the corresponding relative deviations
themselves, {Lh(x)),„ t —Lh(x))f ff, p}/Lh(x)),

The vertical lines in these figures represent the experi-
mental uncertainties. The "best-fit" parameters are
listed in Table II and will be discussed in detail shortly.

As mentioned previously, the CrO.„data are severly
affected by magnetocrystalline anisotropy for M ~0.40.
Consequently Kouvel and Rodbell'6 attempted to an-
alyze their data only at larger magnetizations, which,
we feel, would be outside of the asymptotic region.
Hence we believe that the parameters they obtained are
not characteristic of this substance. We have'attempted
to scale their lower magnetiza. tion data, but with no
success. In regard to Lap 5Srp. 5Co03 and Xe it is obvious
from Figs. 1(a) and 1(b), respectively, that considerable
difficulties should be anticipated in an attempt at fitting,
since information concerning subcritical temperatures
is very poor. This explains the very large errors we
found for Xe. In Pigs. 8(a) and 8(b) we show a typical
fit for Xe for the parameters given in Table II. In the
case of Lap „Srp.5CoO3 the program could not be made
to work properly when all six parameters were allowed
to vary simultaneously. Therefore we decided to fix
the values of the parameters P and 5 and allow only the
remaining four to vary. Choosing p=0.63, 6=3, as given
in the original analysis, '8 we obtain a good fit, as dis-

played in Figs. 9(a) and 9(b). However, taking p=0.37,
8 =4.4 dose to the values for the other magnetic sub-
stances, we obtain an equally satisfactory fit, as shown
in Figs. 10(a) and 10(b). The corresponding values of
the other parameters for the two cases are given in
Table II. The significance of these results will be dis-
cussed below

h(x) =hp+hix+hsx'+ (15)

as well as the first three coefficients in the expansion
valid near the critical isochore

h(x) =g,xp+q, x —»ggsx —4&.

We can also derive these coefficients by expansion of
our function Eq. (12), and a comparison between these
values is given in Table III. We note that the agreement
is good for the values of hp, h&, and p&. The discrepancy
in h2 can be explained by the fact that Ho and Litster
assume h, m& 3, to be rigorously zero, while the differ-
ence between our p& and p3 and theirs is obviously due
to the presence of the first spurious term proportional
to x& ' in the large-x expansion of our function. We
then conclude that as far as the prediction of all expo-
nents and of the leading terms in the behavior on the
critical isotherm (hp, hi) and on the critical isochore (rii)

3. RESULTS

The plots of log h(x) versus logL(x+xp)/xp) for all
substances LFigs. 2(a)—10(a)) show good agreement
between the fit of the proposed function, Eq. (12), and
the experimental points. A more satisfactory way of
looking at this agreement is given by the deviation plots
of Figs. 2(b)—10(b). No general statement can be made
about systematic behavior of the deviations on a given
isotherm. In this respect, the only case for which there
appears to be any evidence for systematic deviations is
given by the fit of the CrBrs data, Fig. 2(b). However,
as is evident from Table II, the values of the parameters
xp, T., p, and 8 are in good agreement with the values
given by Ho and Litster. "Moreover, in the analysis
of their data, these authors have also derived value for
the first coeflicients in the series expansion of h(x) near
the critical isotherm
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p T = 3t.925
Q T = 32. 106
~ T = 32.286
+ T — 32 478

g T = 32.836
% T = 3Z ~ 840
Z T = 32.872

I T — 32 926

32.826
~ T = 32 ~ 852
t T = 32.858

OC

)„Q.

-1 .0,

0 ~ 1 ~

LOB( ( X&Xp )/Xp i

Cr Br& . RELRTI VE OEV IRT IONS

2 ~

0.S- t-'j T =
Q T

+T
XT
Q T
+ T
X T
ZT =

j
0 ~ 2-

31 .925
32. 106
32.286
32.478
32.589
32.637
32.655
32.676
32.709
32.768

N T
XT
Z T

T
Q T

ET

-T =

32 ~ 836
32.840
32.872
32 ~ 926
32.981
33.034
33.142.
33.739
35 ' 029
32.822

= T = 32.826
32.852

~T = 32 ~ 858

(b)

0 0
OC

-0 ~ 2-

-0 ~ 4-

0 ~], 1'. 9.
LOG( (X+Xo )/Xo i

F o 2 ( ) Log iogpiot oi h(*) (*+*o)/* io C B . solids i ~tt d i tio [E~. (t2)~ ithp
Fxperimentai points are shown with estimated error bars on variable h(x). (b) plot of Dh(x) =(P(x) je*pt, P(x) jntt &)/["(*)~ *p

versus iog[(x+.xo}/xoj for Criir3. Vertical error bars include all experimental uncertainties.
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1- 2 ~

LOG( ( X+Xo ) /Xo )

Fra. 3. (a) Log-log plot of h(x) versus (x+xo)/xo for Gd. Solid line is fitted function LEq. 12)7 with parameters given in Table II.
Experimental points are shown with estimated error bars on variable h(x). (b) Plot of Ah(x) = {Lh(x)7,„vi—Ph(x) 7f'fi, J)/Lh(x)78 ~t versus
logl (x+xa)/xo7 for Gd. Vertical estimated error bars include all experimental uncertainties.
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TABLE III. Comparison for CrBra of coefficients of series expansion of h(x) on critical isotherm
(ho, hi, h2) and critical isochore (v&,vm, v&, f&).

Ho and Litster'
Present

0.63 3'
0.638

1.14+5%
1.15

0.20+25%
0.11

0.89+1jg
0.91

0.85&6%
0.28

0.23&20%
0.65

& Reference 17.

is concerned, as well as the values of xo and T„our func-
tion gives quite reasonable values. Furthermore, if the
systematic deviations of Fig. 2(b) are significant, they
do not bias this result.

It is also difFicult to make any general statement
about the presence of systematic deviations from the
proposed function h(x) LEq. (12)j as a function of x.
What might appear to be a trend shows up only in the
two sets of Xi data. However, the consistency checks
discussed in detail below make us con6dent that the
values of the parameters derived for this material from
this function are reliable.

The parameters determined by our method of fitting
the experimental data, where successful, are given in
Table II. For the reasons discussed previously in the
case of I.ao 5Sro.;Co03, we have listed the two sets of
values we tried. The numbers in parentheses for the
magnets are the results obtained from independent
analysis of the data by the listed authors. For the Ruids
they are the results given by the four-parameter fit dis-
cussed in Ref. 6. In general, the agreement is quite rea-
sonable. The value of y given in the table was obtained
by use of Eq. (11).

In the case of Gd the present values differ from the
approximate values obtained previously" "because of
what we feel is a more precise determination of T,.

The di6'erences between our values of y and 8 for Ni
and the values given by Kouvel and Comly" require
detailed discussion since the values of the critical tem-
perature are in precise agreement. We will do this by a
detailed comparison of the results of our analysis with
the experimental data on the three preferred curves,
critical isochore, critical isotherm, and phase boundary.
This comparison is shown in Fig. 11. In each part of
this figure the solid line is the behavior predicted by our
analysis. The points are the directly measured H, M
data for the critical isotherm, or in the other two cases,
the results of an extrapolation made by Kouvel and
Comly. The agreement is good except for the points on
the critical isochore at low values of t. The slope of the
solid line LFig. 11(a)j corresponds to the value p =1.28,
while a line through the points yields p =1.34. In order
to understand the disagreement, in Fig. 12 we show an
M'-versus-H/M plot for the lower isotherms. The vari-
ous symbols are the experimental points, the dashed
lines represent the extrapolation assumed in deriving
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FIG. 11. Comparison of predicted (solid lines) and experimental behavior of Ni (Ref. 14) on the preferred curves:
(a) critical isochore, (b) critical isotherm, and (c) phase boundary.
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eters given in Table II.

the points in Fig. 11(a), and the solid lines represent the
asymptotic slopes at &=0 that one would need to ob-
serve in order to obtain the values of the susceptibility
predicted by our analysis. It is clear that the difference
in the susceptibility is due to the different extrapolation
procedures. VVe recall that for isotherms quite close to
critical the linear region is con6ned to small values of
M and hence the KF extrapolation procedure has an in-
herent limitation as one gets asymptotically close to
the critical temperature. On the other hand, our method
of calculating the susceptibility uses a function which for
large x, while not having the exactly correct series ex-
pansion, still predicts a linear dependence of II/3II on
M' to lowest order. We feel that the present method of
proceeding has the advantage of making use of con-
siderably more of the available data than just those at
low magnetizations which have the greatest experimen-
tal uncertainties. It also agrees with the results of the
KF method at large t where this method is more rigor-
ous. Very accurate measurements at small 3f, especially
when T is very close to T„are needed to decide on the
correct extrapolation procedure.

Analysis of the more recent data on Ni obtained by
Kouvel and Comly'4 yield a value of 8 considerably
different from that obtained by Kouvel and Fisher'
from the data of Weiss and Forrer. "However, a critical
analysis of the consistency between the two sets of data
shows that they agree, except for a shift of about 0.8 I
in the temperature scale (the scale of Weiss and Forrer"

is lower than the scale of Kouvel and Comly). One
should therefore expect to see a difference of the same
Inagnitude and sign in the absolute values of the critical
temperatures obtained from these two sets of data.
Actually our analysis applied to the two sets of data
yields a difference in the critical temperature of 0.9 K
in the right direction. All other parameters are the
same within their error bounds. However, for the data
of Weiss and Forrer the analysis of Kouvel and Fisher
gives for T, a value only 0.2 K lower than the value ob-
tained for the data of Kouvel and Comly. The low value
of 8 derived by K.ouvel and Fisher for the Weiss data is
then simply explained by the fact that they obtain this
value by considering an isotherm slightly above critical.

For I.ao ~Sro 5Co03 comparison of the deviation plots
for the two sets of values of P and 5 we have used, Fig.
9(b) (P=0.63, 6=3) and Fig. 10(b) (P=0.37, 8=4.4),
shows that if anything can be said, the result for the
latter case is slightly better. However, we feel that the
experimental data are insufhcient to determine ac-
curately the exponents P and 8. The value of the expo-
nent p derived from our analysis is in agreement with
that previously obtained. In the present situation it is
determined from isotherms with large values of t so
that the critical temperature is poorly found by the
KF method. If we try to get an indication of the value
of T, from a study of the behavior of the three iso therms
which should be closest to critical, such as is shown in
Fig. l3, we can only conclude from the observed curva-
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FIG. 13. Comparison of experimental value of 3f versus H on a log-log scale for three isotherms close to the probable critical temperature
in Lao. fiSro. :Co03 with predicted behavior according to fit of Eq. (12) with 8=3 (dashed line) and 8=4.4 (solid line).

ture in the isotherm at 229.8 K that T,&229.8 K, the
other two isotherms showing no significant curvature in
either direction. For the sake of comparison we also
show in this figure our computed behavior of the critical
isotherm for the two cases we considered, 8=3 (dashed
line) and 8=4.4 (solid line). It is clear that neither is
in good agreement with the data. Until additional data
closer to the critical point are taken, no definite con-
clusion can be obtained for this substance. It is, how-
ever, true that the same values of P and 8 found for the
other magnetic materials considered can adequately de-
scribe the critical-point behavior of Lap 5Slp. 5Co03.

For the Quids the only significa. nt difference in the
parameters as determined by the present multiparam-
eter fit and the previous four-parameter fit, ' in which P
and xp were assumed known, is the di6erence between
the two values of 5 for CO2. We believe that this is due
to the fact that for this substance the amount of experi-
mental information very close to the critical isotherm
is scarce and that more experimental data are needed to
get an accurate estima, te of 8. The indication is, however,
that 5 is closer to 4.5 than it is to 4.6.

The previous discussion of the results of the present
analysis for the case of the critical behavior of CrBr3
leads us to the conclusion that the present method per-
mits us to assign reliable values not only to the param-
eters P, 8, T„and xo but also to the derived parameters
8, 6, I', and I" defined in Eqs. (1)—(4), respectively.

TABLE IV. Parameters characterizing phase boundary, critical
isotherm, and susceptibility on the critical isochore.

CrBr3
Gd
Ni'
Nib
COg
Xe
He'

1.20
1.16
1.44
1.46
2.01
1.80
1.441

0.638
0.88
0.238
0.230
2.32
3.3
3,14

0.91
1.14
0.61
0.62

16.3
16.9
7.16

2.75 3.0
3.15 2.7
1.80 2.9
1.79 2.9

67.5 4.2
70.0 4.1
26.9 3.8

a Reference 14.
b Reference 13.

Hence we have assumed this to be true in every case in
which the amount of experimental information is such
that the multiparameter fit unequivocally indicates a
best fit, that is, in all cases considered in detail except
I-ap 5Srp. 5CoO~. These derived parameters are listed in
Table IV. We have also listed there the values of the
ratio F/I" which we note appears to be roughly constant
and of order 3 for all the magnets while for all the Auids

it is roughly constant and of order 4.
Other parameters which can be derived from a knowl-

edge of the function h(x) are the parameters which de-

scribe the behavior of the specific heat. We have seen
that an equation of state based on scaling ideas gives a
good representation of the data in the critical region for
both the fiuids and the magnets. For the behavior of the
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TABLE V. Exponent 0,' as derived from values of P and 8 by use of Eq. (10).

CrBr3

+0.06&0.06

Gd

+0.01+0.09 —0.03&0.15

Nib

—0.05&0.13

COR

10.06&0.09 +0.04&0.09

He4

+0.06~0.09

a Reference 14.
b Reference 13.

A. =Pxo='h'( —x,).

On the other hand, once n is known the coefficients A+
and An of Eqs. (5) and (6), respectively, can be nu-

TABLE VI Parameters describing behavior of specific heat
on the critical isochore.

CrBr3
Gd
Ni'
Nib

COR
Xe
He4

0.02
0.02
0.02

—0.06
+0.02
+0.06

0.04
0.04
0.04

0.54
0.57
0.49
0.54
0.50
0.48

42
28

7.3

0.092
0.15
0.13
0.09
0.15
0.17
6.3
48
1.4

0.078
0.13
0.11
0.15
0.13
0.13
4.6
3.6
1.06

a Reference 14.
b Reference 13.

"B.J. C. van der Hoeven, D. T. Teaney, and V. L Moruzzi,
Phys. Rev. Letters 20, 719 (1969)."P. Handler, D. E. Mapother, and M. Rayl, Phys. Rev. Letters
19, 356 (1967).

"M. R. Moldover, Ph. D. thesis, Stanford University, 1966
(unpublished) ~

"C.Edwards, J. A. Lipa, and M. J. Buckingham, Phys. Rev.
Letters 20, 496 (1968).

'0 If o.=0, a constant jump should be observed, while for n/0
the jump would be a function of temperature which diverges at
t =0 if n&0 but decreases to zero at t =0 if ~&0. Measurements of
this quantity should be a very sensitive means of determining the
sign of a.

specific heat this implies that e must be equal to n'.
Since there is no clear cut indication from direct mea-
surements of the nonanalytic part of the speci6c heat" "
that this is not true, we shall assume this property to be
satisfied. From our derived values of P and 8 we can
then derive values for n by means of Eq. (10), and these
are presented in Table V. The uncertainty in the values
of n is quite large. For the Quids the indication is that
n is positive, and a value of 0.04 is acceptable for the
three substances considered. For the magnets o, seems
to be clearly positive only for CrBr3. However, for the
present purposes, a value of u =+0.02 is acceptable for
CrBr3, Gd, and Ni. A property of the specific heat which
does not appear to be too sensitive to the value of n is
the coefficient A, of Eq. (7) which describes the jump
in the specific heat across the phase boundary. This
quantity can be calculated4 ' simply from h(x) by"

merically evaluated from h(x)4 o:

dy h" (y)y (18)

0

&ii =&P dy &"(y) ~y( '+xo '&'( —xo)
—$0

Their value is quite sensitive to the value of 0.. Values
of A„A+, and A& calculated in this way are given in
Table VI for a typical value of a, specifically n=+0.02
for the magnets and n =+0.04 for the fluids. To show
the dependence of these quantities on o. we have also
shown for one of the Ni cases the derived value for
different choices of n(+0.06).

4. DISCUSSION

Ke And that the experimental data in the critical
region of both the magnets and Quids satisfy the scaling
properties which have been theoretically suggested to be
valid in that region. In all cases the proposed form for
the scaled function h(x) $Eq. (12)j fits the data within
the estimated uncertainties and it can be used to deter-
mine values for the critical exponents P and 8. The same
form for the equation of state thus appears to describe
the critical point of Quids and the Curie point of ferro-
magnets. There are differences however between the two
groups of substances. While the exponent P appears to
be reasonably constant within either group, it seems to
be systematically lower for the fluids (0.352) compared
to the magnets (0.370). Furthermore, the ratio I'/I" is
the same for all Quids and about 4, while for the magnets
I'/I" 3. The parameter xo seems to be a characteristic
of the particular substance considered. In regard to the
exponent 8, there is very scant evidence of it being sig-
nificantly different between the Quids and magnets, a
value of 4.4 being consistent with all our results. More
precise data on a larger number of materials are needed
to reach a definite conclusion on this point. However,
we have shown that there are serious reasons to question
the values for P and ri largely different from 0.37 and
4.4, respectively, that have been reported in the litera-
ture (I.ao oSro oCoOo'.P =0.63, 8=3.05; YFeOo. P =0.55,
8=2.78; CrOo. P =0.34, 8=5.75) as being representative
of the true asymptotic behavior.

The explicit form for the equation of state at the criti-
cal point which we have proposed gives a good representa-
tion for the entire range of the variable x (—xo(x( ~ ).
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While the higher-order terms in the series expansion of
this function do not have the correct form at large x, a
detailed comparison with the results of the analysis of
Ho and Litster, ' who used the erst three terms in the
exact expansion, showed that the values of the expo-
nents and of the most important coeKcients in the criti-
cal region are not significantly affected by the inade-
quacies of our function. It is instructive to compare our
proposed form for the function h(x) $Eq. (12)]with that
proposed by Arrott and Noakes"

hpN(x) = (x+x )i'"-'&

and an alternate one proposed by Ho and Litster"

(20)

hnr, (x) =2 (x+xp) (x+C)i'&' '&—'. (21)

It is readily seen that both of these functions behave
badly at large x. The leading term in the appropriate
expansion goes as x~, but the next term is of the wrong
form, x& '. In terms of the variables H/M and 3P the
expansions of these two functions for small 3f are of the
form H/3f =a'+b'(N')"'& instead of the correct form
H/kI=a+bM'. In the case of the function we have
used, a term of the form bM' is present, the third term
being of the form b'(3P) "~; that is, the incorrect term
appears as a second-order term in our case, while in the
other two functions it appears in 6rst order.

The function we have proposed predicts a nonanalytic
behavior at the phase boundary which could, if desired,
be readily removed by inclusion of an additional param-
eter—for example, replace the quantity in the curly
brackets of Eq. (12) by 1+I (x+xp')/xpj's. Considering
the present status of the available experimental data,
it hardly seems necessary to introduce another unde-
termined parameter. Such a parameter would be impor-
tant only very close to the phase boundary, where ex-
tensive experimental information is not available. The
function proposed by Arrott and Noakes has an infinite
susceptibilitv on the phase boundary.

The function h(x) we have used predicts the existence
of a spinodal, defined as a value of x(xi) inside of the
two-phase region, for which the susceptibility would
diverge,

PN (xi) =xih'(xi) . (22)

Numerical solution of this equation shows that for the

"A.Arrott and J.E. Noakes, Phys. Rev. Letters 19, 786 (1967).

fluids xi/xp ——3.1, while for the magnets xi/xp ——3.4
(in the mean-field approximation the spinodal occurs
at xi/xp ———3).

Fisher" has recently developed a theory of the "re-
normalization of critical exponents by hidden variables. "
It is there suggested that the observed critical exponents
n„P„&,are related to the "ideal" exponents n, P, p by

(23)

(24)

(25)

with similar relations for the primed exponents. If the
scaling relations are assumed valid, it follows that
primed and unprimed exponents are identical and the
renormalized and ideal exponents 8 are equal,

(26)

The ideal exponent n' =n is assumed here to be positive.
Now, in the context of this theory, if we conclude from
our results that 8 is the same for both Ruids and mag-
nets, together with the experimental indication that n,
for the Auids is positive, then the exponents for the Quids
would correspond to the ideal situation and the expo-
nents for the magnets represent renormalized values.
From our results for P a value of +0.05 is obtained for
the ideal exponent n which is in good agreement with
the observed divergence of the specific heat of Quids and
the values given in Table V. For the magnets the ob-
served o. would then be negative, which is not inconsist-
ent with the values of n we have presented in Table V.
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